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The authors of this paper solve the fractional space-time advection-dispersion equation (ADE). In the advection-dispersion
process, the solute movement being nonlocal in nature and the velocity of fluid flow being nonuniform, it leads to form a
heterogeneous system which approaches to model the same by means of a fractional ADE which generalizes the classical ADE,
where the time derivative is substituted through the Caputo fractional derivative. For the study of such fractional models,
various numerical techniques are used by the researchers but the nonlocality of the fractional derivative causes high
computational expenses and complex calculations so the challenge is to use an efficient method which involves less computation
and high accuracy in solving such models numerically. Here, in order to get the FADE solved in the form of convergent infinite
series, a novel method NHPM (natural homotopy perturbation method) is applied which couples Natural transform along with
the homotopy perturbation method. The homotopy peturbation method has been applied in mathematical physics to solve
many initial value problems expressed in the form of PDEs. Also, the HPM has an advantage over the other methods that it
does not require any discretization of the domains, is independent of any physical parameters, and only uses an embedding
parameter p ∈ ½0, 1�. The HPM combined with the Natural transform leads to rapidly convergent series solutions with less
computation. The efficacy of the used method is shown by working out some examples for time-fractional ADE with various
initial conditions using the NHPM. The Mittag-Leffler function is used to solve the fractional space-time advection-dispersion
problem, and the impact of changing the fractional parameter α on the solute concentration is shown for all the cases.

1. Introduction and Preliminaries

Fractional calculus generalizes the integration and differenti-
ation of integer order to arbitrary order that is being studied
for the past 300 years. The growing interest of researchers in
this field has led to solving the real-world issues in type of
fractional differential equations due to their nonlocal behav-
ior, and these equations are well suited to describe various
phenomena in the field of engineering and science. Also,
fractional derivatives are capable to model various processes
mathematically which exhibit the memory and hereditary
properties [1–5].

The ADE arises in the study of transport of solute or
Brownian motion of particles in a fluid occurring due to the
simultaneous occurrence of advection and particle disper-
sion. Fractional advection-dispersion equation describes the
phenomena of anomalous diffusion of the particles in the
transport process in a better way; as in anomalous diffusion,
the solute transport is quicker or speedier than time’s
inferred square root given by Baeumer et al. [6]. The equation
is used to study groundwater pollution, pollution of the
atmosphere produced by smoke or dust, the spread of chem-
ical solutes and contaminant discharges, etc. [7]. Hence,
FADE has attracted the attention of many researchers.
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Hence, the interest of the researchers lies in solving the
FADE to find out the solute concentration at a particular
instant of time and space. Analytical solution of one-
dimensional ADE was found by Jaiswal et al. [8]. Huang
et al. [9] solve the one-dimensional fractional flux ADE
and found the finite element solutions. The intermediate
fractional ADE was studied by El-Sayed et al. [10]. To solve
the space-time fractional ADE, Momani and Odibat [7] uti-
lized the ADM and variational iteration approach. In this
continuation, Yildirim and Koçak [11] solve the space-time
fractional ADE by applying homotopy perturbation tech-
nique in Caputo sense and Hikal and Abu Ibrahim [12]
solved it by the Adomian decomposition method. Alliche
and Chikh [13] studied the nonpremixed chaotic fire of the
hydrogen-air downward injector system using the general-
ized finite rate chemistry model. Liu et al. [14] applied
numerical methods to study various advection-dispersion
models. Rocca et al. [15] developed a general solution to
the fractional diffusion-advection equation for solar
cosmic-ray transport. Ramani et al. [16] explored the frac-
tional decreased differential transform approach for revisit-
ing the analytical-approximate formulation of the time-
fractional Rosenau-Hyman problem. The extended differen-
tial transform approach was used by Garg and Manohar [17]
to solve the space-time fractional Fokker Planck (FFP) equa-
tion analytically. Also, Habenom et al. [18] studied the for-
mulation of FFP equation using fractional power series
technique. The N-transform was used by Khan and Khan
[19] to study the unsteady fluid flow over a plane wall, and
N-transform of some functions along with the properties
was presented. Belgacem and Silambarasan [20] renamed it
as Natural transform which they used to solve Bessel’s differ-
ential equation with a polynomial coefficient and also Max-
well’s equation.

