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Abstract

A set S of a graph G = (V (G), E(G)) is a rings dominating set if S is a dominating set and for every vertex
in the complement of S has atleast two adjacent vertices. The caridinality of the minimum rings dominating
set is the rings domination number of graph G, denoted by γri(G). In this paper we determine the exact
rings domination number of the mycielski graphs of path graph, cycle graph, and crown graph including its
parameter.
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1 Introduction

Domination is one of the fundamental concepts used as an active tool in graph theory. The initiation of a
new parameter in domination in graphs called ”rings domination number” has been of great interest among
mathematicians [1, 2, 3, 4, 5] . It was Abed and Al-Harere in [6] who first presented the notion of rings
domination which put a condition to a set V (G) − S. The rings dominating set of G, where G is a nontrivial
connected graph with no isolated vertex, is defined as, a non-empty subset S ⊆ V (G) such that S is a dominating
set and every vertex v ∈ V (G)− S has atleast two adjacent vertices in V (G)− S.

On one hand, Jan Mycielski in 1955 showed that there exist a triangle-free graphs with arbitrarily large chromatic
number. Mycielski [7] introduced the graph-transformations as follows. Let G be a traingle-free graph. For each
vi ∈ V (G), add a vertex v′i to U adjacent to the same vertices of G that vi is adjacent to. Finally, add a vertex
w adjacent to each v′i [8].

In this paper, we investigate the rings domination number of the Mycielski graph of path graphs, cycle graphs,
and crown graphs. For basic graph theory terminologies not specifically defined in this paper, please refer to
either [9] or [6].

2 Preliminary Notes

This section contains some of the fundamental concepts necessary for the understanding of the study.

Definition 2.1. [10] (Crown Graph) A crown graph G(n, n) is a graph on 2n vertices with two sets of vertices
ui and vj and with an edge from ui to vj whenever i 6= j.

Example 2.1. The graph in Fig. 1 can be partitioned into two partite sets, U and V . Pick the vertex u1. Then,
u1 is adjacent to the vertices v2, v3, and v4, except to the vertex v1. Hence, it is therefore equivalent to the
complete bipartite graph K(n,n) without the horizontal edges.

Fig. 1. The crown graph of G(4,4)

Definition 2.2. [11] (Mycielski Graph) Consider a graph G with V (G) = {v1, v2, v3, ..., vn}. Apply the
following steps to the graph G:

(i) Take the set of new vertices U = {u1, u2, u3, ..., un} and add edges from each vertex ui of U to the vertices
vj if the corresponding vertex vi is adjacent to vj in G.

(ii) Take another new vertex w0 and add edges joining each element in U .

Here, the new graph obtained is the Mycielski graph, denoted by µ(G) of graph G.
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Example 2.2. The graph G in Fig. 2 is a path graph P3. By (i), we take a new vertex set U that has the same
cardinality of G. By (ii), we add a new vertex, w0.

Fig. 2. The Mycielski construction of path graph P3

By definition 2.2, we obtained the Mycielski graph of path graph µ(P3) illustrated in Figure 3 below. Observe
that we add the edges from each vertex ui ∈ U to the vertices vj to the corresponding vertex vi adjacent to vj
in G. Finally, we add an edge joining each ui ∈ U and the vertex w0.

Fig. 3. The Mycielski graph of µ(P3)

Definition 2.3. [6] (Rings Dominating Set, Rings Domination Number) Let G = (V (G), E(G)) be a
nontrivial connected graph with no isolated vertex. A non-empty set S ⊆ V (G) is rings dominating set of graph
G if, S is a dominating set and for every v ∈ V (G) − S has atleast two adjacent vertices in V (G) − S. The
cardinality of a minimum rings dominating set of G is the rings domination number of G, denoted by γri(G). A
set S0 ⊆ V (G), where | S0 |= γri(G) is called the γri-set of G.

Example 2.3. Consider the graph G in Fig. 4 below. Take the set S = {u13}. Clearly, the set S is a
dominating set. Moreover, every vertex in V (G) − S, deg(u1) = deg(u2) = deg(u3) = deg(u4) = 4 and
deg(u5) = deg(u6) = deg(u7) = deg(u8) = deg(u9) = deg(u10) = deg(u11) = deg(u13) = 2, has atleast two
adjacent vertices in V (G) − S. Obviously, S is a minimum rings dominating set of graph G. Hence, the rings
domination number of G is γri(G) = 1.
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Fig. 4. The graph G

Fig. 5. The subgraph S of graph G

3 Main Results

In this section, the rings domination number of Mycielski graph of path graph, cycle graph, and crown graph
are shown. As well as, the parameter of a rings domination number of the mentioned graphs.

