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Abstract

In this era, deep learning-based medical image analysis has become a reliable source in

assisting medical practitioners for various retinal disease diagnosis like hypertension, dia-

betic retinopathy (DR), arteriosclerosis glaucoma, and macular edema etc. Among these

retinal diseases, DR can lead to vision detachment in diabetic patients which cause swelling

of these retinal blood vessels or even can create new vessels. This creation or the new ves-

sels and swelling can be analyzed as biomarker for screening and analysis of DR. Deep

learning-based semantic segmentation of these vessels can be an effective tool to detect

changes in retinal vasculature for diagnostic purposes. This segmentation task becomes

challenging because of the low-quality retinal images with different image acquisition condi-

tions, and intensity variations. Existing retinal blood vessels segmentation methods require

a large number of trainable parameters for training of their networks. This paper introduces

a novel Dense Aggregation Vessel Segmentation Network (DAVS-Net), which can achieve

high segmentation performance with only a few trainable parameters. For faster conver-

gence, this network uses an encoder-decoder framework in which edge information is trans-

ferred from the first layers of the encoder to the last layer of the decoder. Performance of the

proposed network is evaluated on publicly available retinal blood vessels datasets of

DRIVE, CHASE_DB1, and STARE. Proposed method achieved state-of-the-art segmenta-

tion accuracy using a few number of trainable parameters.

1 Introduction

Early detection of potential blindness diseases is vital to treat their progression and avoid

vision loss, for instance, Aging based Mocular Degeneration (AMD), Diabetic Retinopathy

(DR) and Hypertension Retinopathy (HR) [1]. Similarly, timely detection of Hypoxemia
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and Glaucoma is useful for availing cost effective remedies. It is widely understood that

these diseases impact the structure of retinal blood vessels [2]. Therefore, clinicians diagnose

these diseases by observing the visible changes in the structure of blood vessels in retinal

images [3, 4]. That is a cumbersome process and hence is not practically viable to perform

on a larger scale owing to the limitation of skilled labour and timing consuming nature of

the process.

Consequently, Computer-aided diagnostic (CAD) systems have taken a deep root in eye

diagnosis owing to their fast processing and ability to scan through large datasets of fundus

images [5–7]. These computerized techniques start by employing segmentation strategies to

extract patterns of blood vessels [8, 9]. That is followed by the use of automated classifiers to

evaluate and analyze the extracted vessels for detection of variations in the characteristics of

blood vessels [10]. Thus, leading to automated diagnosis of the eye. In this regard, the role of

computerized vessel segmentation strategies is vital because the classifier’s effectiveness in eye

disease highly depends on the accuracy of the segmented vessels [11, 12].

Retinal vessel segmentation has attracted significant attention from engineers and scientists,

resulting in a wide range of state of the art methods [13–19]. However, effective segmentation

of retinal vessels is still an open problem due to various challenges which involve sharp varia-

tions in vessel size, shape, and orientation, not to mention the low intensity, branching, and

vessel crossovers. Consequently, identification of vessels and differentiating those from irregu-

larities (arising due to a disease or other similar phenomenon) is a difficult task. That is further

aggravated by the presence of various types of noise and artifacts due to fundus imaging

modalities.

Retinal vessel segmentation has attracted significant attention from engineers and scientists,

resulting in a wide range of state of the art methods [13–19]. However, effective segmentation

of retinal vessels is still an open problem due to various challenges which involve sharp varia-

tions in vessel size, shape, and orientation, not to mention the low intensity, branching, and

vessel crossovers. Consequently, identification of vessels and differentiating those from irregu-

larities (arising due to a disease or other similar phenomenon) is a difficult task. That is further

aggravated by the presence of various types of noise and artifacts due to fundus imaging

modalities.

Earlier, classical image segmentation strategies were tailored to detect and segment out

vessel patterns. These techniques identify vessels based on width, size, shape and orientation

of vessels and hence are referred to as unsupervised methods [14–16, 20–22]. However,

these methods can only capture limited types of vessels due to sharp variations in their

shapes and sizes. Moreover, these techniques can not fully comprehend and eradicate the

problem of low illumination and poor contrast regions in retinal fundus images. Although,

contrast enhancement techniques are used as a pre-processing step that partially address the

issue but they intensify the noise or artifacts present in the image [11, 23] which led to the

use of noise removal as an additional pre-processing step in some recent unsupervised meth-

ods [24, 25].

