Gravitational Waves of Holographic QCD Phase Transition with Hyperscaling Violation

Zhu, Zhourun and Sun, Manman and Zhou, Rui and Han, Jinzhong and Hou, Defu (2024) Gravitational Waves of Holographic QCD Phase Transition with Hyperscaling Violation. Universe, 10 (5). p. 224. ISSN 2218-1997

[thumbnail of universe-10-00224.pdf] Text
universe-10-00224.pdf - Published Version

Download (375kB)

Abstract

Gravitational Waves of Holographic QCD Phase Transition with Hyperscaling Violation Zhourun Zhu School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou 466001, China Manman Sun School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou 466001, China Rui Zhou School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou 466001, China Jinzhong Han School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou 466001, China Defu Hou Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Central China Normal University, Wuhan 430079, China http://orcid.org/0000-0002-2966-755X

In this paper, we study the gravitational waves of holographic QCD phase transition with hyperscaling violation. We consider an Einstein–Maxwell Dilaton background and discuss the confinement–deconfinement phase transition between thermally charged AdS and AdS black holes. We find that hyperscaling violation reduces the phase transition temperature. In a further study, we discuss the effect of hyperscaling violation on the GW spectrum. We found that the hyperscaling violation exponent suppresses the peak frequency of the total GW spectrum. Moreover, the results of the GW spectrum may be detected by IPTA, SKA, BBO, and NANOGrav. We also find that the hyperscaling violation exponent suppresses the peak frequency of the bubble-collision spectrum h2Ωenv. Hyperscaling violation enhances the energy densities of the sound wave spectrum h2Ωsw and the MHD turbulence spectrum h2Ωturb. The total GW spectrum is dominated by the contribution of the bubble collision in runaway bubbles case.
05 17 2024 224 universe10050224 National Natural Science Foundation of China http://dx.doi.org/10.13039/ 12275104 National Key Research and Development Program of China http://dx.doi.org/10.13039/ 2022YFA1604900 National Natural Science Foundation of China http://dx.doi.org/10.13039/ 12305076 Science and Technology Development Plan Project of Henan Province http://dx.doi.org/10.13039/ 242102230085 https://creativecommons.org/licenses/by/4.0/ 10.3390/universe10050224 https://www.mdpi.com/2218-1997/10/5/224 https://www.mdpi.com/2218-1997/10/5/224/pdf Einstein Approximative Integration of the Field Equations of Gravitation Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1916 1916 688 Einstein Uber Gravitationswellen Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1918 1918 154 10.1103/PhysRevLett.116.061102 Abbott, B.P. et al. [LIGO Scientific and Virgo] (2016). Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116, 061102. Arzoumanian, Z. et al. [NANOGrav] (2020). The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys. J. Lett., 905, L34. Cai The Gravitational-Wave Physics Natl. Sci. Rev. 2017 10.1093/nsr/nwx029 4 687 Kosowsky Gravitational waves from first order cosmological phase transitions Phys. Rev. Lett. 1992 10.1103/PhysRevLett.69.2026 69 2026 Kosowsky Gravitational radiation from colliding vacuum bubbles: Envelope approximation to many bubble collisions Phys. Rev. D 1993 10.1103/PhysRevD.47.4372 47 4372 Kamionkowski Gravitational radiation from first order phase transitions Phys. Rev. D 1994 10.1103/PhysRevD.49.2837 49 2837 Caprini Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions JCAP 2016 4 1 Jinno Gravitational waves from the first order phase transition of the Higgs field at high energy scales Phys. Rev. D 2016 10.1103/PhysRevD.93.045024 93 045024 Gao, F., Sun, S., and White, G. (2024). A first-order deconfinement phase transition in the early universe and gravitational waves. arXiv. Caprini, C. et al. [LISA Cosmology Working Group] (2024). Gravitational waves from first-order phase transitions in LISA: Reconstruction pipeline and physics interpretation. arXiv. Han, X., and Shao, G. (2023). Stochastic gravitational waves produced by the first-order QCD phase transition. arXiv. 10.1016/j.nuclphysa.2005.02.130 Arsene, I. et al. [BRAHMS Collaboration] (2005). Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment. Nucl. Phys. A, 757, 1. 10.1016/j.nuclphysa.2005.03.086 Adcox, K. et al. [PHENIX Collaboration] (2005). Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A, 757, 184. 