3.1 Rings domination number of the mycielski graph of path graph, µ(Pn)

For convenience, we consider the path graph Pn of order n ≥ 4 with vertex set V (Pn) = {v1, v2, ..., vn}. The
following shows the parameter of the rings domination number of the mycielki graph of path graph via modulus.

Theorem 3.1. Let Pn be a path graph with n ≥ 4. Then,

γri(µ(Pn)) =


n+4
2
, if n ≡ 0(mod 4)

n+5
2
, if n ≡ 1(mod 4) or n ≡ 3(mod 4)

n+6
2
, if n ≡ 2(mod 4)

Proof: Let V (µ(Pn)) = V (Pn) ∪ U ∪W , where V (Pn) = {v1, v2, ..., vn}, U = {u1, u2, ..., un}, and W = {w0}.
Suppose S is a γri-set. Consider the following cases.
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Case 1: n ≡ 0 (mod 4)

Choose R = {v1, v5, v9, ..., vn−3} ∪ {v4, v8, ..., vn} ∪ {u1, un}. Clearly, R is a rings dominating set. Since S is a
γri-set, |R| ≥ |S|. Thus, |R| = n

2
+ 2 ≥ |S|. On the other hand, since S is a γri-set, then S must have atleast

n
2

+ 2 vertices in µ(Pn). Thus, |S| ≥ n
2

+ 2. Therefore, γri(µ(Pn)) = |S| = n
2

+ 2 = n+4
2

.

Case 2: n ≡ 1 (mod 4) or n ≡ 3 (mod 4)

For n ≡ 1 (mod 4). Choose R = {v1, v5, v9, ..., vn}∪{v4, v8, ..., vn−1}∪{u1, un}. Clearly, R is a rings dominating
set. Since S is a γri-set, |R| ≥ |S|. Thus, |R| = 2n+2

4
+ 2 ≥ |S|. On the other hand, since S is a γri-set, then S

must have atleast 2n+2
4

+2 vertices in µ(Pn). Thus, |S| ≥ 2n+2
4

+2. Therefore, γri(µ(Pn)) = |S| = 2n+2
4

+2 = n+5
2

.

Similarly for n ≡ 3 (mod 4) by letting R = {v1, v5, v9, ..., vn} ∪ {v4, v8, ..., vn−3} ∪ {u1, un}.

Case 3: n ≡ 2 (mod 4)

Choose R = {v1, v5, v9, ..., vn−1} ∪ {v2, v6, ..., vn} ∪ {u1, un}. Clearly, R is a rings dominating set. Since S is a
γri-set, |R| ≥ |S|. Thus, |R| = 2n+2

4
+ 2 ≥ |S|. On the other hand, since S is a γri-set, then S must have atleast

2n+4
4

+ 2 vertices in µ(Pn). Thus, |S| ≥ 2n+4
4

+ 2. Therefore, γri(µ(Pn)) = |S| = 2n+4
4

+ 2 = n+6
2

. �

Example 3.2. Consider the Mycielski graph of path graph µ(P4) in Figure 6. It can be seen that if we let
S ⊆ V (µ(P4)), where S = {v1, v4, u1, u2}, then clearly, S is a dominating set of the mycielski graph of µ(P4).
Moreover, every vertex in V (µ(P4))− S = {v2, v3, u2, u3, w0} has atleast two adjacent vertices in V (µ(P4))− S.
Observe that the set S has the smallest cardinality of all the rings dominating set in µ(P4). Hence, the rings
domination number of µ(P4) is γri(µ(P4)) = 4.

Fig. 6. The Mycielski graph of µ(P4) and its rings dominating set S = {v1, v4, u1, u2}

Example 3.3. Consider the Mycielski graph of path graph µ(P5) in Figure 7. It can be seen that if we let
S ⊆ V (µ(P5)), where S = {v1, v4, v5, u1, u5}, then clearly, S is a dominating set of the mycielski graph of µ(P5).
Moreover, every vertex in V (µ(P5))−S = {v2, v3, u2, u3, u4, w0} has atleast two adjacent vertices in V (µ(P5))−S.
Observe that the set S has the smallest cardinality of all the rings dominating set in µ(P5). Hence, the rings
domination number of µ(P5) is γri(µ(P5)) = 5.
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Fig. 7. The Mycielski graph of µ(P5) and its rings dominating set S = {v1, v4, v5, u1, u5}

Example 3.4. Consider the Mycielski graph of path graph µ(P7) in Figure 8. Let S ⊆ V (µ(P7)), where
S = {v1, v4, v7, u1, u4,
u7, w0}, then clearly, S is a dominating set of the mycielski graph of µ(P7). Moreover, every vertex in V (µ(P7))−
S = {v2, v3, v5, v6, u2, u3, u4, u5, u6, w0} has atleast two adjacent vertices in V (µ(P7))− S. Observe that the set
S has the smallest cardinality of all the rings dominating set in µ(P7). Hence, the rings domination number of
µ(P7) is γri(µ(P7)) = 6.