Supervised methods, on the other hand, use trained Support Vector Machines (SVM) [10,

26] and Neural Networks (NNs) [27, 28] to identify vessels based on learned features from fun-

dus images. Compared to SVM, NN can model the interrelationship between features in a

much better way that has led to their increased use in this regard.

Deep learning techniques, which employ multi-layered NNs, have particularly yielded

much higher rates of accuracy albeit at high computational cost [29–31]. Traditional DNNs do

well to learn the inherent structures within the image that allow them to recover the structure

of vessels in a much better way when compared with classical techniques. Deep Neural Net-

works (DNNs) have the ability to learn inherent and deep structures within the retinal images
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from a large sized fundus image dataset, allowing the detection of fine vessels [32, 33]. For this

purpose, deep learning based techniques employ CNNs to extract desirable features which are

finally used to identify vessels. Moreover, deep features allow these techniques to move past

the problem of noise and artifacts. However, the problem with these methods is their lack of

robustness when detecting less significant or minor vessels. This problem is due to the loss of

important information due to pooling operations that restrict their efficacy. Consequently,

recent vessel segmentation techniques employ semantic segmentation, where each pixel is clas-

sified as a vessel or the background. That provides the high precision needed to detect tiny ves-

sels, such as vessels consisting of only few pixels.

This work proposes a novel network architecture, namely Dense Aggregation Vessel Seg-

mentation network (DAVS-Net), for robust semantic segmentation of retinal vessels that is

capable of detecting minor vessels owing to its pixel wise segmentation operation. The pro-

posed architecture employs dense concatenation block that permits immediate transfer of spa-

tial information within layers leading to the identification of pixels from the desired class. In

addition, we propose an encoder-decoder framework that allows faster convergence by directly

transferring the edge information from initial layer of the encoder to the last layer of the

decoder. Moreover, the proposed network requires only a few trainable parameters as apposed

to a large number of trainable parameters required in existing methods because of low-quality

retinal images with different image acquisition conditions and intensity variations. The pro-

posed DAVS-Net achives state of the art performance that is demonstrated publicly available

retinal blood vessels datasets of DRIVE, CHASE_DB1, and STARE.

This paper is organized to provide background of the problem in Section II post the intro-

duction in Section I. The proposed methodology is discussed in Section III followed by the

results and discussion in Section IV. Finally, conclusions and scope for future work are dis-

cussed in Section V.

2 Background and related work

Semantic segmentation is regarded as a fundamental application in computer vision where

pixel-wise classification is performed for all the pixels present in the image. This approach is

able differentiate between pixels belonging to objects and those belonging to the background

leading to the detection of tiniest objects. Consequently, semantic segmentation is well suited

for retinal vessel segmentation since detection of tiniest of vessels is vital for analysis and diag-

nosis of retinal disease.

The conventional deep learning-based methods [34] effectively learn structures of signifi-

cant objects but lack robustness to identify the minor ones. Thus, the DNNs used for segmen-

tation are not local enough in their operation and as a consequence, they do not classify each

pixel for detection of a vessel leading to loss of minor and tiny vessels. Deep networks for vessel

detection use many convolutional and pooling layers which cause vanishing gradient prob-

lems. This loss of spatial information degrades the overall performance of pixel-wise classifica-

tion. To overcome the vanishing gradient problem residual networks (Res-Nets) [35] were

introduced that used the residual skip connection to improve the performance and manage

the gradient during the training process. However, Res-Nets caused the feature transfer

impedance problem that was later covered by Dense-Net [36] through deep feature

concatenation.