In this article, first, we recall few concepts of fractional
calculus, Natural transform, and HPM which have been used
in our main findings, in Sections 2, 3, and 4, respectively.
Then, we gave a solution to the space-time ADE by the
NHPM in Section 5, and at the last, Section 6 contains some
related examples, which show the efficiency of this method.
In Section 7, a conclusion has been discussed.

2. Basic Definitions

The Riemann-Liouville and Caputo-type fractional integral
operator and its properties are discussed in this section.
These definitions and properties (see detail [1–3]) will be
used to get the main results.

Definition 1. Let fðxÞ with x > 0 be a real-valued function. If
there is a real number p > μ, it is said to be in the space C

in R. Such that fðxÞ = xpf1x, where f1ðxÞ ∈C ½0,∞Þ.

Definition 2. Let fðxÞ with x > 0 be a real-valued function;
then, it would seem to be in space Cn

μ,m ∈N ∪ f0g, if fðmÞ ∈
Cμ:

Definition 3. For a function f∈ Cμ, where μ = 1, the R-L frac-
tional integral operator of order ϑ = 0 is described as

Jϑf zð Þ = 1
Γ ϑð Þ

ðz
0
z − tð Þϑ−1f tð Þdt ; ϑ > 0, z > 0,

J0f zð Þ = f zð Þ,
JϑJϑf zð Þ = Jϑ+ϑf zð Þ,

Jϑzϑ = Γ ϑ + 1ð Þ
Γ ϑ + ϑ + 1ð Þ z

ϑ+ϑ:

ð1Þ

Definition 4. In Caputo’s view, the fractional derivative of
f∈Cn−1 is expressed by

Dϑf zð Þ =
1

Γ n − ϑð Þ
ðz
0
z − τð Þn−ϑ−1fn τð Þdτ, n − 1 < ϑ < n, n ∈N∗,

dn

dtn
f zð Þ, ϑ = n:

8>><
>>: ð2Þ

Also,

DϑK = 0 ;K being a constant,

Dϑzϑ =
Γ ϑ + 1ð Þ

Γ ϑ − ϑ + 1ð Þ z
ϑ−ϑ, ϑ > ϑ − 1,

0, ϑ = ϑ − 1:

8><
>:

ð3Þ

Definition 5. The two-parameter M-L function is described
as follows:

Eϑ,ϑ zð Þ = 〠
∞

k=0

zk

Γ ϑk + ϑð Þ : ð4Þ

Consequently, the one-parameter M-L function is
described as follows:

Eϑ zð Þ = Eϑ,1 zð Þ = 〠
∞

k=0

zk

Γ ϑk + 1ð Þ : ð5Þ

3. Natural Transform

Over the set, Natural transform is specified:

A = f tð Þ: ∃M, τ1, τ2, v tð Þj j <Me tj j/τ j , if t ∈ −1ð Þj × 0,∞½ Þ
n o

,

ð6Þ

ℕ f tð Þ½ � = F s, uð Þ = 1
u

ð∞
0
e−st/uf tð Þdt ; u > 0, s > 0, t ∈ 0,∞ð Þ,

ð7Þ
where s and u denote the Natural transform variables [21, 22].

Remark 6.

(i) If u = 1, (7) reduces to the Laplace transform
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(ii) If s = 1, (7) reduces to the Sumudu transform

ℕ-transforms of some elementary functions and the
conversions to Sumudu and Laplace [19, 21–23] are given
in Tables 1 and 2.

4. The Homotopy Perturbation Method

The general form of the time-dependent differential equation
(see [24–26]) can be written as

A u ς, tð Þð Þ − f ς, tð Þ = 0, ð8Þ

where A is the differential operator, uðς, tÞ is the unknown
function, r is the independent variables for space, t is the
independent variables for time, and f ðς, tÞ is the analytic
function.