Fig. 8. The Mycielski graph of µ(P7) and its rings dominating set S = {v1, v4, v7, u1, u4, u7}

Example 3.5. Consider the Mycielski graph of path graph µ(P6) in Figure 9. It can be seen that if we let
S ⊆ V (µ(P6)), where S = {v1, v2, v5, v6, u1, u6}, then clearly, S is a dominating set of the mycielski graph of
µ(P6). Moreover, every vertex in V (µ(P6)) − S = {v3, v4, u2, u3, u4, u5, w0} has atleast two adjacent vertices
in V (µ(P6)) − S. Observe that the set S has the smallest cardinality of all the rings dominating set in µ(P6).
Hence, the rings domination number of µ(P6) is γri(µ(P6)) = 6.

3.2 Rings domination number of the mycielski graph of cycle graph, µ(Cn)

For convenience, we consider the cycle graph Cn of order n ≥ 4 with vertex set V (Cn) = {v1, v2, ..., vn}. The
following shows the parameter of a rings domination number of the mycielski graph of cycle graph via modulus.

Theorem 3.6. Let Cn be a cycle graph with n ≥ 4, then
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Fig. 9. The Mycielski Graph of µ(P6) and its rings dominating set S = {v1, v2, v5, v6, u1, u6}

γri(µ(Cn)) =


n+2
2
, if n ≡ 0(mod 4)

n+5
2
, if n ≡ 1(mod 4)

n+2
2
, if n ≡ 2(mod 4)

n+1
2
, if n ≡ 3(mod 4)

Proof: Let V (µ(Cn)) = V (Cn) ∪ U ∪W , where V (Cn) = {v1, v2, ..., vn}, U = {u1, u2, ..., un}, and W = {w0}.
Suppose S is a γri-set. Consider the following cases.

Case 1: n ≡ 0 (mod 4)

Choose R = {v1, v5, v9, ..., vn} ∪ {v4, v8, ..., vn−3} ∪ {u1}. Clearly, R is a rings dominating set. Since S is a
γri-set, |R| ≥ |S|. Thus, |R| = 2n

4
+ 1 ≥ |S|. On the other hand, since S is a γri-set, then S must have atleast

2n
4

+ 1 vertices in µ(Cn). Thus, |S| ≥ 2n
4

+ 1. Therefore, γri(µ(Cn)) = |S| = 2n
4

+ 1 = n+2
2

.

Case 2: n ≡ 1 (mod 4)

Choose R = {v1, v5, v9, ..., vn} ∪ {v4, v8, ..., vn−1} ∪ {u1, un}. Clearly, R is a rings dominating set. Since S is a
γri-set, |R| ≥ |S|. Thus, |R| = 2n+2

4
+ 2 ≥ |S|. On the other hand, since S is a γri-set, then S must have atleast

2n+2
4

+ 2 vertices in µ(Cn). Thus, |S| ≥ 2n+2
4

+ 2. Therefore, γri(µ(Cn)) = |S| = 2n+2
4

+ 2 = n+5
2

.

Case 3: n ≡ 2 (mod 4)
Choose R = {v1, v5, v9, ..., vn−5} ∪ {v4, v8, ..., vn−3} ∪ {u1, un−3}. Clearly, R is a rings dominating set. Since S
is a γri-set, |R| ≥ |S|. Thus, |R| = 2n−4

4
+ 2 ≥ |S|. On the other hand, since S is a γri-set, then S must have

atleast 2n−4
4

+ 2 vertices in µ(Cn). Thus, |S| ≥ 2n−4
4

+ 2. Therefore, γri(µ(Cn)) = |S| = 2n−4
4

+ 2 = n+2
2

.

Case 4: n ≡ 3 (mod 4)

Choose R = {v1, v5, v9, ..., vn−2} ∪ {v4, v8, ..., vn−3} ∪ {u1}. Clearly, R is a rings dominating set. Since S is a
γri-set, |R| ≥ |S|. Thus, |R| = 2n−2