Another factor affecting the segmentation of tiny vessels is the compromised quality of fun-

dus images typically caused by the limitation of varying acquisition conditions. Hence, robust

segmentation of retinal vessels is an open problem with a focus on the detection of minor ves-

sels which provide critical additional information for automated eye diagnosis.
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3 Proposed methodology

In this work, we propose DAVS-Net architecture for robust semantic segmentation of retinal

vessels from the fundus image by effectively capturing the minor vessels along with the signifi-

cant ones. Proposed architecture seeks to address limitations of traditional deep learning tech-

niques which employ a number convolutional layers followed by pooling operations that

means local information about each and every pixel is not readily available. As a result, these

networks work well to detect significant vessels although it means that identification of minor

vessels becomes challenging. This issue needs special attention as detection of smaller vessels is

critical to accurate eye disease diagnoses.

To address this issue, proposed dense aggregation network, for semantic segmentation of

retinal vasculature, feeds on the desirable properties of the DenseNet [36] that is famous for its

classification performance. That is because of the use of the dense concatenation which allevi-

ates the feature latency problems and provide higher accuracy compared to ResNet [35], and

VGG [37]. Considering the effectiveness of feature concatenation benefits, the connectivity of

the DAVS-Net is inspired from Dense-Net. The key differences of proposed DAVS-Net and

DenseNet are mentioned in Table 1.

3.1 Overview of proposed architecture

The proposed DAVS-Net is designed to take advantage of the deep feature that allows to skip

the pre-processing and does not require any enhancement in the quality of the input image.

That is because the deep feature allows to allows to import and combine high-frequency infor-

mation from the corresponding layers thus circumventing the imaging artifacts and bring to

light the main features of the image. Owing to that, DAVS-Net is capable of detecting vessel

pixels from noisy and low-quality images and non-uniform illumination. The overall principle

of the proposed method is summarized in Fig 1. Moreover, the pixel wise segmentation opera-

tion and the marking of blood vessels yields the much needed accuracy for vessel detection.

The output of the proposed method is a binary image with a representation of ‘1’ for vessel pix-

els and ‘0’ for the background.

3.2 Working principle of the DAVS-Net

Proposed DAVS-Net considers dense connections as a means to boost accuracy of the seman-

tic segmentation. To this end, the problems faced by traditional deep learning techniques are

addressed using its following key features:

Table 1. Difference between DenseNet and proposed DAVS-Net.

DenseNet DAVS-Net

DenseNet is a classification network with fully

connected layers

DAVS-Net is a semantic segmentation network which does not

use fully connected layer to operate in fully convolutional

manner

DenseNet does not use any upsampling

(decoder)

DAVS-Net is an encoder-decoder network

DenseNet used many dense blocks (E.g five

dense block for ImageNet dataset)

DAVS-Net is just using 3 dense block is encoder and 3 dense

blocks for decoder

In each dense block DenseNet use four

convolutional layers

DAVS-Net net use just two convolutions in each dense block

DenseNet does not use unpooling layers, so it

does not transfers the pooling indices

DAVS-Net uses unpooling layers in combination with pooling

layers, so it transfers the pooling indices to decoder

DenseNet uses global average pooling in the end

of the network

DAVS-Net use max-pooling layer after each dense block

https://doi.org/10.1371/journal.pone.0261698.t001
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1. Fewer convolutional layers and pooling layers are used to reduce the spatial information

loss.

2. Dense concatenation of the features is used within the dense block to enable the network

for providing immediate spatial information transfer between the layers.

3. The edge information transfer from the first layers of the encoder to the last layer of the

decoder is used for faster convergence of the network.

The connectivity principle of DAVS-Net is demonstrated in Fig 2 that presents the layout

of the deep feature concatenation for the candidate encoder-decoder block.

The encoder consists of three dense blocks with two convolutional layers in each block.

Similar structure is used for the decoder as well. We describe both encoder and decoder in

detail in Section 3.3 and 3.4. Here, we discuss the connectivity of principle of the proposed

DAVS-Net (as given in Fig 2) that leads to formulation of deep feature.

