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In this article, we are concerned with a problem for the p-Laplacian parabolic equation with logarithmic nonlinearity; the blow-up
result of the solution is proven. This work is completed Boulaaras’ work in Math. Methods Appl. Sci., (2020), where the author did
not study the blowup of the solution.

1. Introduction

In the current manuscript, we consider the following
initial-boundary value problem for a nonlinear p-Laplacian
equation:

ut − div ∇uj jp−2∇u� �
+ uj jp−2u = uj jp−2u ln uj j, x ∈Ω, t > 0,

u x, 0ð Þ = u0 xð Þ, x ∈Ω,
u x, tð Þ = 0, x ∈ ∂Ω, t ≥ 0,

8>><
>>:

ð1Þ

where Ω ⊂ Rn is a bounded domain with smooth boundary
∂Ω and u0 is the initial data p satisfying

2 < p<∞, if n ≤ p,

2 < p < np
n − p

, if n > p:

8<
: ð2Þ

The terminology of nonlinear polynomials is among the
work that researchers have focused on recently. For example,
it is found in edge detection and optical elasticity, materials
science, engineering, physics, and photonics. In addition,
many works and problems in applied sciences have been
designed and proposed by means of partial differential
equations, including the modeling of some dynamic systems
in physics and engineering ([1–13]).

The same is said for the evolutionary partial differential
equations associated with pðxÞ-Laplacian (see [8, 14, 15]).

We also note that logarithmic nonlinearity has been
concerned by many scientists and researchers, and it
has introduced many issues, including the wave equation
(see [3, 16–18]).

And for more information on some of the other
works to which this term was introduced, we refer the
reader to [13, 14, 16–24].

Later on, in [25], the authors by the multiplier method
gave the energy decay of the solution of the following problem:

utt − div ∇uj jp−2∇u� �
− Δut + utj jq−1ut = uj jp−1u: ð3Þ

In addition, the authors in [14] proved the decay rate of
solutions (exponential and polynomial) by using the inequal-
ity of Nakao for the seminar problem (3).

On the other hand, for the Laplacian parabolic equation
with the logarithmic source term in [21], Chen et al. studied
the following problem:

ut − Δu − Δut = u ln u: ð4Þ
Then, in [23], the authors proved the global existence, the

decay, and the blowup of the solutions of the problem:

ut − div ∇uj jp−2∇u� �
− Δut = uj jp−2u ln uj j, ð5Þ

where p > 2:
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Also, in [14], the authors established the global bounded-
ness and the blowup of the solution of the problem (5) for
1 < p < 2.

Motivated by the last recent mentioned works, here, we
investigated problem (1) with the nonlinear diffusion Δp =
div ðj∇ujp−2∇uÞ and logarithmic nonlinearity jujp−2u ln juj
which extends problem in [14]. Our goal is to blow up solu-
tions for problem (1) in order to put some preliminaries.
More precisely, we give the blow-up result.

2. Preliminaries

As a starting point, we gave some essential definitions and
lemmas.

uk kp = uk kLp Ωð Þ, uk k1,p = uk kW1,p
0 Ωð Þ = uk kp + ∇uk kp

� �1/p
,

ð6Þ

for 1 < p <∞, and we symbolize the positive constants by C
and Ci (i = 1, 2,⋯).

Lemma 1 [7] (logarithmic Sobolev inequality). Let u be all
function u ∈W1,p

0 ðRnÞ \ f0g. Then, for p > 1, μ > 0,

p
ð
Rn
up ln uj j

uk kLp Rnð Þ

 !
dx ≤ μ

ð
Rn

∇uj jpdx

−
n
p
ln pμe

nLp

 !ð
Rn

uj jpdx,

ð7Þ

where

Lp =
p
n

p − 1
e

� �p−1

π−p/2 Γ n/2ð Þ + 1ð Þ
Γ n p − 1ð Þ/pð Þ + 1ð Þ
� 	p/n

: ð8Þ

Remark 2. Let u ∈W1,p
0 ðΩÞ \ f0g, and by defining uðxÞ = 0

for x ∈ Rn \Ω, we can write

p
ð
Ω

up ln uj j
uk kLp Ωð Þ

 !
dx ≤ μ

ð
Ω

∇uj jpdx

−
n
p
ln pμe

nLp

 !ð
Ω

uj jpdx:
ð9Þ

3. Blowup

In this third section, we gave the proof of blowup of solution
of our problem.

Theorem 3. For any initial data u0 ∈H , the problem (1) has a
unique weak solution:

u ∈ C 0, T½ � ;Hð Þ, ð10Þ

for some T > 0.

First, we introduce the energy functional in the following
lemma.