4
+ 1 ≥ |S|. On the other hand, since S is a γri-set, then S must have atleast

2n−2
4

+ 1 vertices in µ(Cn). Thus, |S| ≥ 2n−2
4

+ 1. Therefore, γri(µ(Cn)) = |S| = 2n−2
4

+ 1 = n+1
2

�

Example 3.7. Consider the Mycielski graph of cycle graph µ(C4) in Figure 10. It can be seen that if we
let S ⊆ V (µ(C4)), where S = {v1, v4, u1}, then clearly, S is a dominating set of the mycielski graph of µ(C4).
Moreover, every vertex in V (µ(C4))−S = {v2, v3, u2, u3, u4, w0} has atleast two adjacent vertices in V (µ(C4))−S.
Observe that the set S has the smallest cardinality of all the rings dominating set in µ(C4). Hence, the rings
domination number of µ(C4) is γri(µ(C4)) = 3.
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Fig. 10. The Mycielski Graph of µ(C4) and its rings dominating set S = {v1, v4, u1}

Example 3.8. Consider the Mycielski graph of cycle graph µ(C5) in Figure 11. It can be seen that if we let
S ⊆ V (µ(C5)), where S = {v1, v4, v5, u1, u5}, then clearly, S is a dominating set of the mycielski graph of
µ(C4). Moreover, every vertex in V (µ(C5)) − S = {v2, v3, u2, u3, u4, w0} has atleast two adjacent vertices in
V (µ(C5)) − S. Observe that the set S has the smallest cardinality of all the rings dominating set in µ(C5).
Hence, the rings domination number of µ(C5) is γri(µ(C5)) = 5.

Fig. 11. The Mycielski Graph of µ(C5) and its rings dominating set S = {v1, v4, v5, u1, u5}

Example 3.9. Consider the Mycielski graph of cycle graph µ(C6) in Figure 12. It can be seen that if we let
S ⊆ V (µ(C6)), where S = {v1, v4, u1, u4}, then clearly, S is a dominating set of the mycielski graph of µ(C6).
Moreover, every vertex in V (µ(C6)) − S = {v2, v3, v5, v6, u2, u3, u5, u6, w0} has atleast two adjacent vertices in
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V (µ(C6)) − S. Observe that the set S has the smallest cardinality of all the rings dominating set in µ(C6).
Hence, the rings domination number of µ(C6) is γri(µ(C6)) = 4.

Fig. 12. The Mycielski Graph of µ(C6) and its rings dominating set S = {v1, v4, u1, u4}

Example 3.10. Consider the Mzycielski graph of cycle graph µ(C7) in Figure 13. It can be seen that if we let
S ⊆ V (µ(C7)), where S = {v1, v4, v5, u1}, then clearly, S is a dominating set of the mycielski graph of µ(C7).
Moreover, every vertex in V (µ(C7))−S = {v2, v3, v6, v7, u2, u3, u4, u5, u6, u7, w0} has atleast two adjacent vertices
in V (µ(C7)) − S. Observe that the set S has the smallest cardinality of all the rings dominating set in µ(C7).
Hence, the rings domination number of µ(C7) is γri(µ(C7)) = 4.

Fig. 13. The Mycielski Graph of µ(C7) and its rings dominating set S = {v1, v4, v5, u1}

3.3 Rings domination number of the mycielski graph of crown graph, G(n, n)

For convenience, we consider the crown graph G of order n ≥ 4. The following shows the parameter of a rings
domination number of the mycielski graph of crown graph.

Proposition 3.1. Let G(n, n) be a crown graph with n ≥ 4. Then, γri(µ(G(n, n))) = 3.

Proof: Let V (µ(G(n, n))) = V (G(n, n)) ∪ U ∪W , where V (G(n, n)) = {u1, u2, ..., un} ∪ {v1, v2, ..., vn}, U =
{u′1, u′2, ..., u′n}∪{v′1, v′2, ..., v′n}, and W = {w0}. Choose R = {u1, v1, w0} ⊆ V (µ(G(n, n))). Clearly, R is a rings
dominating set. Obviously, there can be no other rings dominating set smaller than R. Hence, γri(µ(G(n, n))) =|
R |= 3. �
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Example 3.11. Consider the Mycielski graph of crown graph µ(G(4, 4)) in Figure 14. It can be seen that if
we let S ⊆ V (µ(G(4, 4))), where S = {u1, v1, w0}, then clearly, S is a dominating set of the mycielski graph of
µ(G(4, 4)). Moreover, every vertex in V (µ(G(4, 4)))− S has atleast two adjacent vertices in V (µ(G(4, 4)))− S.
Observe that the set S has the smallest cardinality of all the rings dominating set in µ(G(4, 4)). Hence, the rings
domination number of µ(G(4, 4)) is γri(µ(G(4, 4))) = 3.

Fig. 14. The Mycielski graph of crown graph µ(G(4, 4)) and its rings dominating set
S = {v1, u1, w0}

4 Conclusion

In this article, the rings dominating set of the mycielski graph of path graph, cycle graph, and crown graph is
observed. Furthermore, the parameter of the rings domination number of the mentioned graphs are determined.
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