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Nonlinear science is a great revolution of modern natural science. As a result of its rise, the various branches of subjects
characterized by nonlinearity have been developed vigorously. In particular, more attention to acquiring the exact solutions of a
wide variety of nonlinear equations has been paid by people. In this paper, three methods for solving the exact solutions of the
nonlinear (2 + 1)-dimensional Jaulent-Miodek equation are introduced in detail. First of all, the exact solutions of this nonlinear
equation are obtained by using the exp(—¢(z))-expansion method, tanh method, and sine-cosine method. Secondly, the relevant
results are verified and simulated by using Maple software. Finally, the advantages and disadvantages of the above three
methods listed in the paper are analyzed, and the conclusion was drawn by us. These methods are straightforward and concise

in very easier ways.

1. Introduction

Since the 20th century, with the integration of various
disciplines, people have gradually discovered nonlinear phe-
nomena which exist in different disciplines but have common
characteristics. The resulting nonlinear science is quickly and
widely used in medical diagnosis, information technology,
electrical engineering, and other fields, which greatly promotes
the progress and development of human society [1].
Nonlinear science has laid a solid theoretical foundation
for the safety, reliability, and stability of power systems
[2-4]. By studying the nonlinear differential equations that
appear in the ferromagnetic resonance overvoltage phenom-
enon, the safe operation of power grids at all levels can be
effectively protected [5]. Aimed at the problem of asymmet-
ric nonlinear oscillation in parallel operation of power
stations, the harmonic linearization method is put forward,
which is helpful to reasonably select the power grid structure
and effectively improve the stability of power grid structure
[6]. By constructing the nonlinear system model with
random disturbance, the high-frequency faults of the power
grid caused by disturbance can be greatly reduced [4, 7, 8].

According to the nonlinear characteristics of the actual
power system, a reliable and stable nonlinear power grid
structure model is constructed, and the exact solution of
the equation in the structure model is obtained, which plays
a decisive role in the stable operation of the electrified wire
netting [9, 10].

Study on the exact solutions of a wide variety of nonlinear
equations can not only help people discover new nonlinear
phenomena and their laws but also help ensure the reliability
and stability of nonlinear calculations. Therefore, more and
more scholars have proposed different methods for studying
the exact solutions of a wide variety of nonlinear equations.
Gardner et al. [11] used the backscattering argument of the
Schrédinger equation to propose the inverse scattering trans-
formation method. Wang and Li [12] used the principle of
homogeneous balance to derive the nonlinear transformation
of a great deal of nonlinear PDE and obtained the exact
solution of the equation. Yu and Sun [13] presented a new
(3 4+ 1)-dimensional KP-like nonlinear partial differential
equation and construct the lump solutions, rationally local-
ized in all directions in the space, to its two-dimensionally
reduced cases. The method is based on a generalized bilinear
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differential equation, so we can build the lump solutions
to the presented KP-like equation from special polyno-
mial solutions to the aforementioned generalized bilinear
equation which is helpful to improve the research efficiency.
Yu and Sun [14] introduced the (3 +1)-dimensional
Kadomtsev-Petviashvili-Boussinesq-like equation. Based on
this constructed bilinear Béacklund transformation, some
classes of exponential and rational traveling wave solutions
with arbitrary wave numbers are presented. It provides a
new idea for the follow-up research. Matinfar and Hosseini
[15] formally studied the dynamic behavior of the solution
obtained in the presence of linear and nonlinear effects.
The research process is clear and interesting. Akinyemi
et al. [16] studied singular solitons of the (2 + 1)-dimen-
sional improved nonlinear Schrodinger equation with spatio-
temporal dispersions, group velocity dispersions, and power
law nonlinearity by using the Kudryashov method, a complex
transformation as well as symbolic computations. The results
show that the suggested approach is incredibly accurate and
powerful and can be used to explore solitons and other forms
of solutions of nonlinear wave models in applied sciences
and engineering. In addition, there are many effective
methods for solving exact solutions of nonlinear differential
equations, for instance, Bicklund transformation method
[17], Painlevé truncation extension method [18, 19], contin-
uation method [20], trial equation method [21], and Hirota
bilinear method [22-25].