Specifically, the dense block of the encoder, shown on the left side of Fig 2, receives an

input feature Fi while the dense block of the decoder, depicted on the right side of Fig 2,

receives an input feature Ui. The feature F0i is obtained after two convolutional operations,

namely E-Conv-A and E-Conv-B. The spatial loss is recovered by deep feature concatenation of

these two convolutional layers. The dense feature A1
i is obtained by concatenating the feature

of the outputs F0i and KðF0iÞ of E-Conv-A and E-Con-B, as given below:

A1
i ¼ KðF0iÞ � F

0

i ; ð1Þ

where ‘�’ denotes the depth-wise concatenation.

Fig 1. Flow diagram of the proposed method.

https://doi.org/10.1371/journal.pone.0261698.g001
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We next employ a bottleneck layer, termed Bottle-Neck, to limit number of channels after a

Batch Normalization (BN) and a Rectified Linear Unit (ReLU) operations that results in the

feature ½A1
i �
0

, as follows

½A1
i �
0

¼ ½KðF0iÞ � Fi�
0

: ð2Þ

Similarly, the decoder applies a convolution on the input Ui through the convolutional

layer D-Conv-A resulting in feature U 0

i . This feature Ui is then fed to the second convolutional

layer D-Conv-B resulting in the feature KðU 0

i Þ. The spatial loss is recovered by concatenating

the deep feature from these two convolution layers and the third feature F0i that comes from

the encoder by an external dense path. Thus, the dense feature A2
i is an enriched feature by the

concatenation of three features of the outputs D-Conv-A, D-Conv-B, and E-Conv-A as given

below:

A2
i ¼ KðU 0

i Þ � U
0

i � F
0

i ð3Þ

Just like in encoder, the increase in the number of channels for A2
i feature may lead to mem-

ory consumption that is resolved through the Bottle-Neck layer after BN and ReLU operations

yielding to the feature A2
i , as follows:

½A2
i �
0

¼ ½KðU 0

i Þ � U
0

i � F
0

i �
0

: ð4Þ

Now, comparing both ½A1
i �
0

and ½A2
i �
0

, although both are empowered features by dense con-

nectivity but the ½A2
i �
0

is the resultant feature of three features concatenation which also

includes the important edge information. Owing to that enrichment, the proposed DAVS-Net

is able to perform finer segmentation without any prior need for preprocessing. To ensure the

segmentation of small objects, feature enhancement is done at dense block level as shown in

Fig 3, that presents the complete architecture with the dense feature concatenation. The

Fig 2. Connectivity principle of DAVS-Net.

https://doi.org/10.1371/journal.pone.0261698.g002
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DAVS-Net is keeping the feature map size before upsampling at 80 × 80 for an input image of

640×640, that is enough to represent the valuable features for vessel segmentation.

3.3 DAVS-Net encoder

DAVS-Net is a densely connected fully convolutional network that uses a total of 6 dense

blocks for both encoder and decoder as shown in Fig 3. The encoder consists of three dense

blocks with each block containing two convolutional layers. Each encoder dense block starts

with a convolutional layer and ends with a pooling layer that is used to reduce the size of the

feature map. As an example, the first encoder dense blocks is with two convolutions of 64

channels, and the output of both convolutions are merged by a depth-wise concatenation layer

generating 128 channels.

The concatenation layer leads to increase in depth of the feature map that requires more

memory as well as processing power. The issue is addressed through bottleneck layer that

reduces memory consumption by selecting higher minibatch size in each dense block which

results in limiting the channels after the concatenation. Moreover, a constant convolution

operation is required to segment the image using a convolutional neural network (CNN). Con-

sequently, the DAVS-Net encoder performs the constant convolutional operation on the

image and the feature. That travels through the network in a feed-forward fashion until the

image is represented by the tiny features.

Another problem with CNN is that max-pooling operation (post convolution) causes spa-

tial information loss. In DAVS-Net, loss of the useful information is covered by the deep fea-

ture concatenation. Thus, in the proposed architecture, the encoder is composed of three

dense block with 6 convolution layers and three max-Pool layers and the final feature map is

80×80 for a 640×640 input image. The DAVS-Net encoder structure in terms of the dense

block is listed in Table 2, which describes the feature empowerment inside each encoder dense

block and shows how the bottleneck layer reduces the depth of the feature map. The number

of trainable parameters is also shown in the table for the layers in the encoder.

