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Embodiment enables
non-predictive ways of coping
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Living systems process sensory data to facilitate adaptive behavior. A given

sensor can be stimulated as the result of internally driven activity, or by purely

external (environmental) sources. It is clear that these inputs are processed

di�erently—have you ever tried tickling yourself? Self-caused stimuli have been

shown to be attenuated compared to externally caused stimuli. A classical

explanation of this e�ect is that when the brain sends a signal that would

result in motor activity, it uses a copy of that signal to predict the sensory

consequences of the resulting motor activity. The predicted sensory input

is then subtracted from the actual sensory input, resulting in attenuation

of the stimuli. To critically evaluate the utility of this predictive approach

for coping with self-caused stimuli, and investigate when non-predictive

solutions may be viable, we implement a computational model of a simple

embodied system with self-caused sensorimotor dynamics, and use a genetic

algorithm to explore the solutions possible in this model. We find that in

this simple system the solutions that emerge modify their behavior to shape

or avoid self-caused sensory inputs, rather than predicting these self-caused

inputs and filtering them out. In some cases, solutions take advantage of the

presence of these self-caused inputs. The existence of these non-predictive

solutions demonstrates that embodiment provides possibilities for coping with

self-caused sensory interference without the need for an internal, predictive

model.

KEYWORDS

sensory attenuation, embodiment, evolutionary robotics, ego-noise, self-other

distinction, sensorimotor feedback, computational model, prediction

1. Introduction

The remarkable adaptive behavior displayed by living organisms would not be

possible without the capacity to respond to sensory stimuli appropriately. The same

sensors can be stimulated due to external (environmental) causes, as well as by

internally driven activity. Intuitively, it seems like responding appropriately must require

distinguishing the two. We can hear sounds in the world around us, but we can also

hear our own voice when talking, and our own footsteps when walking. We can see our

environment, but we can also see our own bodies. Not only do we perceive both the world

and the results of our own actions, but the exact same sensory stimulus can be caused by

an external event, or by our own activity. For example the sight of a hand being waved

before your eyes could be your own hand or a friend snapping you out of a daydream.
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However, we typically have no trouble telling the difference.

Indeed, the phenomenology of a self-caused stimulus can be very

different from that of an externally caused one. A great example

of this is the sensation of touch, which can reduce you to helpless

laughter when externally applied—but trying to tickle yourself

just isn’t the same! (Blakemore et al., 2000). Understanding

exactly how these inputs are processed differently can facilitate

building artificial systems as capable and flexible as living ones.

One concrete way this has been studied is in research on

the sensory attenuation of self-caused stimuli, where researchers

have investigated how these stimuli are perceived as diminished

in comparison to externally caused stimuli (Hughes andWaszak,

2011). This is clearly demonstrated in the force-matching

paradigm. Here an external force is applied to a subject’s finger,

after which they must use their other hand to recreate that force

as precisely as possible. This takes place under two conditions.

In the direct condition, the subject applies force to their finger

in a manner as close as possible to pressing on their own

finger (given the constraints of the experimental apparatus). In

the indirect condition, they apply the force via a mechanism

located elsewhere, such as a lever to one side. Healthy subjects

consistently apply too much force when pressing directly on

their finger, indicating that the perceived force is attenuated

compared to the other conditions (Pareés et al., 2014). The

classical explanation of this effect is that when the brain issues

a motor command, it uses a copy of that command to predict

the sensory consequences of the resulting motor activity. The

predicted sensory input is then subtracted from the actual

sensory input, resulting in the attenuation of the stimulus

(Klaffehn et al., 2019). This is a representationalist explanation in

that it explicitly posits that the brain contains an internal model

used to simulate the motor system (Wolpert et al., 1995).

While there is indeed evidence to support the presence

of neural correlates of motor activity subsequently influencing

sensory perception in different species, specifically via corollary

discharge circuits (Crapse and Sommer, 2008), the aim of this

paper is to interrogate the necessity and utility of internal

representations in general and internal predictive models in

particular for maintaining adaptive behavior in the presence of

self-caused sensory interference. We examine the predict-and-

subtract explanation of the sensory attenuation phenomena by

using a genetic algorithm (GA) to explore the viable solutions

in a dynamical model of a simple embodied system with non-

trivial self-caused sensorimotor dynamics, where the task the

controller must solve relies on engaging with an environmental

stimulus, while its own motor activity also directly stimulates its

environmental sensors. Here we focus on the classical, predict-

and-subtract approach, which would in theory perfectly solve

the interference problem that we have designed, though our

GA instead finds alternative, non-predictive solutions which

leverage the system’s embodiment.

