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In this paper, we consider the two-dimensional compressible magnetohydrodynamic system with Coulomb force. We apply the
method of relative entropy to establish the weak-strong uniqueness property of this system.

1. Introduction

In this paper, we consider the compressible magnetohydro-
dynamic equations with Coulomb force as follows:

∂tρ + div ρuð Þ = 0, ð1Þ

∂t ρuð Þ + div ρu ⊗ uð Þ+∇ p + 1
2 Mj j2

� �
− μΔu

− λ + μð Þ∇div u = div M ⊗Mð Þ + ρ∇Φ,
ð2Þ

∂tM + div u ⊗Mð Þ − div M ⊗ uð Þ − νΔM = 0, div M = 0,
ð3Þ

ΔΦ = ρ − �ρ: ð4Þ
Here ρ, u,M and Φ stand for the electron density, elec-

tron velocity, magnetic field and electrostatic potential,
respectively. �ρ > 0 denotes the constant background ion den-
sity. p = pðρÞ = aργ is the pressure function with the constant
a > 0 and the adiabatic exponent γ > 1. The constants μ, λ are
the viscosity coefficients satisfying μ > 0 and λ + 2μ/N ≥ 0
whereN is dimension. The constant ν > 0 is the magnetic dif-
fusivity of the fluid. LetΩ ⊂ R2 be a bounded smooth domain.
This system can be applied to describe the dynamics of a
charge transport where the compressible electron fluid inter-

acts with its own electric field against a charged ion back-
ground together under the influence of the magnetic field.
Usually, we denominate the equation (1) as the continuity
equation, the equation (2) as the momentum balance equa-
tion and the equation (3) as the induction equation. The
motion of such fluids is driven by two dominating body
forces, namely, the Coulomb force (i.e. the electric field force)
and the Lorentz force imposed on the fluid by the magnetic
field. This is the reason why the physical phenomena of such
fluids is more complicated.

In this paper, we consider the initial-boundary condi-
tions of MHD system (1)–(4) as following:

ρ 0, xð Þ = ρ0 xð Þ ∈ Lγ Ωð Þ, ρ0 xð Þ ≥ 0 ;
ð
Ω

ρ0 − �ρdx = 0 ;

ρ 0, xð Þu 0, xð Þ = ρ0u0ð Þ xð Þ, ρ0 u0j j2 ∈ L1 Ωð Þ ;
M 0, xð Þ =M0 xð Þ ∈ L2 Ωð Þ, div M0 = 0 inD′ Ωð Þ ;
uj∂Ω = 0,M ∂Ω = 0,∇Φ · nj j∂Ω = 0:

8>>>>>>><
>>>>>>>:

ð5Þ

where n denotes the outer normal vector of ∂Ω.
When there are no electromagnetic effect and no Cou-

lomb force, the system (1)–(5) reduces to the compressible
Navier-Stokes system. Many papers are devoted to the study
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of Navier-Stokes equations (see [1–5] and the references
cited therein). These papers are focused on the existence of
classical solution or weak solution and large time asymptotic
behavior of solution et al. The weak-strong uniqueness is an
important aspect in mathematical theory research of Navier-
Stokes equations. The relative entropy method is an impor-
tant method to research weak-strong uniqueness property
of compressible Navier-Stokes equations. With the assistance
of the concept of relative entropy, Germain [6] introduced a
class of weak solution to the compressible Naiver–Stokes
equations satisfying the relative entropy inequality with
respect to a strong solution emanating from the same initial
condition, and established the weak-strong uniqueness of
this weak solution. Unfortunately, the existence of this class
of weak solution is not known. Feireisl et al. [7] established
the global existence of suitable weak solutions for any
finite-energy initial data to compressible Navier-Stokes equa-
tions and proved the weak-strong uniqueness property
within this class of suitable weak solutions by relative entropy
inequality. By means of the relative entropy method, Feireisl
et al. not only proved the weak-strong uniqueness of finite-
energy weak solution to compressible Navier-Stokes equa-
tions with monotone pressure in [8], but also proved the
weak-strong uniqueness property for compressible Naiver-
Stokes equations with non-monotone pressure in [9]. When
the pressure function satisfies a hard sphere law, the weak-
strong uniqueness of Navier-Stokes equations is established
by Feireisl et al. in [10] and Chaudhur in [11] applying the
method of relative entropy.

When there is no electromagnetic effect, the MHD sys-
tem (1)–(5) reduces to the compressible Navier-Stokes-
Poisson system. Many researchers are interested to study
the compressible NSP system (see [12–17] and the references
cited therein). These papers are focused on the existence and
asymptotic behavior of solution et al. For the weeak-strong
uniqueness of the compressible Navier-Stokes-Poisson sys-
tem, we have discussed in [18].

Many researchers are interested in studyingMHD system
because of its physical importance, mathematical complexity
and extensive applications(see [19–23] and references cited
therein). There are also many references about the system
(1)–(4)(see [19, 24–26]). In [24], Tan and Wang consider
global existence and large time behavior of weak solution to
the system (1)–(4). The existence of the finite-energy weak
solution to the problem (1)–(5) is established by Feireisl
et al. in [19] with γ ≥ 4/3 and Jiang et al. in [25] with ð9 +ffiffiffiffiffi
33

p Þ/12 < γ ≤ 4/3. Although the existence of weak solution
has been established, the uniqueness problem is still an open
problem. So far, there are very few results concerning the
uniqueness of weak solutions to the initial-boundary value
problem (1)–(5). Only when the dimension is three and the
Coulomb force ρ∇Φ is not taken into account in the system
(1)–(5), the weak-strong uniqueness of the finite-energy
weak solution to the system (1)–(5) is established by Yang
et al. in [26]. Then, our goal of this paper is to consider the
uniqueness property of weak solution to two-dimensional
MHD system with Coulomb force. In spirit of Feireisl [8],
we will establish the uniqueness property of weak solution

to the system (1)–(5) by using of the method of relative
entropy. Compared with [8], the main difficulty is to deal
with the items about magnetic field and electrostatic
potential.

