Abbas, Mohamed and Abdel-Lattif, Hashim and Shahba, Mohamed (2021) Ameliorative Effects of Calcium Sprays on Yield and Grain Nutritional Composition of Maize (Zea mays L.) Cultivars under Drought Stress. Agriculture, 11 (4). p. 285. ISSN 2077-0472
agriculture-11-00285-v2.pdf - Published Version
Download (322kB)
Abstract
Drought stress is seriously affecting maize production. To investigate the influence of calcium (Ca) foliar application on maize production and chemical composition of grains under drought stress, two experiments were carried out at Cairo University Research Station, Giza, Egypt, during the summer seasons of 2018 and 2019. The experimental design was split-split plot design with a completely randomized blocks arrangement with three replications. Water regimes were assigned to the main plots [100 (control), 75, and 50% of estimated evapotranspiration]. Calcium levels (zero and 50 mg/L) were assigned to the sub plots. Maize cultivars (SC-P3444, Sammaz-35 and EVDT) were assigned to the sub-sub plots. Three maize cultivars were sprayed with Ca solution concentration (50 mg/L) under normal and drought conditions. The control treatment (0 mg/L) was sprayed with an equal amount of distilled water for comparison. Results indicated a significant decrease in total yield and grain characteristics [protein, ash, total sugars, nitrogen (N), phosphorus (P), potassium (K), and iron (Fe) contents] as a response of drought. Calcium foliar application significantly increased maize yield, protein, ash, carbohydrates, starch, total sugars, and ionic contents of grains, except for manganese (Mn), under all irrigation levels. Based on the drought tolerance index (DTI), only cultivar SC-P3444 showed drought tolerance while cultivars Sammaz-35 and EVDT were sensitive to drought stress. Foliar application of Ca on SC-P3444 cultivar achieved the highest grain yield per hectare (8061 kg) under the water regime of 100% of the total evapotranspiration, followed by Sammaz-35 (7570 kg), and EVDT (7191 kg) cultivars. At the water regime of 75% of estimated evapotranspiration (75% irrigation), Ca foliar application increased grain yield by 16, 13 and 14% in SC-P3444, Sammaz-35, and EVDT, respectively. At the water regime of 50% of the estimated evapotranspiration (50% irrigation), Ca foliar application increased grain yield by 17, 16, and 13% in SC-P3444, Sammaz-35, and EVDT, respectively. In brief, Ca had a clear impact on productivity and grain quality with important implications for maize yield under normal and water stress conditions. Our findings demonstrate that foliar application of Ca enabled drought stressed maize plants to survive better under stress. The most water stress tolerant cultivar was SC-P3444 followed by Sammaz-35 and EVDT under drought stress.
Item Type: | Article |
---|---|
Subjects: | EP Archives > Agricultural and Food Science |
Depositing User: | Managing Editor |
Date Deposited: | 29 Nov 2022 04:57 |
Last Modified: | 25 May 2024 07:35 |
URI: | http://research.send4journal.com/id/eprint/462 |