In general, A can be divided into L (linear) and ℕ (non-
linear) component s.t.:

A = L +ℕ: ð9Þ

By substituting the value of A in (8),

L u ς, tð Þð Þ +ℕ u ς, tð Þð Þ − f ς, tð Þ = 0: ð10Þ

Using the homotopy technique presented by Liao [27], a
homotopy ∅ðr, t : pÞ can be constructed which satisfies

ℍ ∅ ς, t : pð Þ, pð Þ = 1 − pð Þ L ∅ ς, t : pð Þð Þ − L u0 ς, tð Þð Þf g
+ p A ∅ ς, t : pð Þð Þ − f ς, tð Þf g = 0,

ð11Þ

where p ∈ ½0, 1� is an embedding parameter and u0ðr, tÞ is an
initial guess for uðr, tÞ satisfying initial/boundary conditions.
The homotopy equation (11) can be written in an equivalent
form as

L ∅ ς, t : pð Þð Þ − L u0 ς, tð Þð Þ + p N ∅ ς, t : pð Þð Þf
+ L u0 ς, tð Þð Þ − f ς, tð Þg = 0:

ð12Þ

Hence, when p = 0, we obtain

ℍ ∅ ς, t : 0ð Þ, 0ð Þ = L ∅ ς, t : 0ð Þð Þ − L u0 ς, tð Þð Þ = 0, ð13Þ

and when p = 1, we get

ℍ ∅ ς, t : 1ð Þ, 1ð Þ =A ∅ ς, t : 1ð Þð Þ − f ς, tð Þ = 0: ð14Þ

We observe that uðς, tÞ is the solution of (14) as well as
(8) and if L is taken to be linear, u0ðς, tÞ is the only solution
of (13). So, we have

∅ ς, t : 0ð Þ = u0 ς, tð Þ,
∅ ς, t : 1ð Þ = u ς, tð Þ:

ð15Þ

Change in p from 0 to 1 is followed by change in
∅ðς, t : pÞ from u0ðς, tÞ to uðς, tÞ, termed as deformation.
If the embedding parameter pð1 ≥ p ≥ 0Þ is thought to be
tiny, according to the classic perturbation technique, the
solution to the given equation may be assumed as a power
series in p, so

∅ ς, t : pð Þ = u0 ς, tð Þ + pu1 ς, tð Þ + p2u2 ς,ð Þ+⋯, ð16Þ

for p = 1,

u ς, tð Þ = u0 ς, tð Þ + u1 ς, tð Þ + u2 ς, tð Þ+⋯, ð17Þ

which gives the approximate solution of (8). The series in
(17) converges in most of the cases and leads to the exact
solution.

5. Solution of the Space-Time ADE by
the NHPM

The classical one-dimensional ADE with constant parame-
ters is of the form (see [14])

∂C
∂τ

=D
∂2C
∂ξ2

−V
∂C
∂ξ

, ð18Þ

where V is the drift velocity, ξ is the spatial coordinate, D > 0
is the constant diffusivity, and Cðξ, τÞ is the solute
concentration.

Table 2: Properties of ℕ-transforms.

Function Natural transform of the function

f tð Þ F s, uð Þ
f atð Þ 1

a
F s, uð Þ

f ′ tð Þ s
u
F s, uð Þ − 1

u
f 0ð Þ

f ′′ tð Þ s2

u2
F s, uð Þ − s

u2
f 0ð Þ − 1

u
f ′ 0ð Þ

af tð Þ ± bg tð Þ aF s, uð Þ ± bG s, uð Þ

Table 1: Relation between ℕ-transforms, Sumudu transform, and
Laplace transform.

f tð Þ ℕ f tð Þ½ � S f tð Þ½ � L f tð Þ½ �
1

1
s

1
1
s

t
u
s2

u
1
s2

eat
1

s − au
1

1 − au
1

s − a

tn−1

n − 1! , n = 1, 2:: un−1

sn
un−1

1
sn

sin tð Þ u
s2 + u2

u
1 + u2

1
1 + s2

3Advances in Mathematical Physics



To write equation (18) in a simplified form by setting
t = τV , x = ξ and replacing Cðξ, τÞ by Cðx, tÞ, it reduced into