In 1976, Jaulent and Miodek [26] proposed the coupled
Jaulent-Miodek equation when studying the relationship
between the nonlinear evolution equation and the energy-
dependent Schrédinger potential. In 2007, Feng and Li [27]
used the theory of the plane dynamic system to study the
existence of solitary waves and periodic waves of the coupled
Jaulent-Miodek equation and obtained all possible explicit
expressions. In 2009, Wazwaz [28] obtained multiple kink
solutions and multiple singular kink solutions by studying
the (2 + 1)-dimensional nonlinear evolution equation gener-
ated by the Jaulent-Miodek hierarchy. In 2013, Cai et al. [29]
used the CK direct method to obtain new exact multiple kink
and singular kink solutions through the symmetric transfor-
mation of the (2 + 1)-dimensional Jaulent-Miodek equation.
In 2014, Ma et al. [30] used the auxiliary equation method
and the Clarkson-Kruskal direct method to study (2 +1)-
dimensional nonlinear model systems and obtained some
new exact solutions. In 2015, Matinfar et al. [31] studied
some (2 + 1)-dimensional integrable models generated by
the Jaulent-Miodek hierarchy and deduced the quasiperiodic
solution of the (2+ 1)-dimensional integrable model. In
2016, Li et al. [32] obtained the classical Lie symmetry of
the extended (2 + 1)-dimensional Jaulent-Miodek equation
through the direct symmetry method and obtained a large
number of new exact solutions by solving the reduced equa-
tion. In 2017, Wei et al. [33] studied the (2 + 1)-dimensional
Jaulent-Miodek equation using the homogeneous balance
method and obtained four new solitary wave solutions of
the equation. In 2018, Motsepa et al. [34] derived the conser-
vation law and obtained the traveling wave solutions of the
(2 +1)-dimensional Jaulent-Miodek equation. In 2018, Gu
et al. [35] used the complex method to seek for the exact
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solutions of the (2 + 1)-dimensional Jaulent-Miodek equa-
tion. In 2019, Shehata and Zahran [36] used the Jaulent-
Miodek equation to construct the exact traveling wave
solutions of parametric equations with different methods.
In 2020, Kaewta et al. [37] transformed the (2 + 1)-dimen-
sional Jaulent-Miodek equation into a fourth-order partial
differential equation and then obtained the exact solution
which is simple and reliable.

The (2 + 1)-dimensional Jaulent-Miodek equation (see
[35, 38, 39]) is considered:

2
auy, + a,u

xUxxe ™ Usxxx = A3y Uy — AU

exthy +asu,, = 0.

X uxy Y,

(1)

In equation (1), a; is constant (i=1,2, -+, 5.)
Substituting traveling wave transform

u(x,y,t)=v(z), z=x+ly+At (2)

into equation (1) and integrating it deduce

v - (al/\+aslz)v/+ %(V’)Z— %(V/>3—5=0. (3)

In equation (3), b= a5 + a,, where [, b, and A are constants
and & is the integral constant. By setting w=1v', equation
(3) becomes

Ib a,

" 2 2 3 —
w' = (a;A+asl*)w + SW oS -8=0. (4)

For the nonlinear (2 + 1)-dimensional Jaulent-Miodek
equation, this paper adopts the exp(—¢(z))-expansion
method, tanh method, and sine-cosine method to obtain
the exact traveling wave solutions in turn.

2. Introduction of the exp (—¢(z))-Expansion
Method and Main Result

Discuss a nonlinear partial differential equation (PDE) of the
following form:

P(H’ Mx’ Mt’luxx’ Auxy’ tuyy’ Auyt’ Mtt“'> =0. (5)

In equation (5), for the polynomial P containing the nonlin-
ear term, the highest order polynomial, and the unknown
function u(x, y, t), the following steps can be followed.

Step 1. By substituting traveling wave transform p(x, y, t) =
w(z),z=x+1ly+ At and putting them into equation (5),
one can get the new equation, which is an ordinary differen-
tial equation (ODE):

K(w,w',w",wm,u-) =0. (6)
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K in equation (6) is both a polynomial of w(z) and a
polynomial of the derivatives.

Step 2. The traveling wave solutions of equation (6) are
shown as indicated below:

w(z) = ) cj(exp (~¢(2)))- (7)
=0
Equation (7) contains a constant term ¢;(0 < j < n), and it

will be discussed later; at the same time, ¢; #0 and ¢ = ¢(2)
satisty the ODE which will get

¢'(2) =exp (—¢(2)) + p exp ($(2)) + ;. (8)

Next, different forms of equation (8) are shown under
different conditions.

