Relationship between the Molecular Coil Dimension and the Energy Storage Modulus of Polymer Solution Configured with Oilfield-Produced Sewage

Wang, Peng and Ma, Wenguo and Zhang, Yunbao and Yan, Qiuyan (2020) Relationship between the Molecular Coil Dimension and the Energy Storage Modulus of Polymer Solution Configured with Oilfield-Produced Sewage. International Journal of Analytical Chemistry, 2020. pp. 1-8. ISSN 1687-8760

[thumbnail of 2538521.pdf] Text
2538521.pdf - Published Version

Download (2MB)

Abstract

Polymer viscoelastic solution is the non-Newtonian fluid and widely used in oil production. In the process of seepage, the mechanism of the polymer solution with different molecular coil dimensions (Dh) flooding on remaining oil is unknown. By using the dynamic light scattering instrument, the molecular coil dimension of the polymer solution is tested. By using the HAAKE rheometer, the creep recovery test data of the polymer solution under the same creep time condition are obtained. The effects of polymer solutions with different Dh on residual oil are observed, by using the visible pore model. The results show that the higher the molecular weight (Mw) of the polymer, the larger the size of the molecular coil dimension. The elasticity characteristics of the polymer solution are sensitive to the molecular coil dimension. As Dh of polymer molecules becomes larger, the contribution of the elastic portion to the viscosity of the polymer solution increases. The higher the Mw of polymer is, the longer the molecular chain is and the size of Dh is larger. On the condition of the polymer solution with different Mw with 2.5 g/L, when Dh is between 320.0 nm and 327.8 nm, the ratio of the elastic part in the apparent viscosity exceeds the proportion of the viscous part, and the polymer solution composition after these data can be used as a comparative study of elasticity for residual oil use. In the visible pore model, the pore-throat ratio is 3.5, the ER of water flooding is 54.26%, the ER of the polymer solution with Dh = 159.7 nm is 75.28%, and the increase of ER is 21.02% than that of water flooding. With the increase of Dh to 327.8 nm, the final ER of the experimental polymer solution is 97.82%, and the increase of ER of the polymer solution than that of water flooding is 43.56%. However, in the model with a pore-throat ratio of 7.0 and the same polymer solution with Dh = 327.8 nm, the increase of ER of the polymer solution is only 10.44% higher than that of water flooding. The effect of the polymer solution with the same Dh is deteriorated with the increase of the pore-throat ratio.

Item Type: Article
Subjects: EP Archives > Chemical Science
Depositing User: Managing Editor
Date Deposited: 11 Jan 2023 08:17
Last Modified: 24 Jun 2024 04:10
URI: http://research.send4journal.com/id/eprint/1533

Actions (login required)

View Item
View Item