Ct = μCxx − Cx, ð19Þ

where μ =D/V .
We write the general form of the space-time fractional

ADE as

Dϑ
t C = μDpϑ

x C −Drϑ
x C, ð20Þ

with ϑ = 1/m, 0 < ϑ ≤ 1, 1 < pϑ ≤ 2, 0 < rϑ ≤ 1,m, p, rεN , 0 < x
< L,Dpϑ

x =Dϑ
xD

ϑ
x ⋯Dϑ

xðp timesÞ,Drϑ
x =Dϑ

xD
ϑ
x ⋯Dϑ

xðr timesÞ,
Dα
t andDϑ

x are the Caputo fractional derivatives.
The initial condition is

C x, 0ð Þ = f xð Þ: ð21Þ

ℕ-transform of (20) is written as

sϑ

uϑ
C x, s, uð Þ − sϑ−1

uϑ
C x, 0ð Þ =ℕ+ μDpϑ

x C −Drϑ
x C

h i
: ð22Þ

Now, by substituting initial condition from (21) in the
above equation, we obtain

C x, s, uð Þ = f xð Þ
s

+ uϑ

sϑ
ℕ+ μDpϑ

x C −Drϑ
x C

h i
: ð23Þ

Applying the inverse ℕ-transform on (23), we get

C x, tð Þ = f xð Þ +ℕ−1 uϑ

sϑ
ℕ+ μDpϑ

x C −Drϑ
x C

n o� �
: ð24Þ

By using the homotopy perturbation method, we can
write

C x, tð Þ = 〠
∞

n=0
pnCn x, tð Þ: ð25Þ

Substituting (25) in (24),

〠
∞

n=0
pnCn x, tð Þ = f xð Þ

+ p ℕ−1 uϑ

sϑ
ℕ+ 〠

∞

n=0
μpnDpϑ

x Cn − 〠
∞

n=0
pnDrϑ

x Cn

 !( )" #
:

ð26Þ

Comparison of the coefficients of like powers of p on
both sides yields to the corresponding assumptions:

p0 : C0 x, tð Þ = f xð Þ,

p1 : C1 x, tð Þ =ℕ−1 uϑ

sϑ
ℕ+ μDpϑ

x C0 −Drϑ
x C0

� �� �

=ℕ−1 uϑ

sϑ
ℕ+ μDpϑ

x f xð Þ −Drϑ
x f xð Þ

� �� �

= μDpϑ
x f xð Þ −Drϑ

x f xð Þ
� �

ℕ−1 uϑ

sϑ+1

� �

= tϑ

Γ ϑ + 1ð Þ μDpϑ
x −Drϑ

x

� �
f xð Þ,

p2 : C2 x, tð Þ =ℕ−1 uϑ

sϑ
ℕ+ μDpϑ

x C1 −Drϑ
x C1

� �� �

=ℕ−1 uϑ

sϑ
ℕ+ μDpϑ

x μDpϑ
x f xð Þ −Drϑ

x f xð Þ
� � tϑ

Γ ϑ + 1ð Þ
��

−Drϑ
x μDpϑ

x f xð Þ −Drϑ
x f xð Þ

� � tϑ

Γ ϑ + 1ð Þ
	�

= μ2D2pϑ
x f xð Þ − 2μD p+rð Þϑ

x f xð Þ +D2rϑ
x f xð Þ

� �
×ℕ−1 uϑ

sϑ
ℕ+ tϑ

Γ ϑ + 1ð Þ
� 	� �

= μ2D2pϑ
x f xð Þ − 2μD p+rð Þϑ

x f xð Þ +D2rϑ
x f xð Þ

� �
ℕ−1 u2ϑ

s2ϑ+1

� �

= t2ϑ

Γ 2ϑ + 1ð Þ μDpϑ
x −Drϑ

x

� �2
f xð Þ:

ð27Þ
Similarly,

p3 : C3 x, tð Þ = t3ϑ

Γ 3ϑ + 1ð Þ μDpϑ
x −Drϑ

x

� �3
f xð Þ, ð28Þ

and so on.
The analytic series solution of (20) can be given as

C x, tð Þ = lim
N⟶∞

〠
N

n=0
Cn x, tð Þ,

C x, tð Þ = C0 x, tð Þ + C1 x, tð Þ + C2 x, tð Þ + C3 x, tð Þ+⋯

= f xð Þ + tα

Γ ϑ + 1ð Þ μDpϑ
x −Drϑ

x

� �
f xð Þ + t2α

Γ 2ϑ + 1ð Þ
� μDpϑ

x −Drϑ
x

� �2
f xð Þ + t3α

Γ 3ϑ + 1ð Þ μDpϑ
x −Drϑ

x

� �3
f xð Þ⋯

= 1 + tα

Γ ϑ + 1ð Þ μDpϑ
x −Drϑ

x

� �
+ t2α

Γ 2ϑ + 1ð Þ μDpϑ
x −Drϑ

x

� �2�

+ t3α

Γ 3ϑ + 1ð Þ μDpϑ
x −Drϑ

x

� �3
+⋯
�
f xð Þ

= 〠
∞

n=0

tnα

Γ nϑ + 1ð Þ μDpϑ
x −Drϑ

x

� �n� �
f xð Þ,

ð29Þ
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Figure 1: Continued.
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which can also be written as

C x, tð Þ = Eϑ tϑ μDpϑ
x −Drϑ

x

� �n oh i
f xð Þ: ð30Þ

where EαðxÞ is the one-parameter Mittag-Leffler function.

Remark 7. Setting p = 2, r = 1, (20) reduces to space-time
fractional ADE of the form

Dϑ
t C = μD2ϑ

x C −Dϑ
xC, ð31Þ

and the solution is

C x, tð Þ = Eϑ tϑ μD2ϑ
x −Dϑ

x

� �n oh i
f xð Þ, ð32Þ

if f ðxÞ = e−x, the solution is

C x, tð Þ = Eϑ tϑ μD2ϑ
x −Dϑ

x

� �n oh i
e−x = 〠

∞

n=0

tnϑ

Γ nϑ + 1ð Þ

� 〠
n

k=0
−1ð Þknckμn−k 〠

∞

s= 2n−kð Þϑb c

−1ð Þsxs− 2n−kð Þϑ

Γ s − 2n − kð Þϑ + 1ð Þ ,
ð33Þ

where b:c denotes the ceiling function.

This is the same as obtained by Hikal and Abu Ibrahim
[12] using ADM.

6. Examples

Example 1. Consider the time-fractional ADE (setting p = 2
, r = 1,m = 1 in (20)),

Dα
t C = μD2

xC −DxC, ð34Þ

the initial condition being

C x, 0ð Þ = e−x: ð35Þ

Solution: by applying the NHPM,

p0 : C0 x, tð Þ = e−x,

p1 : C1 x, tð Þ =ℕ−1 uϑ

sϑ
ℕ+ μC0xx − C0xð Þ

� �
= μ + 1ð Þtϑ

Γ ϑ + 1ð Þ e
−x,

p2 : C2 x, tð Þ =ℕ−1 uϑ

sϑ
ℕ+ μC1xx − C1xð Þ

� �
= μ + 1ð Þ2t2ϑ

Γ 2ϑ + 1ð Þ e−x:

ð36Þ
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Figure 1: Variation of the concentration Cðx, tÞ with the fractional parameter α for μ = :01:
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Similarly,

p3 : C3 x, tð Þ = μ + 1ð Þ3t3ϑ
Γ 3ϑ + 1ð Þ e−x, ð37Þ

and so on. Thus, the analytic series solution is given by

C x, tð Þ = C0 x, tð Þ + C1 x, tð Þ + C2 x, tð Þ + C3 x, tð Þ+⋯

= e−x 1 + μ + 1ð Þtϑ
Γ ϑ + 1ð Þ + μ + 1ð Þ2t2ϑ

Γ 2ϑ + 1ð Þ + μ + 1ð Þ3t3ϑ
Γ 3ϑ + 1ð Þ +⋯

( )

= e−xEα 1 + μð Þtϑ
� �

:

ð38Þ

The solution converges to the exact solution of the ADE
for α = 1 as obtained by El-Sayed et al. [10]:

C x, tð Þ = e 1+μð Þt−x: ð39Þ

The result obtained for Example 1 is presented in
Figure 1.

Example 2. Equation (34) with the initial condition Cðx, 0Þ
= x3 − x2.