The paper is organized as follows. In Section 2, we recall
the definition of finite-energy weak solution for the com-
pressible MHD equations (1)–(5) and state the main results.
In Section 3, we derive the relative entropy inequality to the
system(1)–(5). In last section, we prove the weak-strong
uniqueness property of the compressible MHD equations
with Coulomb force (1)–(5).

2. Main Results

In this section, we define the finite-energy weak solution to
the initial-boundary value problem (1)–(5) and state the
main results.

Definition 1. ðρ, u,Φ,MÞis called as a finite-energy weak
solution of (1)–(5), if

(i) ðρ, u,Φ,MÞbelongs to the following class

ρ ≥ 0, ρ ∈ L∞ 0, T ; Lγ Ωð Þð Þ, u ∈ L2 0, T ;H1
0 Ωð Þ� �

,
ϕ ∈ L∞ 0, T ;H1 Ωð Þ� �

,

M ∈ L∞ 0, T ; L2 Ωð Þ� �
∩ L2 0, T ;H1

0 Ωð Þ� �
,

div M tð Þ = 0 for a:a on t ∈ 0, Tð Þ:
ð6Þ

(ii) EðtÞ ∈ L1locð0, TÞ satisfies the energy inequality

d
dt

E tð Þ +
ð
Ω

μ ∇uj j2 + λ + μð Þ div uð Þ2 + ν ∇Mj j2� �
t, ·ð Þdx ≤ 0

ð7Þ

inD′ð0, TÞ, where the total energy EðtÞ is defined as

E tð Þ =
ð
Ω

1
2 ρ uj j2 + a

γ − 1 ρ
γ + 1

2 Mj j2 + 1
2 ∇Φj j2

� �
t, ·ð Þdx:

ð8Þ

(iii) For any t ∈ ð0, TÞ, the pair ðρ,ΦÞ satisfies the follow-
ing Poisson equation

Δϕ = ρ − �ρ inΩ, ∇ϕ ⋅ n ∂Ωj = 0,
ð
Ω

ϕdx = 0: ð9Þ

(iv) Equation (1) holds in D′ð½0, TÞ × R2Þ, i,e
ð
Ω

ρ τ, ·ð Þϕ τ, ·ð Þdx −
ð
Ω

ρ0ϕ 0, ·ð Þdx

=
ðτ
0

ð
Ω

ρ∂tϕ + ρu · ∇ϕdxdt:
ð10Þ
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for any ϕ ∈ C∞
0 ð½0, TÞ × R2Þ and τ ∈ ð0, TÞ. More-

over, ðρ, uÞ satisfies the renormalized equationð
Ω

b ρð Þϕð Þ τ, ·ð Þdx −
ð
Ω

b ρ0ð Þϕ 0, ·ð Þdx

=
ðτ
0

ð
Ω

b ρð Þ∂tϕ + b ρð Þu · ∇ϕ

+ ϕ b ρð Þ − b′ ρð Þρ
� �

div udxdt:

ð11Þ

where b ∈ C1ðRÞ such that

b′ zð Þ = 0 for zj jlarge enough: ð12Þ

(v) Equation Equation (2) (3) holds in D′ð½0, TÞ ×ΩÞ,
i,eð

Ω

ρu τ, ·ð Þ · φ τ, ·ð Þdx −
ð
Ω

ρ0u0 · φ 0, ·ð Þdx

+
ðτ
0

ð
Ω

μ∇u : ∇φ + λ + μð Þ div u div φdxdt

=
ðτ
0

ð
Ω

ρu · ∂tφ + ρu ⊗ u : ∇φ + p ρð Þ div φ

+ 1
2 Mj j2 div φ −M ⊗M : ∇φ + ρ∇Φ · φdxdt:

ð13Þ
ð
Ω

M · φ τ, ·ð Þdx −
ð
Ω

M0 · φ 0, ·ð Þdx

+ ν
ðτ
0

ð
Ω

∇M : ∇φdxdt

=
ðτ
0

ð
Ω

M · ∂tφ + u ⊗M : ∇φ −M ⊗ u : ∇φ dxdt

ð14Þ
for any φ ∈ C∞

0 ð½0, TÞ ×ΩÞ.

Theorem 2. Assume that Ω ∈ R2 is a smooth domain. Let γ
> 9 +

ffiffiffiffiffi
33

p
/12. Then for any given T > 0, there exist a finite-

energy weak solution ðρ, u,Φ,MÞ of the system (1)-(5).

Remark 3.

(1) When γ > 4/3, we can apply the method in [19] with-
out any modifications to prove the existence of finite-
energy weak solution

(2) When 9 +
ffiffiffiffiffi
33

p
/12 < γ ≤ 4/3, Jiang proved the exis-

tence of finite-energy weak solution ðρ, u,Φ,MÞ of
the system (1)–(5) in [25].

Let PðρÞ = ða/γ − 1Þργ. Then the following equalities hold

P′ ρð Þρ − P ρð Þ = p ρð Þ, P″ ρð Þρ = p′ ρð Þ: ð15Þ

Now we introduce main results of this paper.