If 87 — 4 > 0, u # 0, then

~\/(83 - 4u) tanh ((\/M/z) (e+0)- 81>

¢(2) =In . |
€)

$(z)=1n _Vzgjiawm(({fizﬁﬁ)@+o—a)
(10)

If 87 — 44 < 0, u # 0, then

—mtan ((\/m/z) (z+0) —61)

$()=n . ,
(1)

—\/ (44— 87) cot (4-81)12 ) (z+¢) -8,

NG s
(12)

If 87 —4u <0, =0,8, #0, then

5,
¢(z)==In <exp (81(z+c)—1))' (13)

If 87 —4u=0,u#0,8, #0, then

¢(z)=In (—%) (14)

If 87— 4u=0,u=0,8, =0, then
¢(z)=In (z+¢). (15)

In the above equations, ¢, #0, §;, and u are undeter-
mined constants, and the constant ¢ can take any value. We
consider the homogeneous balance between nonlinear terms
and highest order derivatives of equation (6), and then, we
can get the positive integer .

Step 3. Through simultaneous equations (6) and (7), the
polynomial about exp (—¢(z)) can be obtained. Calculating
all the coefficients of the same power of exp (-¢(z)) to zero,
we can get a set of simultaneous equations.

Theorem 1. Based on the exp (—¢(z))-expansion method, we
can get fourteen kinds of solutions to equation (3).

If& —4u>0,u#0,

b+ \/6a,0, . 2,/(6lay)u
2a, 8? —4p

(tanh2(<m(z+ c)/Z) —61> - 1)
tanh2<<\/@(z+ c)/2) —51>

Vii=

- In +d;,

(16)

_ b+ /64,0, ot 2\/(6/a,)u
2&2 65 — 4”

(coth2<<\/8f—74‘u(z+c)/2> —81> - 1>
cothz((\/m(z+c)/2> —61)

Vi2

- In

+d,,

(17)

b - \/6a2812+ 2\/(6/a,)u
2az 8] — 4

tanh2<<\/ﬂ(z+ c)/Z) —81>
(mﬁf((ﬂ(u c)/Z) —51> - 1)

Vor =

- In +ds,

(18)

Ib—- /64,0, - 2,/(6/ay)u
20, & —4u

cothz((\/(ﬁ—j(z+c)/2> —51>
<coth2<<ﬂ(z+c)/2) —51) - 1)

Vo2 =

- In +dy,

(19)



where = ((4asl’ +4a,A+28%)a, - Pb%)18a, &= (Pb’ -
6a,lb(asl* +a,)))/12a2, and d,, d,, d;, and d, are integral
constants.

If 87 —4u <0, u#0,

Ib+ /64,6, . 2,/ (6/a,)u
2a, 4u -6

<tan ((W(H c)/2) —81)2 ; 1)

iz =

- In +ds,
tan? <(\/4y -8 (z+ c)/2) - 51>
(20)
_ b+ /64,6, N 2/ (6/ay)u
Via = 2a, z =5
cot? ( (, [4u -8} (z + c)/2> - 51>
- In 5 +dgs
<c0t <(\/4y—65(z+c)/2> —61> + 1)
(21)
_Ib-\/6a,6, = 2.\/(6lay)u
Va3 = 2a, 4y 6%
tan® <(\/4y -8i(z+ c)/2> - 51>
In 5 +d,,
(tan (<\/4y—8f(z+c)/2) —81) + 1)
(22)
Ib-+\/6a,6, 2./(6/a,)u
Vo= 2
2a, 4y - 07
2
<cot <(\/4y—6f(z+c)/2> —81> + 1)
- In +dg,
cot? ((1 [4u -8} (z+ c)/2> - 61>
(23)

where = ((4asl’ + 4a,A +287)a, — I’b*)/8a,, &= (Pb’ -
6a,Ib(as* + a,1))/12a2, and ds, dg, d,, and dy are integral
constants.