3.4 DAVS-Net decoder

The decoder in DAVS-Net employs the reverse operation to the encoder as shown in Fig 3,

whereby each dense block starts with an Max-Unpool layer which is responsible for gradually

increasing the size of the feature map. After each unpooling layer, two convolutions follow the

same concatenation and bottleneck principle. The depth-wise concatenation layer in each

Fig 3. Architecture of DAVS-Net used for vessel segmentation in our work.

https://doi.org/10.1371/journal.pone.0261698.g003
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decoder block receives three inputs from first convolution, second convolution and direct

information from the outer dense connection of the respective encoder block. The outer dense

paths start from the first convolutional layer of the encoder dense block and terminate at the

concatenation layer of each decoder dense block. These outer dense paths provide the immedi-

ate edge information from encoder to decoder to reduce the latency.

Specifically, the DAVS-Net decoder receives an input of 80×80-pixel from the encoder and

provides the final feature map of the size equal to the size of input image. The bottleneck layer

in each decoder block is used to reduce the number of channels to avoid memory issues. The

last bottleneck layer in the decoder (third decoder dense block) is responsible for reducing the

depth of the feature map. That also works as a class mask layer whose number of channels is

equal to the number of classes.

Table 2. DAVS-Net encoder-decoder I/O feature map sizes. Where EDB, EDB-C, EDB-Cat, DDB, DDB-C, DDB-Cat represent encoder dense block, encoder dense

block convolution, encoder dense block concatenation, decoder dense block, decoder dense block convolution, decoder dense block concatenation, respectively. The layer

with =̂ shows that layer includes rectified linear unit (ReLU), and batch normalization (BN) after.

Dense Block Layer/Size Filters Layer O/P Parameters

EDB1 EDB1-C1=̂3 × 3 × 3 to (DDB1-C1) & EDB1-Cat 64 640 × 640 × 64 1792 + 128

EDB1-C2 /3 × 3 × 64 to EDB1-cat 64 640 × 640 × 64 36,928

EDB1-Cat (EDB1-C1 � EDB1-C2) - 640 × 640 × 128 -

E-Bneck-1=̂1 × 1 × 64 64 640 × 640 × 64 8256 + 128

Pool-1 - 320 × 320 × 64 -

EDB2 EDB2-C1=̂3 × 3 × 64 to (DDB2-C1) & EDB2-Cat 128 320 × 320 × 128 73,856 + 256

EDB2-C2 /3 × 3 × 64 to EDB2-Cat 128 320 × 320 × 128 147,584

EDB2-Cat (EDB2-C1 � EDB2-C2) - 320 × 320 × 256 -

E-Bneck-2=̂1 × 1 × 128 × 64 64 640 × 640 × 64 8256 + 128

Pool-2 - 160 × 160 × 128 -

EDB3 EDB3-C1=̂3 × 3 × 64 to (DDB3-C1) & EDB3-Cat 256 160 × 160 × 256 295,168 + 512