Theorem 4. Let ðρ, u,Φ,MÞ be a finite-energy weak solution
to the MHD system (1)-(5) in the sense of Definition 1. Let r,
Ψ ∈ C∞

0 ðð0, TÞ ×ΩÞ and U ,H ∈ C∞
0 ðð0, TÞ ×ΩÞ. Assume

that ðr,U ,Ψ,HÞ satisfy
∂tH + div U ⊗Hð Þ − div H ⊗Uð Þ − νΔH = 0, div H = 0 ;

ð16Þ
Δψ = r − �ρ, ∂tr + div rUð Þ = 0, ∇ψ ⋅ n ∂Ωj = 0: ð17Þ
Then the following relative entropy inequality holds for a.e

τ ∈ ð0, TÞ

ε ρ, u,Φ,M ∣ r,U ,Ψ,Hð Þ τð Þ +
ðτ
0

ð
Ω

μ ∇ u −Uð Þj j2

+ λ + μð Þ div u −Uð Þj j2 + ν ∇ M −Hð Þj j2dxdt
≤ ε ρ0, u0,Φ0,M0 ∣ r 0, ·ð Þ,U 0, ·ð Þ,Ψ 0, ·ð Þ,H 0, ·ð Þð Þ

+
ðτ
0
R tð Þdt

ð18Þ

where

ε ρ, u,Φ,M ∣ r,U ,Ψ,Hð Þ τð Þ
=
ð
Ω

1
2
ρ u −Uj j2 + P ρð Þ − P′ rð Þ ρ − rð Þ − P rð Þ

�

+ 1
2
M −Hj j2 + 1

2
∇ Φ −Ψð Þj j2

�
τ, ·ð Þdx

ð19Þ

and the remainder RðtÞ is defined as

R tð Þ =
ð
Ω

μ∇U : ∇ U − uð Þ + λ + μð Þ div U div U − uð Þdx

+
ð
Ω

ρ ∂tU + u · ∇Uð Þ · U − uð Þdx

+
ð
Ω

H ⊗U −U ⊗Hð Þ: ∇ M −Hð Þ
+ M ⊗ u − u ⊗Mð Þ: ∇H + U ⊗M −M ⊗Uð Þ: ∇Mdx

+
ð
Ω

ρ u −Uð Þ · ∇Φ + rU − ρuð Þ · ∇ Φ −Ψð Þdx

+
ð
Ω

r − ρð Þ∂t P′ rð Þ
� �

+ rU − ρuð Þ · ∇ P′ rð Þ
� �

+ p rð Þ − p ρð Þð Þ div Udx:

ð20Þ

Theorem 5. Let γ > 2. Assume that ðρ, u,Φ,MÞ is the finite-
energy weak solution of the magnetohydrodynamic system
(1)–(5) in the sense of Definition 1. And assume that ðr,U ,
Ψ,HÞ is the strong solution emanating from the same initial
data and satisfy

0 < r ≤ inf
0,Tð Þ×Ω

r t, xð Þ ≤ r t, xð Þ ≤ sup
0,Tð Þ×Ω

r t, xð Þ <∞,

U ∈ L2 0, T ;W2,q Ωð Þ� �
, ∇2U ∈ L1 0, T ; L∞ Ωð Þð Þ,

H ∈ L4 0, T ;W2,q Ωð Þ� �
ð21Þ
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with q > 2. Then

ρ = r, u =U, ϕ = ψ,M =H in 0, Tð Þ ×Ω: ð22Þ

3. Relative Entropy Inequality

In this section, we will establish the relative entropy inequal-
ity(18) to the system (1)–(5) and extend the admissible class
of test function.

3.1. Proof of Theorem 4

Proof. For simplicity, we define symbols r0, U0, H0 as

r0 = r 0, ⋅ð Þ,U0 =U 0, ⋅ð Þ,H0 =H 0, ⋅ð Þ: ð23Þ

Taking 1/2jU j2 as test function in (10), we haveð
Ω

1
2 ρ Uj j2 τ, ·ð Þdx −

ð
Ω

1
2 ρ0 U0j j2dx

=
ðτ
0

ð
Ω

ρU · ∂tU + ρu · ∇U ·Udxdt:
ð24Þ

Similarly, substituting φ for U as a test function in (13),
we can getð

Ω

ρu ·Uð Þ τ, ·ð Þdx −
ð
Ω

ρ0u0 ·U0dx +
ðτ
0

ð
Ω

μ∇u : ∇U

+ λ + μð Þ div u div Udxdt

=
ðτ
0

ð
Ω

ρu · ∂tU + ρu ⊗ u : ∇U + p ρð Þ div U

+ 1
2 Mj j2divU −M ⊗M : ∇U + ρ∇Φ ·Udxdt:

ð25Þ

Taking φ =H in (14), we get

ð
Ω

M ·Hð Þ τ, ·ð Þdx −
ð
Ω

M0 ·H0dx + ν
ðτ
0

ð
Ω

∇M

: ∇Hdxdt =
ðτ
0

ð
Ω

M · ∂tH + u ⊗M : ∇H −M ⊗ u

: ∇Hdxdt: ð26Þ

Multiplying (16) by H and integrating over ð0, TÞ ×Ω,
we can obtainð

Ω

1
2 Hj j2 τ, ·ð Þdx −

ð
Ω

1
2 H0j j2dx + ν

ðτ
0

ð
Ω

∇Hj j2dxdt

=
ðτ
0

ð
Ω

U ⊗H : ∇H −H ⊗U : ∇Hdxdt:
ð27Þ

By virtue of Φ,Ψ satisfying (4) and (17), one has

Δ Φ −Ψð Þ = ρ − r: ð28Þ

Differentiating (28) with respect to t, we get

∂tΔ Φ −Ψð Þ = ∂tρ − ∂tr = div rU − ρuð Þ: ð29Þ

Multiplying (29) by ðΦ −ΨÞ and integrating the resulting
equation over Ω, we can obtain