If67 —4u <0, u=0,8,#0,

b+ /64,6, \/6/a,
Yis = 2a, - 201 (z+0)-1 d, (24)

Ib— /64,8, . V6la, d, (25)
10°

+
2“2 661 (z+c)-1

Vs =
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where =0, 8 = (=(1/2)Pb’ 7 3v/6a328;)/1242, and d, and
d,, are integral constants.
If67 —4u=0,u#0,8, #0,

Ib 6
V16:2—Z+ \/a:ln (S (z+c)+2)+d,, (26)
2

Ib 6
V26= 2—Z— —ln (61(Z+C)+2)+d12; (27)

where u=(1/4)83, 8=-Pb’/24a2, and d,, and d,, are
integral constants.
If 67 —4pu=0,4=0,8, =0,

Ib 6
vy = gz+ \/a:ln (z+¢)+d;3 (28)
2 2
Ib 6
v27=gz—\/a:ln (z+¢)+dy (29)
2 2

where u=0, §=-Ib’/24a2, and d,; and d,, are integral
constants.

3. Introduction of the tanh Method and
Main Result

The canonical tanh method proposed by [40, 41] includes the
following steps.

Step 1. The tanh method takes the form of introducing a new
independent variable:

Y = tanh (uz). (30)

The derivatives of the independent variable change as
follows:

d d

&) gy B1)
d d d
= = (1-Y?) <_2Yﬁ + (1_Y2)W>’ (32)

where other derivatives of this kind can be obtained in a sim-
ilar way.

Step 2. The premise of using the tanh method is to assume
that the solution w(z) has the form

w(z) = f b, Y", (33)

where M is a positive integer and its value needs to be deter-
mined here. Then, by substituting equations (31) and (32)
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into the simplified ODE, we can get equations about the
Y powers.

Step 3. Through balancing the highest order of linear and
nonlinear terms, we can get parameter M. By equating the
power coeflicients of Y in the obtained equations, a set of
algebraic equations about b,,, 4, and ¢ can be obtained. After
the above parameters are determined, an analytical solution
can be obtained by using equation (33) under closed
condition.

Theorem 2. By employing the tanh method, we found that
there will be two forms of solutions of (3).

N Ib - 3
17 2, 2a,
2
Pb? -4 P+aA
- In | —sech é\/ a22(a5 T )z +ds
az
(34)
v o zZ+ o
27 20, 2a,
1 [P —4day(asl +a;A
- In | —sech 5\/ aZZ(a% i )z +d s
2
(35)

where d,; and d,4 are integral constants.

4. Introduction of the Sine-Cosine Method and
Main Result

It is proven that the method of sine-cosine is effective in deal-
ing with compaction problems. Next, the report describes
this method briefly below, as the details have been shown
in [42].

The sine-cosine method applies to the following form:

s
u(x, t) = {Al cosPi (,uz)}, || < o (36)
or another form
u(x, t) = {/11 sinf (uZ)}, |z| < g, (37)

otherwise, it is zero. The values of A, u, and B, parameters
were measured. In equation (5), for the polynomial P con-
taining the nonlinear term, the highest order polynomial,
and the unknown function u(x,y,t), the following steps
can be followed.

Step 1. By substituting traveling wave transform u(x, y, t) =
w(z), z=x+ ly + At into equation (5), it is transformed into

ordinary differential equation (6). K in equation (6) is both
a polynomial of w(z) and a polynomial of the derivatives.

Step 2. The traveling wave solutions of equation (6) are
shown as indicated below:

s
w(z) = {/\1 cosPs (‘uz)}, |z] < o (38)
or another form
7
w(z) = {Al sin®: (yz)}, 1< (39)

otherwise, it is zero. The values of A, y, and f3, parameters
were measured.

Step 3. For the cosine or sine functions of the same homo-
morphic power, extract its undetermined coefficients and
set them to zero, so we have simultaneous equations. The
determination of the solutions of equation (5) can be
obtained by obtaining the values of A, g, and f3,.

Theorem 3. Based on the sine-cosine method, the four forms
of all meromorphic solutions v of equation (3) are shown as

indicated below.

(1) The cosine method is used to solve equation (3) as fol-
lows:

v (2) = \/ﬂ:‘g In (sec (\ [-asl - aﬂtz)
+tan <\ [—asl - al/\z>) +d,,,

6
Vve(2) = —\/a:zln (sec (\/—aslz —aﬂtz)
+ tan <\ [-asl - aI/\z>) +dg

where d,, and d g are integral constants.

