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Abstract 
 

New results for stability and feedback control of time delay systems were proposed. These results were 

obtained by using Lyapunov Razumikhin method to approximate the stability of the uncontrolled Volterra 

type system with delay and designing a state feedback controller using a model transformation technique, the 

Lyapunov matrix equation and the Razumikhin approach for the stabilization of the controlled Volterra type 

system with delay. Examples are given to illustrate the effectiveness of the theoretical results. 
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Subject classification: 93D05; 93B05; 93-XX. 
 

1 Introduction 
 

Stability theory for control systems with time delays is much more complicated and challenging to analyze than 

for systems without delays. Time-delays in control systems often arise naturally in the system process and 
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information distribution to different part of the system; they are frequently observed in models from 

engineering, biology, economics, as well as other areas of study and has been source of poor system 

performances and even instability [1,2,3,4]. Studies involving different time delays can be found in ship 

stabilization, control processes for pressure, and heat transfer regulation, but they are sometimes deliberately 

introduced into feedback systems to improve system performances see [1,5] and references therein for details. 

See also [6,7,8], and [9] for more details on system performances in the presence of time delays.  

 

For a given control system with delays in control or state variables, stability is one of the most important 

characteristics to be determined. The stability of a system implies that small disturbances in the system input 

(either in system parameters or initial conditions of the system) does not result in considerable changes in the 

system output. Several methods of analysis are available in studying the stability of such systems which includes 

the Lyapunov-based [10], fixed point based [11] and spectral radius [12] approaches see [13] and other 

references therein for details). The Lyapunov based approach which is the focus of stability application in this 

research is widely used in studying stability theories as well as other qualitative and quantitative properties of 

linear and nonlinear delay differential systems see [14,15] and references therein. The Lyapunov based approach 

is classified into two major types; the Razumikhin approach [16,17] and the Krasovskii approach [18]. The 

Krasovskii’s approach often leads to linear matrix inequality results and can be applied to lots of problems that 

may provide desired conditions, but they are computationally complex and often presents scalability see [19]. 

The computational difficulty and poor scalability associated with the Krasovskii’s approach has prompted the 

adoption of the Razumikhin approach in this research.  

 

For real life control applications to systems with delays; the desire is to design a system that would be robustly 

stable and ensure adequate performance. A significant interconnection that can be used to achieve this design is 

the feedback configuration. The robustness of feedback design on systems response depends on the design goals 

and methods. Several feedback design goals and formulations of such control problems exists in classical 

control theory see [20,5,21,22], and [23]. For example, Sipahi et al., [5] studied the stability and stabilization of 

systems with time delay using eigenvalues, spectrum assignment, parametric techniques, Lyapunov and linear 

matrix inequality techniques where they discussed problems and opportunities arising from delays in linear time 

invariant systems modelled by delay differential equations and illustrated that intentional delays, when chosen 

judiciously can be used to stabilize and improve close-loop response of these systems. In [21], stabilization 

problem of delay systems was studied under delay-dependent impulsive control where they showed that delays 

can be introduced into an unstable system to activate stability in the feedback control design strategy using 

impulsive delay inequality and the Lyapunov method. The robust control design to Furuta system under time 

delay measurement feedback and exogenous-based perturbation was investigated in [22] where they presented a 

robust delay-dependent controller based    theory by using Lyapunov-Krasovskii functional and linear 

inequalities techniques to design. For the stability analysis of a class of time delay systems Tian et al., [23] have 

proposed a less conservative stability criterion using the double integral inequality and the Lyapunov-Krasovskii 

functionals.  

