Key, Fabian and Freinberger, Lukas (2024) A Formulation of Structural Design Optimization Problems for Quantum Annealing. Mathematics, 12 (3). p. 482. ISSN 2227-7390
mathematics-12-00482.pdf - Published Version
Download (498kB)
Abstract
We present a novel formulation of structural design optimization problems specifically tailored to be solved by qa. Structural design optimization aims to find the best, i.e., material-efficient yet high-performance, configuration of a structure. To this end, computational optimization strategies can be employed, where a recently evolving strategy based on quantum mechanical effects is qa. This approach requires the optimization problem to be present, e.g., as a qubo model. Thus, we develop a novel formulation of the optimization problem. The latter typically involves an analysis model for the component. Here, we use energy minimization principles that govern the behavior of structures under applied loads. This allows us to state the optimization problem as one overall minimization problem. Next, we map this to a qubo problem that can be immediately solved by qa. We validate the proposed approach using a size optimization problem of a compound rod under self-weight loading. To this end, we develop strategies to account for the limitations of currently available hardware. Remarkably, for small-scale problems, our approach showcases functionality on today’s hardware such that this study can lay the groundwork for continued exploration of qa’s impact on engineering design optimization problems.
Item Type: | Article |
---|---|
Subjects: | EP Archives > Multidisciplinary |
Depositing User: | Managing Editor |
Date Deposited: | 05 Feb 2024 05:37 |
Last Modified: | 05 Feb 2024 05:37 |
URI: | http://research.send4journal.com/id/eprint/3722 |