(40)

(2) The sine method is used to solve equation (3) as follows:

6

vy (z) =—4 /a— In (csc (\ [—asl — al)tz)
2

+ cot <\/—a512 - al/\z>> +d,q

V() = \/HEZ In <csc (\ [-asl - a1/\z>
+ cot (\ [—asP - al/\z>> +d,

where d,y and d,, are integral constants.

(41)



5. Proof of Theorems

5.1. Proof of Theorem 1. By homogeneous equilibrium of w"
and w? in equation (4), we can get

w(z) =cy+¢; exp (—P(z)). (42)

In the above formula, ¢, #0 and ¢, are undetermined
constants. Moreover, ¢(z) satisfies equation (8), where the
constants §; and y can be arbitrarily taken.

From equation (42), we insert w, w*, and w” into equa-
tion (4). By calculating all the coefficients of the same power
of exp (—¢(z)) to zero, the following equations can be
obtained:

¢ 39C) coefficient : 2¢, —

2
c
e 29() coefficient : 3¢,6, + Tl - ﬂzfocf =0,

e '%G) coefficient : 2¢,p + ;07 — a,¢,A — aslc; + Ibcyc, — aycic, =0,

b ayq
2 3

-6=0.

e %G coefficient : ¢,0,p — a,cuA — asc,l* +
(43)

Simultaneously, the above equations can be obtained:

_ Ib+/6a,6,
Co= e,
|6
¢ = &
(44)
b~ /6a0,
= 2a, ’
or
6
€ =- o

Substitute the result of the above formula into (42) to get

wl(z) _ b+ \/60261 + \/agze—qb(z)) (45)

2a,
or wz(z) = lb_24 ”aiazal — %e“‘p(z)_ (46)

We apply equations (9)-(15) into equations (45) and (46),
respectively; the traveling wave solutions of the (2+1)-
dimensional Jaulent-Miodek equations are shown as indicated
below.

If 87 —4u>0, u#0,

Ib+ /62,0,

wy; =
11
2a,

_ 2y/(6/a,)u

\/8? — 4utanh (((z +o) \/ﬂ/z) - 51)

>
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2,/(6
v = [w,dz= lb+\/6a2612+ (6/a,)u
2612 (Si —4(4

(tanh2 ( (M(z + c)/Z) - 51) - 1)

- In +d,,
tanh’ ( (\ /87 —4u(z + c)/2> - 61>
(47)
b+ /64,8,

W, =
12
2a,

~ 2./ (6/ay)u
\/8? ~ 4u coth (((z+c)ﬂ/2> —61>

Ib+./6a,0 2,/(6
Vi = Jw12d2= VOB 2( /o)
2a, & —4u

<coth2 ((ﬂ(z + c)/2> - 51> - 1)
coth2<<M(z+c)/2> —51)

Ib - /64,8,

2a,

- In +d,,

(48)

. 2\/(6lay)u
\/8? 4 tanh (((uc)\/m/z) —51)

- 2
vy = [wydz= Ib - /64,8, - (6/a,)u
2a, 81 —4u

tanh? ( (\/a—f.—l;(z + c)/2> - 61>
(tanh2(<M(z " c)/Z) - 61) - 1)

>

- In

+d;,

(49)

2/ (6/ay)p

' \/8? 4y coth ((@n)ﬂ/z) —51>

- 2,/(6
v = | wydz= Ib \/6‘12612+ (6/a,)u
2a, 6? —4{,{

coth2(<M(z+ c)/2> —51>
<coth2(<\/m&+c)/2> —51> - 1)

>

- In +d,,

(50)
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where = ((4asl’ +4a,A +283)a, — Pb*)/8a,, 8= (P’ -6
a,Ib(asP® +a;1))/12a2, and d,, d,, ds, and d, are integral
constants.

