Chronic Stress Induces Type 2b Skeletal Muscle Atrophy via the Inhibition of mTORC1 Signaling in Mice

Fushimi, Shigeko and Nohno, Tsutomu and Katsuyama, Hironobu (2023) Chronic Stress Induces Type 2b Skeletal Muscle Atrophy via the Inhibition of mTORC1 Signaling in Mice. Medical Sciences, 11 (1). p. 19. ISSN 2076-3271

[thumbnail of medsci-11-00019-v2.pdf] Text
medsci-11-00019-v2.pdf - Published Version

Download (2MB)

Abstract

Chronic stress induces psychological and physiological changes that may have negative sequelae for health and well-being. In this study, the skeletal muscles of male C57BL/6 mice subjected to repetitive water-immersion restraint stress to model chronic stress were examined. In chronically stressed mice, serum corticosterone levels significantly increased, whereas thymus volume and bone mineral density decreased. Further, body weight, skeletal muscle mass, and grip strength were significantly decreased. Histochemical analysis of the soleus muscles revealed a significant decrease in the cross-sectional area of type 2b muscle fibers. Although type 2a fibers also tended to decrease, chronic stress had no impact on type 1 muscle fibers. Chronic stress increased the expression of REDD1, FoxO1, FoxO3, KLF15, Atrogin1, and FKBP5, but did not affect the expression of myostatin or myogenin. In contrast, chronic stress resulted in a decrease in p-S6 and p-4E-BP1 levels in the soleus muscle. Taken together, these results indicate that chronic stress promotes muscle atrophy by inhibiting mammalian targets of rapamycin complex 1 activity due to the upregulation of its inhibitor, REDD1.

Item Type: Article
Subjects: EP Archives > Medical Science
Depositing User: Managing Editor
Date Deposited: 30 May 2023 11:14
Last Modified: 28 Nov 2023 03:54
URI: http://research.send4journal.com/id/eprint/2233

Actions (login required)

View Item
View Item