 

The use of the Lyapunov-Razumkhin’s approach has received very little attention in the application of stability 

and feedback control design to control systems of the Volterra type with delay despite its theoretical and 

practical significance. For example, the study of the control equations of the Volterra type with delays have 

application in the study of population dynamics and patterns of disease conditions in epidemics and multispecies 

population interaction in a periodic environment in ecology see [24]. However, the application of the 

Razumikhin’s approach was demonstrated in [24] where they studied the existence and global asymptotic 

stability of periodic solutions of impulsive Lotka-Volterra type systems and obtained sufficient stability 

conditions by using a continuation theorem and the Razumikhin’s method. Also, various qualitative results to 

delay integro-differential equations was investigated in [16] by defining suitable Lyapunov function and using 

the Razumikhin’s method to obtain conditions for stability, boundedness, integrable and instability results. The 

aim of this research is to propose a new stability and feedback control results for time delay systems of the 

Volterra type by exploring the Lyapunov-Razumikhin’s approach. The Razumikhin’s approach is adopted in 

this research because of its ability to yield structurally simpler results with fewer variables and matrix 

inequalities even though it often leads to a tedious manipulation. 

 

The rest of the paper is organized as follows; Section 2 contains the mathematical notations, preliminaries and 

definitions. In Section 3, the stability result of the paper is given in terms of Razumikhin type arguments with 

numerical example. Section 4 contains results on the stabilization of the systems based on the Razumikhins 
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approach and model transformation technique with examples to illustrate the effectiveness of the proposed 

results. Finally, Section 5 contains discussions on the simulation output results and the conclusion.  

 

2 Preliminaries and Definitions 
 

Here, we give some preliminaries and Definitions which forms the basis of this study. 

 

2.1 Preliminaries 
 

Suppose     is a given number,                        is a real Euclidean n-space and let   
             be the space of continuous function mapping the interval         into    with the norm      , 

where                      Define       by                     ,        . If      is a 

continuous function on       to    then    . Here,      is allowed.  

 

Consider the time varying delay system 

 

                     (2.1) 

 

                  , where                                        
 

 
   

 

 and it’s control equation 

 

                        (2.2) 

 

where,                                         
 

 
            

 

2.2 Assumptions 
 

Here we make the following assumptions on the system (2.2) 

 

(i). The matrices      , are     constant matrix 

(ii).   is an     matrix 

(iii).                       is continuous and satisfies                      with           
 

 
   

as     

(iv). The constant delay   is positive with      

 

2.3 Definitions 
 

Here, we give some definitions on the subject areas that are required for this research work. 

 

Definition 2.1     
 

The solution     of system (2.1) is stable if given     there exist    such that if        , the             

for all    . 

 

Definition 2.2 

 

The solution     of system (2.1) is asymptotically stable, if it is stable and there exists a      such that if 

        then             as    . 

 

3 Razumikhin Approach for Stability 
 

Here, we give stability results for system (2.1) using Razumikhin type argument for Volterra type system 

with time delays. For the time delay system (2.1) it is necessary to use the Lyapunov functions of the form;   
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, 

 

where          is a continuous function and         is the derivative of   along the solutions of equation 

(2.1) and        is the solution of equation (2.1) through      . The proofs of the next two theorems follows 

the form of [25] and [26]. 

 

Theorem 3.1 

 

Let           be a continuous function that maps    (bounded sets of  ) into bounded sets of   , 

suppose there is a continuous function      for     such that        and continuous, non-decreasing 

function,                with,                  for     and                   Let      be a 

solution of system (2.1) on          , If there is a continuous function           such that 

 

(i)                                

(ii)                        for          , where               

(iii)                          
 

then the zero solution of the system (2.1) is asymptotically stable. Here      and   may  

depend on the solution      as well as   and  .    
 

Proof: Let      be a solution of system (2.1) bounded on      , we define                and let     be 

given so that          . Then there exists a number         , such that         ,              . 
Let          be the smallest integer such that             , and define               , 

           . We observe that              for    . Suppose              for all    , then 

             for any such  , and hence                 . Also, for such  ,                     , 

so that                                               . But                   

for all     and thus for              . Using condition (iii) with    , we get 

 

                                                                                                                                                 

 

Define,            and                     , then from condition (ii) we have that           

                             for all    . Since           is nonnegative, it is a contradiction. So 

there exists a      such that     
      

      . If                for some   
     we assume that   

  is 

chosen such that              for         
   and it follows clearly that 

 

     
      

                                                                                                                                                              

 

But,             
      

         
      

              since              for      
       

  , it 

follows again from condition (iii) that      
      

            
      , which is a contradiction to (3.2). It 

follows then that 
 

                                                                                                                                                                        

 

for all     . Suppose              for all     , then for       , we have              and therefore 

              . Now, define            so that                 for       , it follows then that 

for such for  ;                                                   for some          . 