Solution: by applying the NHPM, we obtain

p0 : C0 x, tð Þ = x3 − x2,

p1 : C1 x, tð Þ = −3x2 + 2x 1 + 3μð Þ − 2μ

 � tϑ

Γ ϑ + 1ð Þ ,

p2 : C2 x, tð Þ = 6x − 2 − 12μð Þ t2ϑ

Γ 2ϑ + 1ð Þ ,

p3 : C3 x, tð Þ = −6 t3ϑ

Γ 3ϑ + 1ð Þ ,

p4 : C4 x, tð Þ = 0:

ð40Þ

Thus, the analytic series solution is given by

C x, tð Þ = C0 x, tð Þ + C1 x, tð Þ + C2 x, tð Þ + C3 x, tð Þ+⋯C x, tð Þ

= x3 − x2
� 

+ −3x2 + 2x 1 + 3μð Þ − 2μ

 � tϑ

Γ ϑ + 1ð Þ

+ 6x − 2 − 12μð Þ t2ϑ

Γ 2ϑ + 1ð Þ − 6 t3ϑ

Γ 3ϑ + 1ð Þ :

ð41Þ

The result obtained for Example 2 is presented in
Figure 2.
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Figure 2: Variation of the concentration Cðx, tÞ with the fractional parameter α for μ = :01:
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Example 3. Equation (34) with the initial condition Cðx, 0Þ
= cos x.

Solution: by applying the NHPM, we get

p0 : C0 x, tð Þ = cos x,

p1 : C1 x, tð Þ = sin x − μ cos xð Þ tϑ

Γ ϑ + 1ð Þ ,

p2 : C2 x, tð Þ = −cos x − 2μ sin x + μ2 cos x
�  t2ϑ

Γ 2ϑ + 1ð Þ ,

p3 : C3 x, tð Þ = −sin x + 3μ cos x + 3μ2 sin x − μ3 cos x
�  t3ϑ

Γ 3ϑ + 1ð Þ ,

ð42Þ

and so on. Thus, the analytic series solution is given by

C x, tð Þ = C0 x, tð Þ + C1 x, tð Þ + C2 x, tð Þ + C3 x, tð Þ+⋯C x, tð Þ

= cos x + sin x − μ cos xð Þ tϑ

Γ ϑ + 1ð Þ

+ −cos x − 2μ sin x + μ2 cos x
�  t2ϑ

Γ 2ϑ + 1ð Þ
+ −sin x + 3μ cos x + 3μ2 sin x − μ3 cos x
� 

� t3ϑ

Γ 3ϑ + 1ð Þ+⋯:

ð43Þ

The result obtained for Example 3 is presented in
Figure 3.

Remark 8. The convergence of the series solutions obtained
for the above cases can be proved by means of a comparison
test using the Mittag-Leffler function.

7. Conclusion

In the present article, the NHPM is successfully applied to
find the solution for the general form of the space-time frac-
tional ADE and the analytic solution is found in terms of M-
L function for different cases. The results found show the
dependence of solute concentration on the fractional order
of the derivative along with the space and time variables.
Solutions obtained for the three examples are plotted with
spatial and time coordinate for different values of the frac-
tional parameter α using MATLAB R2015a. Figure 1 exhibits
a decrease in solute concentration corresponding to the
increment in the fractional parameter α. For the second case,
the solution is in exact form and is plotted in Figure 2 show-
ing that as the fractional parameter α increases, the solute
concentration decreases, whereas it increases with the corre-
sponding increment in α for the third cases as is shown in
Figure 3. Hence, the NHPM is a powerful technique to solve
various models in the form of linear or nonlinear partial dif-
ferential equations appearing in the field of science and
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Figure 3: Variation of the concentration Cðx, tÞ with the fractional parameter α for μ = :01:

10 Advances in Mathematical Physics



engineering. The approach should be expanded to solve the
two or three dimensions of space-time fractional ADM.

Nomenclature

Cðξ, τÞ: Solute concentration (mol/kgw)
D > 0: Constant diffusivity (m2/sec)
V : Drift velocity (m/sec)
ξ: Spatial coordinate (m)
τ: Time (sec).

Data Availability

No data were used to support this study.
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