EDB3-C2 /3 × 3 × 64 to EDB3-Cat 256 160 × 160 × 256 590,080

EDB3-Cat (EDB3-C1 � EDB3-C2) - 160 × 160 × 512 -

E-Bneck-3=̂1 × 1 × 256 64 160 × 160 × 256 131328 + 512

Pool-3 - 80 × 80 × 256 -

DDB3 Unpool-3 - 160 × 160 × 256 -

DDB3-C1=̂3 × 3 × 256 to DDB3-Cat 256 160 × 160 × 128 590,080 + 512

DDB3-C2 /3 × 3 × 256 to DDB3-Cat 64 160 × 160 × 640 295,040

DDB3-Cat (DDB3-C1 � DDB3-C2 � EDB3-C1) - 160 × 160 × 640 -

D-Bneck-1=̂1 × 1 × 640 128 160 × 160 × 128 82048 + 256

DDB2 Unpool-2 - 320 × 320 × 128 -

EDB2-C1=̂3 × 3 × 64 to (DDB2-C1) & EDB2-Cat 128 320 × 320 × 64 147,584 + 256

EDB2-C2 /3 × 3 × 64 to EDB2-Cat 64 320 × 320 × 128 73,792

DDB2-Cat (DDB2-C1 � DDB2-C2 � EDB2-C1) - 320 × 320 × 320 -

D-Bneck-2=̂1 × 1 × 320 64 320 × 320 × 64 20544 + 128

DDB1 Unpool-1 - 640 × 640 × 64 -

DDB1-C1=̂3 × 3 × 64 to DDB1-Cat 64 640 × 640 × 64 36,928 + 128

DDB1-C2 /3 × 3 × 64 to DDB1-Cat 2 640 × 640 × 2 1,154

DDB1-Cat (DDB1-C1 � DDB1-C2 � EDB1-C1) - 640 × 640 × 130 -

D-Bneck-3=̂1 × 1 × 130 2 640 × 640 × 2 262 + 4

https://doi.org/10.1371/journal.pone.0261698.t002
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This study is based on two classes “Vess” and “BG” representing vessel pixel and backgroud

pixels; therefore, the number of channels in the last bottleneck layer is set at 2. The DAVS-Net

pixel classification layer in combination with ‘Softmax’ function is responsible to assign a label

to each pixel in the image from the available class based on prediction. Table 2 provide the

layer layout of the DAVS-Net decoder with respective feature map sizes.

Table 3 presents the architectural differences of the proposed method with similar state-of-

the-art networks. That essentially demonstrates that proposed architecture requires less convo-

lution operations reduced channel depth as compared to some of other state of the architec-

tures. Additionally, we also utilize dense connectivity, unpooling and bottleneck layers to

further enhance the architecture of the proposed DAVS-Net over the comparative state of the

art techniques.

4 Detection of diabetic and hypertensive retinopathy

It is mentioned in [41] that both diabetic and hypertensive retinopathy cause changes in retinal

vessels. The diabetic retinopathy can swell the retinal vessels or even can create new blood ves-

sels (increase in the vessel pixels), where the hypertensive retinopathy causes the shrinkage of

retinal blood vessels (decrease in number of vessel pixels). The accurate segmentation of these

vessels can provide an opportunity to detect changes in the retinal vessels (increase or decrease

Table 3. Comparison of architectural differences with similar state-of-the-art networks.

Model Other architecture DAVS-Net

SegNet [35] Overall 26 convolutional layers Overall 12 convolutional layers

No residual or dense connectivity Dense connectivity is used

First two blocks have two convolutional layers while

other include three convolutional layers

Only two convolutions in each block

The block with channel depth-512 is used twice Did not use Channel depth-512

U-Net [38] Overall 23 convolutional layers Overall 12 convolutional layers

Up convolutions in decoder Unpooling layers in decoder

No dense connectivity within encoder/decoder (just

dense connectivity encoder to decoder)

Inner and outer dense connectivity for

both encoder and decoder

1024 chandel-depth is used in bridge which involve

many trainable parameters

maximum channel depth-256

Use cropping Dis not use cropping

Vess-Net

[39]

Overall 16 convolutional layers Overall 12 convolutional layers

Based on residual connectivity Based on dense connectivity

First convolutional block missing with feature

empowerment connectivity

Each convolutional layer is connected

with dense empowerment

No bottleneck layers are employed Bottleneck layers are used to control

number of channels

10 residual paths 12 dense paths

Dense-

U-Net [40]

Overall 89 convolutional layers Overall 12 convolutional layers

Overall 10 dense blocks are used in both encoder and

decoder

Overall 6 dense blocks are used in both

encoder and decoder

unpooling layers are not utilized Pooling and unpooling layers are used in

combination

Eight convolutions in each dense block Two convolutions in each dense block

Maximum channel depth-512 Maximum channel depth-256

4 bottleneck layers are used in just encoder 6 bottlenck layers are used in both encode

and decoder

https://doi.org/10.1371/journal.pone.0261698.t003
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in number of vessels). This increase or decrease in number of vessel pixels can be used for

diagnostic purposes for analysis of diabetic and hypertensive retinopathy. The disease progres-

sion can also be analyzed by comparing the masks of successive visits.