Then, by condition (iii), we have that 
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If                    , then      and from (3.4) we have                           

                        . But, for very large        this leads to a contradiction. So there exists 

        such that               , suppose for some   
    ,     

      
      , while              

for         
  . It follows that  

 

     
      

                                                                                                                                                             

 

However,             
      

         
      

             . But also              for   

   
       

  , this follows from (3.3) since for each            . So       
      

               for 

     
       

   and using condition (iii), we get      
      

      which contradicts (3.5). So there exists 

             for     , continuing in this way, we get          , that is there exists    such that 

             for     , where           , and     . But        ; that is,                for 

    . Thus, for such  , we have                from which we get          for      and the proof is 

complete. 

 

Lemma 3.1 

 

Suppose all of the conditions of Theorem 3.1 are satisfied and     is stable for the system (2.1), then it is 

uniformly asymptotically stable. 

 

Proof: The proof follows immediately from the theorem; since the system (2.1) is stable at    , there exists a 

     such that the solution              for       , 

 

Lemma 3.2  

 

Suppose all of the conditions of Theorem 3.1 are satisfied for any solution not necessarily bounded on      , 

then     is asymptotically stable for system (2.1). 

 

Proof: If conditions (ii) and (iii) holds for any solution of system (2.1), then the condition implies            

  for any solution           of system (2.1) for which          is    and                        for 

      and therefore                    
 

 
                          

 
, which implies that the 

point     is stable for system (2.1) and the proof is complete. 
 

3.1 Main result on stability 
 

The results of the theorem and lemmas will now be used to investigate the asymptotic stability of the system 

(2.1).  
 

Theorem 3.2 
 

Let all the assumptions of equation (3.1) be satisfied and suppose that  
 

a).                   
 

 
  

 

  
                                                                                             (3.6) 

 

b). Given    ,     there exists a     such that 
  

  
               

 

 
   fo     ,       and if      

is a solution of system (2.1) satisfying condition (ii) of Theorem 3.1 for              . Then  
 
  

  
                                

 

 
  

  

  
          for     . If      is a bounded solution of 

system (2.1),        as      where, 
  

  
  

  

   
  

  

   
 . 

 

then the zero solution of equation (2.1) is asymptotically stable. 
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Proof: To show that condition (a) of Theorem 3.2 is satisfied. Let there exist a function          having 

continuous first partial derivatives in all variables. It is known from matrix theory [27] that there exists a 

symmetric positive definite matrix   such that the Lyapunov matrix equation           , where   is the 

identity matrix and    is the transpose of  . Let   and   be positive numbers such that    and    are the least 

and greatest eigen-values of   respectively. Define             , it is clear then that;  
 

                          
 

Given inequality (3.6), choose     so that   
                     

 
  

 
    , for any         , we 

consider the system 

 

                                    

 

   

                                                                                   

 

Set             , we shall prove that the function      satisfies all the conditions of the Razumikhin 

theorem, that is Theorem 3.1 for system (2.1). It is obvious that, the conditions (ii) and (iii) of the Theorem 3.1 

holds. Assume now that                so that                    and hence        
        

 
 for all 

           then, the derivative        of   along the solution of equation (2.1) is given by  

 

                                        

 

   

     

 

                                 

 

   

  

 

                                               

 

   

  

 

                                   

 

   

     
       

       

 
          

 
This implies the conditions of the Razumikhin theorem given in Theorem 3.1 are satisfied as          and 

          Therefore the zero solution (2.1) is asymptotically stable with   and   depending on     and  . 

Furthermore, we show that condition (b) also holds, let         , then for any positive integer   and any 

solution      of (2.1) we have 

               
 

    
                   

 

    
                           

 

 
,     , and      is a 

solution of (2.1) satisfying              . It follows then that for such     and  ; 

                   
 

    
  

          

 
, and condition (b) is satisfied by the definition of   and  . 