∂t
ð
Ω

1
2 ∇ Φ −Ψð Þj j2dx

� �
=
ð
Ω

rU − ρuð Þ · ∇ Φ −Ψð Þdx:

ð30Þ

From (7), we can deduceð
Ω

1
2 ρ uj j2 + a

γ − 1 ρ
γ + 1

2 Mj j2
� �

τ, ·ð Þdx

+
ðτ
0

ð
Ω

μ ∇uj j2 + λ + μð Þ div uj j2 + ν ∇Mj j2dxdt

≤
ð
Ω

1
2 ρ0 u0j j2 + a

γ − 1 ρ
γ
0 +

1
2 M0j j2dx +

ðτ
0

ð
Ω

ρu · ∇Φdxdt:

ð31Þ

Summing up relations (24)–(31), we can inferð
Ω

1
2 ρ u −Uj j2 + P ρð Þ + 1

2 M −Hj j2 + 1
2 ∇ Φ −Ψð Þj j2

� �
τ, ·ð Þdx

+
ðτ
0

ð
Ω

μ∇u : ∇ u −Uð Þ + λ + μð Þ div u div u −Uð Þdxdt

+ ν
ðτ
0

ð
Ω

∇Mj j2−∇M : ∇H + ∇Hj j2dxdt

≤
ð
Ω

1
2 ρ0 u0 −U0j j2 + P ρ0ð Þ + 1

2 M0 −H0j j2
�

+ 1
2 ∇ Φ ρ0ð Þ −Ψ ρ0ð Þð Þj j2

�
dx

+
ðτ
0

ð
Ω

ρ U − uð Þ · ∂tU + ρu · ∇U · U − uð Þ − p ρð Þ div U

−
1
2 Mj j2 div U +M ⊗M : ∇Udxdt

−
ðτ
0

ð
Ω

M · ∂tH + u ⊗M : ∇H −M ⊗ u : ∇H

+H ⊗U : ∇H −U ⊗H : ∇Hdxdt

+
ðτ
0

ð
Ω

ρ u −Uð Þ · ∇Φ + rU − ρuð Þ · ∇ Φ −Ψð Þdxdt:

ð32Þ

Note thatð
Ω

−P′ rð Þ ρ − rð Þ − P rð Þ
� �

τ, ·ð Þdx

−
ð
Ω

−P′ r0ð Þ ρ0 − r0ð Þ − P r0ð Þ
� �

dx

=
ðτ
0

ð
Ω

∂t −P′ rð Þ ρ − rð Þ − P rð Þ
� �

dxdt

=
ðτ
0

ð
Ω

r − ρð Þ∂t P′ rð Þ
� �

− ∂tρP′ rð Þdxdt

=
ðτ
0

ð
Ω

r − ρð Þ∂t P′ rð Þ
� �

− ρu · ∇ P′ rð Þ
� �

dxdt,

ðτ
0

ð
Ω

rU · ∇ P′ rð Þ
� �

+ p rð Þ div Udxdt = 0:

ð33Þ
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Then we can rewrite (32) as

ð
Ω

1
2 ρ u −Uj j2 + P ρð Þ − P′ rð Þ ρ − rð Þ − P rð Þ + 1

2 M −Hj j2
�

+ 1
2 ∇ Φ −Ψð Þj j2

�
τ, ·ð Þdx +

ðτ
0

ð
Ω

μ∇u : ∇ u −Uð Þ

+ λ + μð Þ div u div u −Uð Þdxdt
+ ν
ðτ
0

ð
Ω

∇Mj j2−∇M : ∇H + ∇Hj j2dxdt

≤
ð
Ω

1
2 ρ0 u0 −U0j j2 + P ρ0ð Þ − P′ r0ð Þ ρ0 − r0ð Þ − P r0ð Þ
�

+ 1
2 M0 −H0j j2 + 1

2 ∇ Φ ρ0ð Þ −Ψ ρ0ð Þð Þj j2
�
dx

+
ðτ
0

ð
Ω

ρ ∂tU + u · ∇Uð Þ · U − uð Þdxdt

+
ðτ
0

ð
Ω

−
1
2 Mj j2 div U +M ⊗M : ∇Udxdt

−
ðτ
0

ð
Ω

M · ∂tH + u ⊗M : ∇H −M ⊗ u : ∇H

+H ⊗U : ∇H −U ⊗H : ∇Hdxdt

+
ðτ
0

ð
Ω

ρ u −Uð Þ · ∇Φ + rU − ρuð Þ · ∇ Φ −Ψð Þdxdt

+
ðτ
0

ð
Ω

r − ρð Þ∂t P′ rð Þ
� �

+ rU − ρuð Þ · ∇ P′ rð Þ
� �

− p ρð Þ − p rð Þð Þ div Udxdt:

ð34Þ

For simplicity, we abbreviate εðρ, u,Φ,M ∣ r,U ,Ψ,HÞðτÞ
to εðτÞ.