If 87 —4u<0,u#0,

Ib+ /6,0,

w3 =
13
2a,

2/(6la)u

_ /45 tan (((Z+C)\/ﬂ/2) —51>

b+ ./6a,0 2,/(6
Vi3 = Jw13dz= VIO ( /azz)y
2a, 4p - &)

<tan ((\/ﬂ(m c)/2> —51>2 N 1)

>

- In +ds,
tan2(<1 [Au—83(z + c)/2) - 51>
(51)
b+ /64,8,
u)14 = Z—az
~ 2.\/(6/ay)u
\/4p— 87 cot (((z+c)1/4‘u—8f/2> —81)
vy JdeZ: b+ 2w/a6(1261 - 24\/6/(;22#
2 U — 0y
cot? ((« [4u—83(z + c)/2> - 81)
- In 3 +dg,
<cot (<\/4‘u—6f(z+c)/2) —61> + 1)
(52)
Ib— /64,8,
Wy3 = 2a,
n 2y/(6/a,)u
\/4p - &7 tan (<(z+c)\/4[4—6f/2) —61>
= [~ L5 2
2 U =0y
tan’ ((1 [4u—8%(z + c)/2) - 61>
In 5 +d,,
<tan <(\/4[/{—(‘)\%(Z+C)/2> —51> + 1)
(53)

Ib - /64,0,

N TR
2
n 2y/(6/ay)p
\/4/4—8§c0t(((z+c)\/4y—5§/2>—81>
Ib—/6a,0 2,/(6
Vyy = Jw24dz= 2 DOy 4( /(;22)‘“
2 H#=0;

(cot ((W(m c)/Z) —51)2 4 1)
cot? < (\/ﬁ(z ¥ c)/2> - 51>

- In +d,

(54)

where u=((4asl’ +4a,1 +287)a, - ’b*)/8a,, 8= (Pb’ -
6a,Ib(as* + a,1))/12a2, and ds, dg, d,, and dy are integral
constants.

If 87 —4u<0,u=0,8, #0,

_ b+ 6ad,  £/(6/a,)9,

Wis 2a, (o)1
b+ ./6a,6 /6 (59)
Vis = |wysdz = VOB, /a, dy,
zaz e8l(z+c)—1
_Ib-\/6a,6, \/(6/a,),
Was = 2a, - Di(zro-1 2
(56)
Ib - \/6a,6 \/6/a
Va5 = szsdz= 2a, ot eé‘l(z+c)il dyo»

where p=0, § = (=(1/2)Pb’ 7 3v/6a328}) /124, and d, and
d,, are integral constants.
If67 —4u=0,u#0,8,#0,

b+ /60,8, \/(6la,)8}(z+c)

1 24, 26,(z+¢) + 4
Ib 6
Vie = Jw16dz: 22t a—ln (61(z+c)+2)+d,,
2 2

(57)

_ Ib-/6a,6, . \/(6/a,)83 (z + ¢

2a, 28,(z+c)+4

Vo = Jw%dz: %z— Eln (01(z+¢)+2)+dy
(58)

where u=(1/4)83, 8=-Pb’/24a2, and d,, and d,, are
integral constants.



(60)

Ib 6
vy, = Jw27dz= Z—aZZ_ \/a:zln (z+c¢)+dy

where =0, § =-I’b’/24a2, and d,; and d,, are integral
constants.

5.2. Proof of Theorem 2. The tanh method takes the form of
introducing a new independent variable:

Y =tanh (uz). (61)

The derivatives of the independent variable change as
follows:

d d

& =Y o ()
d d d
= =i (1-Y?) < 2Y =+ (1-Y?) dY2>' (63)

For the nonlinear (2 + 1)-dimensional Jaulent-Miodek
equation,

" Ib a,

M
w’ = (a A+ asP)w + sz - ?w3 -8=0,w= Z b, Y".

m=0

(64)

Balancing the highest order of linear and nonlinear
terms, we get

3M=M+2. (65)

It is derived that M = 1; therefore,
w(z) =by +b,Y =by + b, tanh (uz). (66)

In the above formula,

(67)
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where b, b;, and p appearing in the above are all undeter-
mined constants; substituting (62) and (63) into (64), we get

W (1-1?) (—2Yw’ +(1- Yz)w”)

(68)
— (A +asP)w + %wz - %w3 -8=0.
Substituting (66) and (67) into (68), we get
W (1-Y?)(=2Yby) - (aA +asP) (by + b, Y)
(69)

+%(bowlyf—%(bowlyf—a:o.

In equation (69), a,, as, I, b, and A are all constants and &
is the integral constant. Extract the coefficients before all the
powers of Y, and set each coefficient to zero, so as to obtain
the simultaneous equations about the undetermined coeffi-
cients by, b, and u:

a,b;
Y? coefficient : 2b,u* — =1 =0,
3

Ibb?