Furthermore, the inequality                
    

 
                  

 

 
   as    . Hence, by the 

assumptions on system (2.1) every bounded solution of (2.1) tends to zero as     and the proof is complete. 

 

3.2 Numerical example on stability of the system 
 
Here, we give numerical example to illustrate the use of the Razumikhin theory as an application to Theorem 

3.2. 



 

 
 

 

Davies et al.; Asian Res. J. Math., vol. 18, no. 12, pp. 1-15, 2022; Article no.ARJOM.87704 
 

 

 
7 

 

Example 3.1 
 

Consider the delay system (2.1) with     
   
   

      
     
        

  and             

 
 

              
 . Now, let    

     
      

  be a symmetric positive definite matrix with           and 

          as the least and greatest eigen-values, and observe that, 

 

 
   
   

  
     

      
   

     
      

  
   
   

   

 

satisfies the Lyapunov matrix equation. Also check that                   
 

 
  

 

  
 by inequality (3.6) is 

satisfied with                   
 

 
         and 

 

  
      and     

                     
 
  

 
   

                 

    
                 and all the conditions of Theorem 3.2 are satisfied with        

         and          
 

 
   as    ,      . Therefore system (2.1) is asymptotically stable. 

 

Example 3.2 

 

Consider the delay system (2.1) with     
    
    

      
       
         

  and 

             
 

                    
 . Now, let    

            
              

  be a symmetric positive definite 

matrix with           and           as the least and greatest eigen-values, and observe also that 

                  
 

 
  

 

  
 by inequality (3.6) is satisfied with                   

 

 
         and 

 

  
        and     

                     
 
  

 
   

                    

      
                   and all 

the conditions of Theorem 3.2 are satisfied with                     and          
 

 
   as    , 

     . Therefore, system (2.1) is asymptotically stable. 

 

4 Feedback Stabilization of the System 
 

Here, we use the model transformation technique in [13] to analyze the stabilization of the system (2.2) as 

follows. Let there exists a     such that for      

 

               
 

 
                 

    

 
               

 

    
 , 

 

where, 
 

                
    

 
                  

    

 
          ; 

 

                
 

    
                              

 

    
          , and  

 

               
 

  
                                                                                                                     

 

Applying this to (2.2) 
 

                       
 

  
                      

 

 
                                                               

 

for                               
 

Define,   
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Let   and   be symmetric positive definite matrices in the Lyapunov equation below 
 

       
                                                                                                                                       

 

where       is Hurwitz stable. We associate (4.2) with a state feedback controller      of the form 
 

                                                                                                                                                                     

where        is a symmetric positive definite matrix to be designated; the closed-loop design for equation 

(2.2) using equation (4.3), (4.4) and the transformed equation (4.2) is given by; 

 

                                     

 

  

               

 

 

                                                    

 

We now ensure that the system (4.5) is asymptotically stable and the closed-loop system is stabilized. 

 

4.1 Designing a guaranteed controller 
 

Here, we use the Lyapunov matrix equation and the Razumikhin approach to stabilize the closed-loop system 

(4.5). 

 

Theorem 3.3 

 

Suppose       is asymptotically stable and there exists positive-definite matrices   and   satisfying equation 

(4.3) and  ,   are as defined in the proof of Theorem 3.2 then, the system (4.5) is asymptotically stable if  

  

 

                    

                             
                                                                                                  

 

Proof: consider equation (4.3) given by        
               and take the following positive-

definite function as the Lyapunov function: 

 

                                                                                                                                                                
 

Now, taking the derivative of   in (4.7) along the solution of (4.5) gives  

 

                                      

 

  

               

 

 

        

 

                               
 

  

                      

 

 

   

 

                                      
 

  

               

 

 

   

              
                                           

 

  

  

                       

 

 

                                                                                                       

 

We can further estimate the following expressions in (4.8) as follows 
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Using condition (b) of Theorem 3.2 we get 

 

                      

    

 

                   

    

 

      
               

 
 

 

                      

 

    

                  