5 Experimental results

The experiments were conducted on a machine with Intel(R) Xeon(R) W-2133 CPU 3.60GHz

processor, 96GB RAM, and Nvidia 2080TI GPU. For our implementation, the MATLAB was

employed. We employed the ADAM optimizer with an initial learning rate of 1e−3, an expo-

nential decay rate of 0.9, and mini-batch size of 10 images. The proposed DAVS-Net is trained

from the scratch without weight initialization or migration from other frameworks. A

weighted cross-entropy loss is used as an objective function for training in all of our experi-

ments. This decision is based on the fact that the “background” pixels in each retinal image

heavily outnumber the “foreground” pixels. We use median frequency balancing to calculate

class association weights here [34].

Because the retinal vessel segmentation data sets used here are quite small in size, we used

data augmentation to generate enough data for training. We used rotation and contrast

enhancement to enhance the data. Each training image is rotated by 1 degree for the rotations.

The contrast has been improved by randomly increasing and decreasing the image brightness.

This results in 7600 images for the DRIVE and CHASE DB data sets, as well as 7000 images for

each of the STARE data’s leave-one-out trails.

5.1 Materials

We have evaluated the performance of our proposed method on the basis of the following

three fundus retinal image datasets which are publically available.

1. STARE: A group of twenty fundus images collected in the USA [41].

2. DRIVE: A collection of retinal images obtained from aged diabetic patients in Netherland

[42].

3. CHASE_DB1: A collection of retinal fundus images based on fourteen pediatric subjects

[43].

Segmentation of blood vessels is performed on retinal images in DRIVE dataset using man-

ual procedure. In comparison of the three datasets, there is a binary mask revealing FOV for

DRIVE dataset but it is not available for STARE and CHASE_DB1. For the STARE and CHAS-

E_DB1 datasets, binary masks are manually generated by well-known techniques [44]. DRIVE

and CHASE_DB1 have their individual and distinct training and testing datasets. In STARE,

two subsets of randomly selected images are taken for training and testing purpose. As given

in literature, a “leave-one-out” method is commonly implemented to separate training and

testing sets [44]. In this method, a model is trained on ‘n-1’ samples and tested on the remain-

ing sample to avoid overlapping. This process is iterated for ‘n’ times to complete the dataset,

“leaving out” each sample at least once for the whole dataset. We have implemented this

“leave-one-out” method for STARE dataset to train the model. Details of three selected data-

sets in our experiments are summarized in the Table 4.

5.2 Evaluation criteria

Models for vessel segmentation are actually binary classifiers that necessarily differentiate ves-

sels from the background for the given set of retinal fundus images. Performance of these
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segmentation classifiers is evaluated with “ground truth” images marked by ophthalmologists.

Based on the following four parameters, we utilized the three metrics given in equations 5, 6,

and 7 [36], for the performance evaluation of our proposed system.

1. True Negative (TN): Classifier correctly found as non-vessels,

2. False Positive (FP): Classifier incorrectly found vessels which are actually non-vessels,

3. True Positive (TP): Classifier correctly found as vessels,

4. False Negative (FN): Classifier incorrectly found non-vessels which are actually vessels.

Sp ¼
TN

TN þ FP
ð5Þ

Se ¼
TP

TPþ FN
ð6Þ

Acc ¼
TP þ TN

TP þ FN þ TN þ FP
ð7Þ

where Sp, Se, and Acc are representing the specificity, sensitivity, and accuracy, respectively.

Accuracy is the ratio between correctly detected pixels (vessels and non-vessels) and the total

pixels in the mask (FOV only). While specificity and Sensitivity demonstrate that how much

accurately a model identifies the non-vessel and vessel pixels respectively. Furthermore, per-

formance of the classifier is also assessed by some other parameters such as area under the

Receiver Operating Characteristic (ROC), Area Under the Precision-Recall Curves (AUCPR),

and False Positive Rate (FPR). Whenever, we have imbalanced distribution, ROC is a feasible

assessing parameter for the classification of objects [45]. The AUC and AUCPR measures are

used to analyze the objective efficiency of classification.

5.3 Comparison with state-of-the-art

The visual results of our simulation on the three datasets are shown in Figs 4–6, respectively.

