Sedighin, Farnaz and Cichocki, Andrzej (2021) Image Completion in Embedded Space Using Multistage Tensor Ring Decomposition. Frontiers in Artificial Intelligence, 4. ISSN 2624-8212
pubmed-zip/versions/1/package-entries/frai-04-687176/frai-04-687176.pdf - Published Version
Download (3MB)
Abstract
Tensor Completion is an important problem in big data processing. Usually, data acquired from different aspects of a multimodal phenomenon or different sensors are incomplete due to different reasons such as noise, low sampling rate or human mistake. In this situation, recovering the missing or uncertain elements of the incomplete dataset is an important step for efficient data processing. In this paper, a new completion approach using Tensor Ring (TR) decomposition in the embedded space has been proposed. In the proposed approach, the incomplete data tensor is first transformed into a higher order tensor using the block Hankelization method. Then the higher order tensor is completed using TR decomposition with rank incremental and multistage strategy. Simulation results show the effectiveness of the proposed approach compared to the state of the art completion algorithms, especially for very high missing ratios and noisy cases.
Item Type: | Article |
---|---|
Subjects: | EP Archives > Multidisciplinary |
Depositing User: | Managing Editor |
Date Deposited: | 09 Mar 2023 07:16 |
Last Modified: | 25 May 2024 07:36 |
URI: | http://research.send4journal.com/id/eprint/996 |