 

    

      
               

 
 

 

Substituting these estimates into the state feed-back controller in equation (4.5) we get the overall derivative of 

  along the solution of (4.5) as 

 

                    
                       

                                                 
 

  

                
               

 
 

               

 
 

 

              
                               

                                                 
 

  

                
               

 
 

               

 
                                      

 

Now, using the Razumikhin theorem, assume     for any non-negative number, the following holds:  
 

                                                                                                                                           
 

Hence,  
 

                                                                                                                                                                
 

Substituting equation (4.11) into (4.9) gives the following inequality  
 

                                                                                                                                                                  
 

where, 
 

                                                                       
 

now, the derivative (4.10), (4.11) and (4.12) by the Razumikhin theory implies that              based on 

the proof of the above Theorem. Thus, by the Razumikhin Theorem it is asymptotically stable. 
 

Remark 4.1 
 

The choice of equation (4.3) guarantees      with     and maximizes   when    . The maximum bound 

for the time delay becomes 
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for        . 

 

4.2 Examples on feedback stabilization of the system 
 

The aim here is to give numerical examples as an illustration to the methods proposed.  

 

Example 4.1 

 

Consider the system 

 

                                          
 

 

                                                                             

 

Here,       and   are as defined in Example 3.1 of Section 3.2; where        
      
          

  is 

asymptotically stable,    
 
 
  and    

             
               

  is a symmetric positive definite matrix with 

          and           as the least and greatest eigen-values, and observe that, 

 

 
          

      
  

             
               

   
             

               
  

      
          

 , 

 

satisfies the Lyapunov matrix equation. Now, set     and observe that, 

 

               ,               ,          ,          ,            

 

                                                  ,          
 

 
   as    . 

Using inequality (4.6) gives          with a maximum bound              . The stabilizing control 

law      when    , 

 

                       
             

             
                      . 

 

Example 4.2 
 

Now, setting      using equation (4.3) gives      
        
        

  with          , 

                   
        
        

 ,          which gives          and           

 

Example 4.3 
 

Let      , and   be defined as in Example 3.2 of Section 3.2, where  
 

       
       
       

  is asymptotically stable,    
 
 
  and    

            
              

  is a symmetric 

positive definite matrix with           and           as the least and greatest eigen-values respectively. 

Now, set     and observe that,                ,               ,          ,          , 

          ,                 
 

                                            
 

 
   as    . Using inequality (4.6) gives 

         with a maximum bound              . The stabilizing control law      when    , 
 

                       
            
              

                       . 
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Example 4.4 
 

Now, setting      using equation (4.3) gives    
       

       
  with                        , 

         which gives          and          .  

 

5 Discussion and Conclusion 
 

The MATLAB simulation outputs for different values of delay for both controlled and uncontrolled systems of 

some examples in Section 4.4 are given below. 

 

 
 

Fig. 1. Controlled and uncontrolled states with delay          

 

 
 

Fig. 2. Controlled and uncontrolled states with delay          
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Fig. 3. Controlled and uncontrolled states with delay          

  

 
 

Fig. 4. Controlled and uncontrolled states with delay          

 

 
 

Fig. 5. Controlled and uncontrolled states with delay          
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Fig. 6. Controlled and uncontrolled states with delay          

 

The simulation outputs show different values of delays within the delay and outside the delay bounds. The 

effects of the time delay on the performance are analyzed for both the controlled and uncontrolled system. The 

simulations were caried out in SIMULINK with default parameter settings. Figs. 1, 2, 4 and 5 depicts the 

simulation of the system carried out within the delay bounds. That is,          and          respectively 

for Example 4.1, and          and          respectively for Example 4.3, while Figs. 3 and Fig. 6 shows 

when the delay is outside the range, that is          for Example 4.1 and          for Example 4.3. It was 

shown that settling time is faster as the delay increases within the bounds, see Figs. 2 and 5, more oscillations 

were observed in Figs. 1 and 4 that is, the states approach zero as the delay increases within the bound but 

increased oscillations were observed outside the delay bounds as shown in Figs. 3 and 6.  
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