10.1016/j.nuclphysa.2005.03.084 Back, B.B. et al. [PHOBOS Collaboration] (2005). The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A, 757, 28. Lucini SU(Nc) gauge theories at deconfinement Phys. Lett. B 2012 10.1016/j.physletb.2012.04.070 712 279 Aoki The QCD transition temperature: Results with physical masses in the continuum limit Phys. Lett. B 2006 10.1016/j.physletb.2006.10.021 643 46 Bazavov The chiral and deconfinement aspects of the QCD transition Phys. Rev. D 2012 10.1103/PhysRevD.85.054503 85 054503 Bhattacharya QCD Phase Transition with Chiral Quarks and Physical Quark Masses Phys. Rev. Lett. 2014 10.1103/PhysRevLett.113.082001 113 082001 Witten Anti-de Sitter space and holography Adv. Theor. Math. Phys. 1998 10.4310/ATMP.1998.v2.n2.a2 2 253 Gubser Gauge theory correlators from noncritical string theory Phys. Lett. B 1998 10.1016/S0370-2693(98)00377-3 428 105 Maldacena The Large N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 1998 10.4310/ATMP.1998.v2.n2.a1 2 231 Hawking Thermodynamics of Black Holes in anti-De Sitter Space Commun. Math. Phys. 1983 10.1007/BF01208266 87 577 Herzog A Holographic Prediction of the Deconfinement Temperature Phys. Rev. Lett. 2007 10.1103/PhysRevLett.98.091601 98 091601 Ahmadvand Gravitational waves generated from the cosmological QCD phase transition within AdS/QCD Phys. Lett. B 2017 10.1016/j.physletb.2017.07.039 772 747 Ahmadvand The cosmic QCD phase transition with dense matter and its gravitational waves from holography Phys. Lett. B 2018 10.1016/j.physletb.2018.01.066 779 1 Rezapour Gravitational waves of a first-order QCD phase transition at finite coupling from holography Annals Phys. 2022 10.1016/j.aop.2021.168731 437 168731 Rezapour Gravitational waves of the QCD phase transition in a 5D soft wall model with Gauss-Bonnet correction Phys. Scripta 2022 10.1088/1402-4896/ac4f03 97 035301 Chen Gravitation waves from QCD and electroweak phase transitions J. High Energy Phys. 2018 10.1007/JHEP05(2018)178 5 178 Ares Gravitational waves from a holographic phase transition J. High Energy Phys. 2020 21 100 Cai Probing QCD critical point and induced gravitational wave by black hole physics Phys. Rev. D 2022 10.1103/PhysRevD.106.L121902 106 L121902 He Gravitational Waves and Primordial Black Hole Productions from Gluodynamics by Holography Sci. China Phys. Mech. Astron. 2024 10.1007/s11433-023-2293-2 67 240411 Zhu Gravitational waves from holographic QCD phase transition with gluon condensate Eur. Phys. J. A 2022 10.1140/epja/s10050-022-00754-2 58 104 Batell Gravitational Waves from Nnaturalness J. High Energy Phys. 2024 10.1007/JHEP01(2024)148 1 148 Gouttenoire, Y. (2023). Primordial Black Holes from Conformal Higgs. arXiv. Kachru Gravity duals of Lifshitz-like fixed points Phys. Rev. D 2008 10.1103/PhysRevD.78.106005 78 106005 Koroteev On Existence of Self-Tuning Solutions in Static Braneworlds without Singularities J. High Energy Phys. 2008 10.1088/1126-6708/2008/02/104 2 104 Charmousis Effective Holographic Theories for low-temperature condensed matter systems JHEP 2010 10.1007/JHEP11(2010)151 11 151 Sachan Study of confinement/deconfinement transition in AdS/QCD with generalized warp factors Adv. High Energy Phys. 2014 10.1155/2014/543526 2014 543526 Singh Special limits and non-relativistic solutions J. High Energy Phys. 2010 10.1007/JHEP12(2010)061 12 61 Narayan On Lifshitz scaling and hyperscaling violation in string theory Phys. Rev. D 2012 10.1103/PhysRevD.85.106006 85 106006 Singh Lifshitz/Schrödinger Dp-branes and dynamical exponents J. High Energy Phys. 2012 10.1007/JHEP07(2012)082 7 82 Alishahiha Charged Black Branes with Hyperscaling Violating Factor J. High Energy Phys. 2012 10.1007/JHEP11(2012)137 11 137 Moore Gravitational-wave sensitivity curves Class. Quant. Grav. 2015 10.1088/0264-9381/32/1/015014 32 015014 Schmitz New Sensitivity Curves for Gravitational-Wave Signals from Cosmological Phase Transitions J. High Energy Phys. 2021 10.1007/JHEP01(2021)097 1 97 Ruan Taiji program: Gravitational-wave sources Int. J. Mod. Phys. A 2020 10.1142/S0217751X2050075X 35 2050075 Sin Gravity back-reaction to the baryon density for bulk filling branes J. High Energy Phys. 2007 10.1088/1126-6708/2007/10/078 10 78 Lee A Dual Geometry of the Hadron in Dense Matter J. High Energy Phys. 2009 10.1088/1126-6708/2009/07/087 7 87 Hindmarsh Numerical simulations of acoustically generated gravitational waves at a first order phase transition Phys. Rev. D 2015 10.1103/PhysRevD.92.123009 92 123009 Jovanovic Constituent quark masses obtained from hadron masses with contributions of Fermi-Breit and Glozman-Riska hyperfine interactions Phys. Rev. D 2010 10.1103/PhysRevD.82.117501 82 117501 Bodeker Can electroweak bubble walls run away? J. Cosmol. Astropart. Phys. 2009 10.1088/1475-7516/2009/05/009 5 9

Item Type: Article
Subjects: EP Archives > Physics and Astronomy
Depositing User: Managing Editor
Date Deposited: 18 May 2024 10:43
Last Modified: 18 May 2024 10:43
URI: http://research.send4journal.com/id/eprint/3923

Actions (login required)

View Item
View Item