Y2 coefficient : —L — a,byb? =

Y coefficient : Ibbyb, — asb,I* — a,b,A — 2b,* — a,b3b, =0,
Ibb; a,b;

Y coefficient : —2 — a,byA — agb,l* — =5 -35=0.
(70)

Solving the above simultaneous equations can get

bo = &,
2a,
- i\/3(1;;)2 - 12a, Eal/\ +asP)
4a;

(71)

., (Ib)* - 4a, (a, A + asl)
B== 8a, ’

_ (Ib)* - 6a,lb(a,A + asl?)
B 1243 ’

Substituting b, b;, and u into equation (68), we can get
solutions for two cases:

3(Ib)* - 12 A+al?
lezzl—b+\/( ) a2§a1 +as )
a, 4a;

" tanh (Ib)* - 4a, (a, A + aslz)z
8a, ’




Advances in Mathematical Physics

Ib /3
vT1=—z—< — In—sech
2a, 2a,

2 (72)
1 [PV - 4a,(asl +a A
(2\/ a22<;25 - )Z +dis,
b 3(Ib)* - 12a, (a,A + asl*)
Wy = 2a, 4a2
. (_ \/(lb)2—4a2(al)t+a5lz)z),
8a,
) Ib N 3
™72, "\ 2,
2
1 [ —sech 1 Pbv* - 4a, (a5l2+a1)t)z
2 2a,
+dy
(73)

where d|; and d | are integral constants.

5.3. Proof of Theorem 3. The sine-cosine method applies to
the following form:

w(z) =4 A, cosPr(uz) b, |zl < z , (74)
(2) { 1 ( )} 2
or another form

w(z) = sinf , z,
(2)= { & sin® (uz) } 1< (75)

otherwise, it is zero; the values of A, y, and f3; parameters
were measured.
We substitute

w(z) = {/\1 cosh (yz)} (76)

into equation (4) and obtain

/\1/31‘”2(/31 -1) Cosﬁl_z(.“z)
- [Alﬁiuz - (ul)t + aslz)/ll] coshr (uz) (77)

+ %/\f cos?P (uz) - %Ai cos’Pi (uz) -8 =0.

For the cosine functions of the same homomorphic
power, extract its undetermined coefficients and set them to
zero, and the following equations can be obtained:

By—1#0,
By=2=3B;
2 1y %23
MBw (B -1)= 3 At (78)
(@A + aslz)}tl =-\ B,
%Af =0.
2

Solving the above simultaneous equations can get

By=-1L

cwi] oo
p=y/—a,A—-asl, (79)

—6(a,A + asl?)

A=+
a;

In the end, we get the result

— 2 —
w,(2z) =4 /w sec (\ [-asl* - al)tz>,

vy(z) = de (z)dz = \/QE In (sec <\ [—asl* - alx\z)
2
+tan (\ [—asl® - al)tz)> +d,5,

|-6as* — 6a, A
wy(z)=— % sec (1 [—asl* - aMz),

Vo(2) = chz(z)dz = \/aEz In (sec <\ [—asl* - al/\z)
+ tan (\ /a5l - alAz)> +dg

(80)

where d;, and d, are integral constants.
We substitute

w(z) = {Al sinfi (yz)} (81)
into equation (4) and obtain

/1151142(51 -1) Sinﬁliz@‘z) - [}Ll[}%yz - (‘HA + aslz))‘l}
b
- sinf1 (uz) + 7/\f sin®? (uz) - %Af sin®®1 (uz) -8 =0.
(82)
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F1GURE 2: The three-dimensional images of v, (z) in three situations.

For the sine functions of the same homomorphic power,
extract its undetermined coefficients and set them to zero,
and the following equations can be obtained:

B, — 140,
By—=2=3p,,
B (B = 1) = A (&)

(a,A + asP) Ay = =M, By,

b
EA% =0.

Solving the above simultaneous equations can get

By=-1
N )
U==t1/—a;A-agl, (84)
- —6(a1)t+a512).
a,

In the end, we get the result:

—6asl* — 6a, A "
- l - A b
. csc | \/—asl” —a Az

Wq; (Z) =

va(2) = stxz)dz:

+ cot <\ [—asl? - al/\z>) + dyp»

where d,4 and d,, are integral constants.