In each figure, moving from left to right, the first column shows the original images, the sec-

ond column shows the ground truth images and the third column shows the segmented

images.

To evaluate and compare our results with those of state-of-the-art models, we have pre-

sented and summarized the results in tabular forms. Results obtained by our simulation on

CHASE_DB1 are compared in Table 5. As given in the table, dice and Jaccard Se, Sp and Accu-

racy of our models are 0.8144, 0.9843 and 0.9726 respectively.

In Table 6, the results of our proposed model, implemented on DRIVE dataset, are com-

pared with those of state-of-the-art. Se, Sp and Accuracy of our model is 0.8286, 0.9824 and

0.9689 respectively.

Table 4. Summary of datasets used in the experiments.

Dataset Name Training Set Test Set Dataset Size Dimension (pixels)

STARE 10 10 20 700 605

CHASE_DB1 20 8 28 999 960

DRIVE 20 20 40 565 584

https://doi.org/10.1371/journal.pone.0261698.t004
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Similarly, results achieved from the implementation of our model on STARE dataset are

compared in Table 7. From this experiment, Se, Sp and Accuracy of our model are 0.8238,

0.9866 and 0.9744 respectively.

From the comparisons with state-of-the-art, it is obvious that our proposed model outper-

formed other existing models with respect to well-known evaluation metric accuracy on three

well-known and publicly available datasets.

6 Conclusion

Diabetic retinopathy is one of the top ophthalmic diseases which lead to blindness in the

diabetic patients. Accurate segmentation of retinal blood vessels significantly helps the

Fig 4. Visual results on the CHASE_DB1 dataset. From left-to-right: input images, ground truth, result obtained by

our proposed method.

https://doi.org/10.1371/journal.pone.0261698.g004
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ophthalmologist for screening and detection of diabetic retinopathy. In proceeding to the diag-

nosis of this disease, we proposed a segmentation network, DAVS-Net, for the segmentation

of retinal blood vessels. Dense concatenation of features in the dense block enabled the net-

work to acquire and transfer spatial information from the image. Fast convergence of the net-

work is achieved through the edge information transfer from encoder layers to decoder layers.

There are three main design attributes of DAVS-Net; Firstly, quality of features is improved by

feature concatenation, whereas memory requirements are controlled by the bottleneck layers

Fig 5. Visual results on the DRIVE dataset. From left-to-right: input images, ground truth, result obtained by our

proposed method.

https://doi.org/10.1371/journal.pone.0261698.g005
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in dense block. Secondly, number of convolution layers is reduced in all six blocks of the net-

work to minimize the spatial information loss. Thirdly, DAVS-Net employs dense paths for

feature empowerment which aids in extraction of minor information from the image. We eval-

uated proposed network on three publicly available datasets and surpassed the existing state-

of-the-art methods in terms of accuracy and computational efficiency. This method can be

used as a second opinion system to aid medical doctors and ophthalmologists for the diagnosis

Fig 6. Visual results on the STARE dataset. From left-to-right: input images, ground truth, result obtained by our

proposed method.

https://doi.org/10.1371/journal.pone.0261698.g006

Table 5. Performance comparison of our proposed model on CHASE_DB1 dataset with other existing models.

Method Year Se Sp Acc AUC

Khawaja et al [8] 2019 0.7974 0.9697 0.9528 NA

Zhang et al [46] 2016 0.7626 0.9661 0.9452 0.9606

Arsalan et al [39] VessNet 2019 0.8206 0.9800 0.9726 0.9800

Jin et al [47] 2019 0.7595 0.9878 0.9641 0.9832

Yin et al [48] 2020 0.7993 0.9868 0.9783 0.9869

Wang et al [49] 2020 0.8186 0.9844 0.9673 0.9881

Segnet-basic [35] 2020 0.8190 0.9735 0.9638 0.9780

Our Method 2021 0.8144 0.9843 0.9726 0.9855

https://doi.org/10.1371/journal.pone.0261698.t005
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and analysis of diabetic retinopathy. In the future, we will further increase the accuracy of

blood vessels segmentation with consideration of other retinal diseases along.
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