Multiparameter Approach for Damage Propagation Analysis in Fiber-Reinforced Polymer Composites

Barile, Claudia and Casavola, Caterina and Pappalettera, Giovanni and Vimalathithan, Paramsamy Kannan (2021) Multiparameter Approach for Damage Propagation Analysis in Fiber-Reinforced Polymer Composites. Applied Sciences, 11 (1). p. 393. ISSN 2076-3417

[thumbnail of applsci-11-00393-v2.pdf] Text
applsci-11-00393-v2.pdf - Published Version

Download (4MB)

Abstract

Assessing the damage evolution in carbon-fiber-reinforced polymer (CFRP) composites is an intricate task due to their complex mechanical responses. The acoustic emission technique (AE) is a non-destructive evaluation tool that is based on the recording of sound waves generated inside the material as a consequence of the presence of active defects. Proper analysis of the recorded waves can be used for monitoring the damage evolution in many materials, including composites. The acoustic track associated with the entire loading history of the sample or the structures is usually followed by using some descriptors, such as the amplitude of the sound waves and the number of counts. In this study, the acoustic emission in CFRP single-lap shear joints was monitored by using a multiparameter approach based on the contemporary analysis of multiple features, such as the absolute signal level (ASL), initiation frequency, and reverberation frequency, to understand whether a proper combination of them can be adopted for a more robust description of the damage propagation in CFRP structures. For selecting the best features, principal component analysis (PCA) was used. The selected features were classified into different clusters using fuzzy c-means (FCM) data clustering for analyzing the damage modes.

Item Type: Article
Subjects: EP Archives > Engineering
Depositing User: Managing Editor
Date Deposited: 18 Feb 2023 11:34
Last Modified: 11 Jul 2024 05:33
URI: http://research.send4journal.com/id/eprint/519

Actions (login required)

View Item
View Item