Replacing ∂tH with (16), we can infer

ε τð Þ +
ðτ
0

ð
Ω

μ∇u : ∇ u −Uð Þ + λ + μð Þ div u div u −Uð Þ

+ ν ∇ M −Hð Þj j2dxdt
≤ ε 0ð Þ +

ðτ
0

ð
Ω

ρ ∂tU + u · ∇Uð Þ · U − uð Þdxdt

+
ðτ
0

ð
Ω

H ⊗U −U ⊗Hð Þ: ∇M + M ⊗ u − u ⊗Mð Þ: ∇H

+ U ⊗H −H ⊗Uð Þ: ∇Hdxdt +
ðτ
0

ð
Ω

ρ u −Uð Þ · ∇Φ

+ rU − ρuð Þ · ∇ Φ −Ψð Þdxdt +
ðτ
0

ð
Ω

r − ρð Þ∂t P′ rð Þ
� �

+ rU − ρuð Þ · ∇ P′ rð Þ
� �

− p ρð Þ − p rð Þð Þ div Udxdt

+
ðτ
0

ð
Ω

U ⊗M : ∇M −M ⊗U : ∇Mdxdt:

ð35Þ

Finally, we can get

ε τð Þ +
ðτ
0

ð
Ω

μ ∇ u −Uð Þj j2 + λ + μð Þ div u −Uð Þj j2

+ ν ∇ M −Hð Þj j2dxdt ≤ ε 0ð Þ +
ðτ
0
R tð Þdt:

ð36Þ

The proof of Theorem 4 is completed. ☐

3.2. Extending the Admissible Class of Test Function. Making
use of density argument, we can extend the class of test func-
tion ðr,U ,Ψ,HÞ appeared in the relative entropy inequality
(18), (20).

For the left hand side of (18) to be well defined, the func-
tion ðr,U ,Ψ,HÞ must belong at least to the class:

r ∈ C 0, T½ � ; Lγω Ωð Þð Þ,U ∈ C 0, T½ � ; L2γ/γ−1ω Ωð Þ� �
; ð37Þ

∇UL2 0, Tð Þ ×Ωð Þ,U ∂Ωj = 0 ; ð38Þ

H ∈ L2 0, T ;H1
0 Ωð Þ� �

∩ C 0, T½ � ; L2ω Ωð Þ� �
; ð39Þ

Ψ ∈ C 0, T½ � ;W2,γ
ω Ωð Þ� �

,∇Ψ · n
		
∂Ω = 0: ð40Þ

Similarly, a short inspection of the integrals in (20) yields

∂tU ∈ L1 0, T ; L2γ/γ−1 Ωð Þ� �
;∇U ∈ L1 0, T ; L∞ Ωð Þð Þ ;

∇H ∈ L2 0, Tð Þ ; L∞ Ωð Þð Þ:
ð41Þ

Moreover, the function r must be bounded away from
zero, and

∂t P′ rð Þ
� �

∈ L1 0, T ; Lγ/γ−1 Ωð Þ� �
; ∇ P′ rð Þ
� �

∈ L1 0, T ; L2γ/γ−1 Ωð Þ� �
:

ð42Þ

It is easy to prove that the relative entropy inequality (18),
(20) can be extended to ðr,U ,Ψ,HÞ satisfying (37)–(42) by
density argument.

4. Weak-Strong Uniqueness

In this section, we will prove weak-strong uniqueness prop-
erty of the MHD system (1)–(5). In order to prove the
weak-strong uniqueness, we firstly rewrite the remainder
RðtÞ as another expression. Then we apply Gronwall’s
inequality to prove the weak-strong uniqueness property.

4.1. Another Expression of RðtÞ

Lemma 6. Let ðr,U ,Φ,HÞ be a strong solution toMHD system
(1)-(5). For r ≥ r > 0, the remainder RðtÞ can be rewritten as
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R tð Þ =
ð
Ω

ρ u −Uð Þ · ∇U · U − uð Þdx

−
ð
Ω

p ρð Þ − p′ rð Þ ρ − rð Þ − p rð Þ
� �

div Udx

+
ð
Ω

u −Uð Þ · ∇H · H −Mð Þ + M −Hð Þ · ∇H

· u −Uð Þdx +
ð
Ω

M −Hð Þ · ∇ H −Mð Þ ·U +U

· ∇ M −Hð Þ · M −Hð Þdx +
ð
Ω

ρ − r
r

U − uð Þ

� μΔU + λ + μð Þ∇div Uð Þdx +
ð
Ω

ρ − r
r

H · ∇Hð
· U − uð Þ − U − uð Þ · ∇H ·HÞdx
+
ð
Ω

r − ρð ÞU · ∇ Φ −Ψð Þdx:

ð43Þ

Proof. Because ðr,U ,Φ,HÞ is a strong solution to MHD sys-
tem (1)-(5), we can get

∂tU +U · ∇U = r−1 μΔU + λ + μð Þ∇div Uð Þ − r−1∇ p rð Þð Þ

− r−1∇
Hj j2
2

� �
+ r−1 div H ⊗Hð Þ+∇Ψ:

ð44Þ

From (44), the remainder RðtÞ is rewritten as

R tð Þ =
ð
Ω

ρ − r
r

U − uð Þ · μΔU + λ + μð Þ∇div Uð Þdx

+
ð
Ω

ρ

r
U−uð Þ · −∇

Hj j2
2

� �
+ div H ⊗Hð Þ

� �
dx

+
ð
Ω

ρ u −Uð Þ · ∇U · U − uð Þdx

+
ð
Ω

H ⊗U −U ⊗Hð Þ: ∇ M −Hð Þ
+ M ⊗ u − u ⊗Mð Þ: ∇H + U ⊗M −M ⊗Uð Þ: ∇Mdx

+
ð
Ω

ρ u −Uð Þ · ∇ Φ −Ψð Þ + rU − ρuð Þ · ∇ Φ −Ψð Þdx

+
ð
Ω

r − ρð Þ∂t P′ rð Þ
� �

+ r − ρð ÞU · ∇ P′ rð Þ
� �

dx

+
ð
Ω

p rð Þ − p ρð Þð Þ div Udx:

ð45Þ

Note that

r − ρð Þ∂t P′ rð Þ
� �

+ r − ρð ÞU · ∇ P′ rð Þ
� �

= p′ rð Þ ρ − rð Þ div U :

ð46Þ

Then we can rewrite RðtÞ as

R tð Þ =
ð
Ω

ρ − r
r

U − uð Þ · μΔU + λ + μð Þ∇div Uð Þdx

+
ð
Ω

ρ

r
U−uð Þ · −∇

Hj j2
2

� �
+ div H ⊗Hð Þ

� �
dx

+
ð
Ω

ρ u −Uð Þ · ∇U · U − uð Þdx

+
ð
Ω

H ⊗U −U ⊗Hð Þ: ∇ M −Hð Þ
+ M ⊗ u − u ⊗Mð Þ: ∇H + U ⊗M −M ⊗Uð Þ: ∇Mdx

+
ð
Ω

r − ρð ÞU · ∇ Φ −Ψð Þdx

−
ð
Ω

p ρð Þ − p′ rð Þ ρ − rð Þ − p rð Þ
� �

div Udx:

ð47Þ

Besides, it is easy to infer that

ð
Ω

−
ρ

r
U − uð Þ · ∇ Hj j2

2

� �
+ ρ

r
U − uð Þ · div H ⊗Hð Þdx

=
ð
Ω

ρ − r
r

H · ∇H · U − uð Þ − U − uð Þ · ∇H ·Hð Þdx

+
ð
Ω

H · ∇H · U − uð Þ − U − uð Þ · ∇H ·Hdx

ð48Þ

ð
Ω

H ⊗U −U ⊗Hð Þ: ∇ M −Hð Þ + M ⊗ u − u ⊗Mð Þ: ∇H

+ U ⊗M −M ⊗Uð Þ: ∇Mdx

+
ð
Ω

H · ∇H · U − uð Þ − U − uð Þ · ∇H ·Hdx

=
ð
Ω

u · ∇H · H −Mð Þ + M −Hð Þ · ∇H · u

+U · ∇M · M −Hð Þ + H −Mð Þ · ∇M ·Udx

=
ð
Ω

u −Uð Þ · ∇H · H −Mð Þ +U · ∇H · H −Mð Þ
+U · ∇M · M −Hð Þdx
+
ð
Ω

M −Hð Þ · ∇H · u −Uð Þ
+ M −Hð Þ · ∇H ·U + H −Mð Þ · ∇M ·Udx

=
ð
Ω

u −Uð Þ · ∇H · H −Mð Þ +U · ∇ M −Hð Þ

· M −Hð Þdx +
ð
Ω

M −Hð Þ · ∇ H −Mð Þ
·U + M −Hð Þ · ∇H · u −Uð Þdx:

ð49Þ
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On the basis of (48) and (49), we can infer

R tð Þ =
ð
Ω

ρ u −Uð Þ · ∇U · U − uð Þdx

−
ð
Ω

p ρð Þ − p′ rð Þ ρ − rð Þ − p rð Þ
� �

div Udx

+
ð
Ω

u −Uð Þ · ∇H · H −Mð Þ + M −Hð Þ · ∇H

· u −Uð Þdx +
ð
Ω

U · ∇ M −Hð Þ · M −Hð Þ

+ M −Hð Þ · ∇ H −Mð Þ ·Udx +
ð
Ω

ρ − r
r

U − uð Þ

� μΔU + λ + μð Þ∇div Uð Þdx +
ð
Ω

ρ − r
r

� H · ∇H · U − uð Þ − U − uð Þ · ∇H ·Hð Þdx
+
ð
Ω

r − ρð ÞU · ∇ Φ −Ψð Þdx:

ð50Þ
The proof of Lemma 6 is completed. ☐

4.2. Proof of Theorem 5. To begin, it is easy to check that

P ρð Þ − P′ rð Þ ρ − rð Þ − P rð Þ ≥ c rð Þ
ρ − rð Þ2, for r2 ≤ ρ ≤ 2r,

1 + ργð Þ, otherwise:

8<
:

ð51Þ
where cðrÞ is uniformly bounded for r belonging to compact
sets in ð0,∞Þ.

Proof. There are two steps to prove Theorem 5.
Step 1: We estimate the remainder RðtÞ.
For ∇U ∈ L1ð0, T ; L∞ðΩÞÞ and (51), it is easy to infer that

∣
ð
Ω

ρ u −Uð Þ · ∇U · U − uð Þdx

−
ð
Ω

p ρð Þ − p′ rð Þ ρ − rð Þ − p rð Þ
� �

div Udx∣

≤ C∥∇U∥L∞ Ωð Þε tð Þ ≤ η tð Þε tð Þ:

ð52Þ

By using of H€older’s inequality and Sobolev’s inequality,
we can deduce

ð
Ω

u −Uð Þ ⋅ ∇H ⋅ H −Mð Þdx +
ð
Ω

M −Hð Þ ⋅ ∇H ⋅ u −Uð Þdx
				

				
≤ C
ð
Ω

u −U ∇Hk k M −Hð Þj jdx ≤ C M −Hk kL2 Ωð Þ ∇Hk kLq Ωð Þ

� u −Uk kL2q/q−2 Ωð Þ ≤ C M −Hk kL2 Ωð Þ ∇Hk kLq Ωð Þ

� u −Uk kw1,2
0 Ωð Þ ≤ C ∇Hk k2Lq Ωð Þ

ð
Ω

M −Hj j2dx

+ δ
ð
Ω

∇ u −Uð Þj j2dx ≤ η tð Þε tð Þ + δ
ð
Ω

∇ u −Uð Þj j2dx,

∣
ð
Ω

U · ∇ M −Hð Þ · M −Hð Þdx∣

= ∣ −
ð
Ω

M −Hj j2
2 div Udx∣

≤ C∥div U∥L∞ Ωð Þε tð Þ ≤ η tð Þε tð Þ

ð53Þ

here δ > 0 is sufficient small and q > 2.
For div M = div H = 0, it is easy to get that

∣
ð
Ω

M −Hð Þ · ∇ H −Mð Þ ·Udx∣ = ∣ −
ð
Ω

M −Hð Þ · ∇U

· H −Mð Þdx∣ ≤ C∥∇U∥L∞ Ωð Þ

ð
Ω

M −Hj j2dx ≤ η tð Þε tð Þ:

ð54Þ

Now, we estimate the last three items of RðtÞ.

I =
ð
Ω

ρ − r
r

μΔU + λ + μð Þ∇div Uð Þ U − uð Þdx

=
ð

r/2≤ρ≤2rf g
+
ð

0≤ρ<r/2f g
+
ð

ρ>2rf g

 !
ρ − r
r

� μΔU + λ + μð Þ∇div Uð Þ U − uð Þdx≔ I1 + I2 + I3:

ð55Þ

We can make use of H€older’s inequality, Sobolev’s
inequality and (51) to obtain

∣I1∣ = ∣
ð

r/2≤ρ≤2rf g
r−1 ρ − rð Þ μΔU + λ + μð Þ∇div Uð Þ U − uð Þdx∣

≤ C∥∇2U∥Lq Ωð Þ∥ρ − r∥L2 r/2≤ρ≤2rf gð Þ∥U − u∥L2q/q−2 Ωð Þ
≤ C∥∇2U∥Lq Ωð Þ∥ρ − r∥L2 r/2≤ρ≤2rf gð Þ∥U − u∥W1,2

0 Ωð Þ

≤ C∥∇2U∥2Lq Ωð Þ

ð
r/2≤ρ≤2rf g

ρ − rð Þ2dx + δ
ð
Ω

∇ U − uð Þj j2dx

≤ η tð Þε tð Þ + δ
ð
Ω

∇ U − uð Þj j2dx,

∣I2∣ = ∣
ð

0≤ρ<r/2f g
r−1 ρ − rð Þ U − uð Þ μΔU + λ + μð Þ∇div Uð Þdx∣

≤ C∥∇2U∥Lq Ωð Þ∥1∥L2 0≤ρ<r/2f gð Þ∥U − u∥L2q/q−2 Ωð Þ
≤ C∥∇2U∥Lq Ωð Þ∥1∥L2 0≤ρ<r/2f gð Þ∥U − u∥W1,2

0 Ωð Þ

≤ C∥∇2U∥2Lq Ωð Þ

ð
0≤ρ<r/2f g

P ρð Þ − P′ rð Þ ρ − rð Þ − P rð Þdx

+ δ
ð
Ω

∇ U − uð Þj j2dx ≤ η tð Þε tð Þ + δ
ð
Ω

∇ U − uð Þj j2dx:

ð56Þ

where q > 2.
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Note that

∥ργ/2∥L2 ρ>2rf gð Þ ≤ ε tð Þð Þ1/2 and ∣ ρ − r
ρr

∣ρ1/2−γ/2

≤ C as ρ > 2r ≥ 2r > 0, γ > 1:
ð57Þ

By H€older’s inequality and (57), we can obtain

∣I3∣ = ∣
ð

ρ>2rf g

ρ − r
r

U − uð Þ μΔU + λ + μð Þ∇div Uð Þdx∣

≤ C
ð

ρ>2rf g
∣
ρ − r
ρr

ρ1/2−γ/2∣ · ργ/2 · ∣μΔU + λ + μð Þ∇div U ∣

· ρ1/2∣U − u∣dx

≤ C∥∇2U∥L∞ Ωð Þ

ð
ρ>2rf g

ργdx

 !1/2 ð
Ω

ρ U − uj j2dx
� �1/2

≤ η tð Þε tð Þ:
ð58Þ

Therefor, we can get the estimate of I

∣I∣ ≤ η tð Þε tð Þ + δ
ð
Ω

∇ U − uð Þj j2dx ð59Þ

with δ > 0 sufficiently small.
Similarly to the estimate of I, we write

J =
ð
Ω

ρ − r
r

H · ∇H · U − uð Þ − U − uð Þ · ∇H ·Hð Þdx

=
ð

r/2≤ρ≤2rf g
+
ð

0≤ρ<r/2f g
+
ð

ρ>2rf g

 !
ρ − r
r

� H · ∇H · U − uð Þ − U − uð Þ · ∇H ·Hð Þdx≔ J1 + J2 + J3:

ð60Þ

Applying H€older’s inequality, Sobolev’s inequality, (51)
and (57), we can infer that

