Alpizar, Scott A. and Baker, Arielle L. and Gulledge, Allan T. and Hoppa, Michael B. (2019) Loss of Neurofascin-186 Disrupts Alignment of AnkyrinG Relative to Its Binding Partners in the Axon Initial Segment. Frontiers in Cellular Neuroscience, 13. ISSN 1662-5102
pubmed-zip/versions/1/package-entries/fncel-13-00001/fncel-13-00001.pdf - Published Version
Download (5MB)
Abstract
The axon initial segment (AIS) is a specialized region within the proximal portion of the axon that initiates action potentials thanks in large part to an enrichment of sodium channels. The scaffolding protein ankyrinG (AnkG) is essential for the recruitment of sodium channels as well as several other intracellular and extracellular proteins to the AIS. In the present study, we explore the role of the cell adhesion molecule (CAM) neurofascin-186 (NF-186) in arranging the individual molecular components of the AIS in cultured rat hippocampal neurons. Using a CRISPR depletion strategy to ablate NF expression, we found that the loss of NF selectively perturbed AnkG accumulation and its relative proximal distribution within the AIS. We found that the overexpression of sodium channels could restore AnkG accumulation, but not its altered distribution within the AIS without NF present. We go on to show that although the loss of NF altered AnkG distribution, sodium channel function within the AIS remained normal. Taken together, these results demonstrate that the regulation of AnkG and sodium channel accumulation within the AIS can occur independently of one another, potentially mediated by other binding partners such as NF.
Item Type: | Article |
---|---|
Subjects: | EP Archives > Medical Science |
Depositing User: | Managing Editor |
Date Deposited: | 29 May 2023 04:13 |
Last Modified: | 13 Sep 2023 07:14 |
URI: | http://research.send4journal.com/id/eprint/2220 |