Lemma 4. Let uðtÞ be a solution of (1), then EðtÞ is nonin-
creasing; that is,

E tð Þ = 1
p

∇uk kpp −
1
p

ð
Ω

ln uj jupdx + p + 1
p2

uk kpp ð11Þ

satisfies

E′ tð Þ = − utk k22: ð12Þ

Proof. Multiplying (1) by ut and integrating on Ω, we have

−
ð
Ω

div ∇uj jp−2∇u� �
utdx +

ð
Ω

uj jp−2uutdx +
ð
Ω

ututdx

=
ð
Ω

up−2u ln uj jutdx,

d
dt

1
p

∇uk kpp +
1
p

uk kpp −
1
p

ð
Ω

ln uj jupdx + 1
p2

uk kpp
� �
= − utk k2:

ð13Þ

Thus,

E′ tð Þ = − utk k2: ð14Þ

☐

To get to our goal of proving the main result, we define
the functional

H tð Þ = −E tð Þ = −
1
p

∇uk kpp +
1
p

ð
Ω

ln uj jupdx − p + 1
p2

uk kpp:

ð15Þ

Theorem 5. Assume that Eð0Þ < 0, then the solution of prob-
lem (1) blows up in finite time.

Proof. From (12), we have

E tð Þ ≤ E 0ð Þ ≤ 0: ð16Þ
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Hence,

H ′ tð Þ = −E′ tð Þ = utk k22 ≥ 0,

0 ≤H 0ð Þ ≤H tð Þ ≤ 1
p

ð
Ω

ln uj jupdx:
ð17Þ

We set

K tð Þ =H1−α + ε

2

ð
Ω

u2dx, ð18Þ

where ε > 0 and

0 < α < p − 2
p

< 1: ð19Þ

Multiplying (1) by u and the derivative of (18) gives

K ′−αH ′ tð Þ − ε ∇uk kpp − ε ∇uk kpp + ε
ð
Ω

uj jp ln uj jdx: ð20Þ

Adding and subtracting εδHðtÞ into (20) (δ > 0), we
obtain

K ′−αH ′ tð Þ + ε
δ − p
p

� �
∇uk kpp

+ ε
δ − p
p

+ 1
p2

� �
uk kpp − ε

δ − p
p

� �ð
Ω

ln uj jupdx + εδH tð Þ:

ð21Þ

Applying the logarithmic Sobolev inequality gives

K ′−αH ′ tð Þ + εδH tð Þ + ε
δ − p
p

� �
1 − μ

p

� �
∇uk kpp + ε

δ − p
p

� �

: 1 + δ

p δ − pð Þ − ln uk kp +
n
p2

ln pμe
nLp

 ! !" #
uk kpp:

ð22Þ

Setting μ = p/2 and taking δ > p give

1 + δ

p δ − pð Þ − ln uk kp +
n
p2

ln p2e
2nLp

 ! !" #
> 0, ð23Þ

since

uk kp > e 1+ δ
p δ−pð Þ

� �
p2e

2nLp

 !n/p2

: ð24Þ

Consequently, for some β > 0, inequality (25) gives

K ′ tð Þ ≥ β H tð Þ + uk kpp + ∇uk kpp
n o

, ð25Þ

K tð Þ ≥K 0ð Þ > 0, t > 0: ð26Þ

Next, by (18), we have

K tð Þ =H1−α + ε

2

ð
Ω

u2dx ≤H1−α + εC uk k2p

≤H1−α + εC uk kpp
� �2/p

:

ð27Þ

Therefore,

K1/1−α tð Þ ≤H1−α + εC uk kpp
� �2/p 1−αð Þ

, ð28Þ

where 0 < 2/pð1 − αÞ < 1,

uk k2p
� �2/p 1−αð Þ

≤ C uk kpp
� �p

+H tð Þ
� �

: ð29Þ

Hence,

K1/1−α tð Þ ≤ C1 H tð Þ + uk kpp
h i

≤ C1 H tð Þ + ∇uk kpp + uk kpp
h i

:

ð30Þ

According to (25) and (30), we get

K ′ tð Þ ≥ λK1/1−α tð Þ, ð31Þ

where λ = C1/β > 0, depending only on β and C1.
Finally, by integrating (31), we obtain

Kα/1−α tð Þ ≥ 1
K−α/ 1−αð Þ 0ð Þ − λ α/ 1 − αð Þð Þt

: ð32Þ

Hence, KðtÞ blows up in time:

T ≤ T∗ = 1 − α

λαKα/ 1−αð Þ 0ð Þ
: ð33Þ

As a result, the proof is completed. ☐
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