∣J1∣ = ∣
ð

r/2≤ρ≤2rf g

ρ − r
r

H · ∇H · U − uð Þ − U − uð Þ · ∇H ·Hð Þdx∣

≤
ð

r
2≤ρ≤2rf g

∣ρ − r∣ · ∣H∣ · ∣∇H∣ · ∣U − u∣dx

≤ C∥H∥L∞ Ωð Þ∥∇H∥Lq Ωð Þ∥ρ − r∥L2 r/2≤ρ≤2rf gð Þ∥U − u∥L2q/q−2 Ωð Þ
≤ C∥H∥2W1,q Ωð Þ∥ρ − r∥L2 r/2≤ρ≤2rf gð Þ∥U − u∥W1,2

0 Ωð Þ

≤ C∥H∥4W1,q Ωð Þ

ð
r/2≤ρ≤2rf g

ρ − rj j2dx + δ
ð
Ω

∇ U − uð Þj j2dx

≤ η tð Þε tð Þ + δ
ð
Ω

∇ U − uð Þj j2dx ;

∣J2∣ = ∣
ð

0≤ρ<r/2f g

ρ − r
r

H · ∇H · U − uð Þ − U − uð Þ · ∇H ·Hð Þdx∣

≤
ð

0≤ρ<r/2f g
1 · ∣H∣ · ∣∇H∣ · ∣U − u∣dx

≤ C∥H∥L∞ Ωð Þ∥∇H∥Lq Ωð Þ∥1∥L2 0≤ρ<r/2f gð Þ∥U − u∥L2q/q−2 Ωð Þ
≤ C∥H∥2W1,q Ωð Þ∥1∥L2 0≤ρ<r/2f gð Þ∥U − u∥W1,2

0 Ωð Þ

≤ C∥H∥4W1,q Ωð Þ

ð
0≤ρ<r/2f g

1dx + δ
ð
Ω

∇ U − uð Þj j2dx

≤ η tð Þε tð Þ + δ
ð
Ω

∇ U − uð Þj j2dx ;

∣J3∣ = ∣
ð

ρ>2rf g

ρ − r
r

H · ∇H · U − uð Þ − U − uð Þ · ∇H ·Hð Þdx∣

≤ C
ð

ρ>2rf g
∣
ρ − r
ρr

ρ1/2−γ/2∣ · ργ/2 · ∣H∣ · ∣∇H∣ · ρ1/2∣U − u∣dx

≤ C∥H∥L∞ Ωð Þ∥∇H∥L∞ Ωð Þ∥ρ
γ/2∥L2 ρ>2rf gð Þ

∥ρ1/2 U − uð Þ∥L2 Ωð Þ

≤ C∥H∥4W2,q Ωð Þε tð Þ ≤ η tð Þε tð Þ:
ð61Þ

with q > 2.
Finally, we estimate the last item of RðtÞ.

K =
ð
Ω

r − ρð ÞU · ∇ Φ − ψð Þdx

=
ð

r/2≤ρ≤2rf g
+
ð

0≤ρ<r/2f g
+
ð

ρ>2rf g

 !
r − ρð ÞU

· ∇ Φ − ψð Þdx≔ K1 + K2 + K3:

ð62Þ

From (51), we can get

∣K1∣ ≤
ð

r/2≤ρ≤2rf g
r − ρj j Uj j · ∣∇ Φ − ψð Þ∣dx

≤ C∥U∥L∞ Ωð Þ∥r − ρ∥L2 r/2≤ρ≤2rf gð Þ ∇ Φ − ψð Þk k

≤ C∥U∥L∞ Ωð Þ

ð
r/2≤ρ≤2r

P ρð Þ − P′ rð Þ ρ − rð Þ − P rð Þdx
 !1/2

� ε tð Þð Þ1/2 ≤ η tð Þε tð Þ ;

∣K2∣ ≤
ð

0≤ρ<rf g
1 · ∣U ∣ · ∣∇ Φ − ψð Þ∣dx

≤ C∥U∥L∞ Ωð Þ∥1∥L2 0≤ρ<rf gð Þ ∇ Φ − ψð Þk k

≤ C∥U∥L∞ Ωð Þ

ð
0≤ρ<r

P ρð Þ − P′ rð Þ ρ − rð Þ − P rð Þdx
 !1/2

� ε tð Þð Þ1/2 ≤ η tð Þε tð Þ:
ð63Þ
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Using of H€older’s inequality and (57), we can infer that

∣K3∣ = ∣
ð

ρ>2rf g
r − ρð ÞU · ∇ Φ − ψð Þdx∣

≤ C
ð

ρ>2rf g
∣ργ/2∣ · ∣U ∣ · ∣∇ Φ − ψð Þ∣dx

≤ C∥U∥L∞ Ωð Þ∥ρ
γ/2∥L2 ρ>2rf gð Þ ∇ Φ − ψð Þk k ≤ η tð Þε tð Þ

ð64Þ

with γ > 2.
Step 2: Making use of Gronwall’s inequality, we can prove

the weak-strong uniqueness of MHD system (1)–(5).
Substituting inequalities (52)–(64) into (18), we can

obtain

ε τð Þ +
ðτ
0

ð
Ω

μ ∇ u −Uð Þj j2 + λ + μð Þ div u −Uð Þj j2

+ ν ∇ M −Hð Þj j2dxdt ≤
ðτ
0
η tð Þε tð Þdt

ð65Þ

with ηðtÞ ∈ L1ð0, TÞ. By Gronwall’s inequality, we can deduce
εðtÞ = 0 in ð0, TÞ. Then this implies ρ = r, u =U , Φ =Ψ,M =
H. The proof of Theorem 5 is completed. ☐

Remark 7. The strong solution we work with in the weak-
strong uniqueness theorem is only a hypothetical object
which we do not know if it even exist. In the future, we will
consider the existence of this strong solution.
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