6. Computer Simulations

In this section, we use computer simulation images to explain
the results obtained according to three different methods and
further analyze the nature of the simple periodic solutions
vi1(2), vr(2), and v4(2z) in the (2+1)-dimensional
Jaulent-Miodek equation.

Figure 1 shows the three-dimensional images of v, (z)
considering the values a, =2,a,=2,a;=2,1=2,b=5,1=
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F1GURE 5: The two-dimensional images of v;,(z) in three situations.

c¢=2,0,=3,u=2,and d, = 7; from Figures 1(a)-1(c), t takes
the following three different values: t =-2, t=0, and ¢ =2.
Figures 1(a)-1(c) demonstrate discontinuities of solution
vy, (2) on the domain.

Figure 2 shows the three-dimensional images of v, (z) by
considering the values a, =2,a, =2,a,=2,1=2,b=5,1=2,
and d;5; =7; from Figures 2(a)-2(c), t takes the following
three different values: t =-2, t =0, and t = 2. Figures 2(a)-

2(c) describe the kink wave and parabola solution to the non-
linear evolution equation (3).

Figure 3 shows the three-dimensional images of v (z)
by considering the values a, =3, a,=2, a; =2, [=2, b=5,
A=-3, and d,y=7; from Figures 3(a)-3(c), t takes the
following three different values: t=-2, t=0, and t=2.
Figures 3(a)-3(c) show the singularities on the domain.
However, when ¢ > 0, the image changes dramatically.
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F1GURrE 6: The two-dimensional images of v, (z) in three situations.

Figure 4 shows the two-dimensional images of v,,(z) by
considering the values a, =2, a,=2,a:=2,1=2,b=5, A=
2,¢=2,06,=3, u=2, and d, =7; from Figures 4(a)-4(c),
t takes the following three different values: t=-2, t=0,
and t=2.

Figure 5 shows the two-dimensional images of v, (z) by
considering the values a;, =2,a, =2,a,=2,1=2,b=5,1=2,
and d,; =7; from Figures 5(a)-5(c), t takes the following
three different values: t =2, t=0, and t = 2.

Figure 6 shows the two-dimensional images of v, (z) by
considering the values a, =3, a,=2,a:=2,1=2,b=5, A=
-3, and d,, = 7; from Figures 6(a)-6(c), t takes the following
three different values: t =-2,t=0, and t = 2.

The above two-dimensional images all intuitively and
accurately reflect the periodicity of function fluctuations.

7. Discussions and Conclusions

By the exp(—¢(z))-expansion method, we have obtained
fourteen forms of solutions to the Jaulent-Miodek equation.
Utilizing the tanh method, we obtained four forms of solu-
tions of the Jaulent-Miodek equation. In the end, utilizing
the sine-cosine method, we obtained two forms of solutions
to the Jaulent-Miodek equation. Combining the existing
results found in this paper, more results are easily obtained
by the exp(—¢(z))-expansion method.

In [35], the authors adopt this complex method to seek
for analytic solution of equation (3); the elliptic function
solution is obtained by the complex method. From our paper
and [35], it is easy to see that by utilizing the exp(—¢(z))-
expansion method and complex method, both can obtain
the hyperbolic function solutions for the Jaulent-Miodek
equation. Unfortunately, utilizing the sine-cosine approach,
we find only the trigonometric function solutions for the
Jaulent-Miodek equation.

In [37], the authors used both methods, namely, the G'/
G*-expansion method and the Jacobi elliptic equation
method to calculate and analyze the explicit exact traveling
wave solutions of the (2 + 1)-dimensional Jaulent-Miodek
equation as given by equation (1). By applying the G'/G?
expansion method to the equation, the solutions were

obtained by the author including the triangular hyperbolic
function solutions and rational function solutions. Imple-
mented by the Jacobi elliptic equation method (analytical
equation (1)), three sets of parameter values were reached.
Every set has produced fifteen exact terms for the solution
of Jacobi elliptic function solutions. By comparing the
methods to [37], the methods in our article seem more
concise and straightforward.

All three methods in this paper have their own character-
istics. We trust that the above method presented here and the
methods in [35, 37] together can be applied more effectively
to find out solutions for nonlinear evolution equations cur-
rently and henceforth. The above-mentioned methods are
very helpful tools for unearthing exact solutions to the non-
linear evolution equations.
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