In general, expected stimuli produce a reduced neural

response (de Lange et al., 2018). This has been explained in terms

of an internal predictive model (e.g., Blakemore et al., 1998,

2000; Wolpert and Flanagan, 2001; Bays et al., 2005; Kilteni and

Ehrsson, 2017, 2022; Kilteni et al., 2020; Lalouni et al., 2021).

This type of explanation has been described as “cancellation

theory,” where expected sensations are suppressed (Press et al.,

2020). In the interest of completeness, we should mention

that there are other predictive accounts of perception, such

as Bayesian predictive processing, where attention also plays a

major role (Friston, 2009; Clark, 2013; de Lange et al., 2018). The

roles of prediction in Bayesian and cancellation theories have

been considered contradictory, and “opposing process theory”

is one attempt to reconcile them (Press et al., 2020). These

alternative approaches are somewhat orthogonal to this project,

as they address different potential roles for prediction, whereas

we aim to engage with the classical account by investigating

the role of embodiment in coping with self-caused sensory

interference in a context where prediction and subtraction of

that interference is a perfect solution. Likewise, while externally-

caused stimuli can also be attenuated, for instance when

expected (de Lange et al., 2018), or during movement (Kilteni

and Ehrsson, 2022), this paper focuses specifically on coping

with self-caused stimuli by modeling a task which requires

responsiveness to environmental sensor stimulation despite the

presence of self-caused sensory interference.

The problem of ego-noise in robotics hints at why

subtracting out self-produced stimuli seems like a natural thing

for the brain to do. Ego-noise refers to self caused noise,

including that of motors. This noise can interfere with the

data collecting sensors of a robot, and the straightforward

engineering solution is to cancel out the noise. The explicitly

representational and predictive explanation of the sensory

attenuation effect meshes well with this engineering perspective,

and has informed a predictive approach to dealing with ego-

noise (Schillaci et al., 2016). We cite Schillaci et al. here as

an illustration that this exact approach has indeed been used

in recent work in robotics, and thus our results should have

relevance to the field. Of course this is not the only approach

to dealing with the general problem of making the self-other

distinction in robotics—see for instance Chatila et al. (2018) and

Kahl et al. (2022).

In our model, the embodiment is a simple, simulated, two-

wheeled system with a pair of light sensors. It is coupled

to a controller—a continuous-time, recurrent neural network

(CTRNN)—which determines its motor activity. The sensory

input to this robot is a linear combination of environmental

factors (a function of its position relative to a light) and a

self-caused component—a function of the robot’s motor activity.

This model is designed to allow both representationalist

and non-representationalist solutions to emerge. For the

representationalist predict-and-subtract solution to be viable in

this model, two criteria need to be met. Firstly, the controller

must be able to model the interference. As the controller

is a CTRNN, which is a universal approximator of smooth
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dynamics (Beer, 2006), it can indeed model the interfering

dynamics, which are produced by simple, smooth functions.

Secondly, the interference must be able to be removed from

the input, given a prediction of the interference. Since the

interference is summed with the actual sensor data, it can be

removed by subtracting a prediction of the interference from the

sensory inputs. This explicitly representational solution would

fit with the classical explanation of sensory attenuation. Non-

representationalist solutions that take advantage of the system’s

embodiment are also possible in this model, since the interfering

dynamics are a function of the system’s motor activity, and are

coupled to the controller in a tight sensorimotor loop, embracing

the situated, embodied and dynamical (SED) approach. In

the classical account, the environmental stimulation of the

sensor can be treated as independent of the system’s activity,

and the self-caused stimulation of the sensor is similarly

compartmentalized—the decision to take a particular action

is made independently of its incidental sensory consequences,

and compensation for these consequences is left to downstream

predictive and subtractive processes. In contrast with this

approach, modeling how embodied systems are coupled

to their environment, in particular how both the system’s

environmentally and self-caused sensory inputs are influenced

by the system’s own motor activity, enables additional ways of

coping with self-caused stimuli, as will be seen in our results.

Following the evolutionary robotics methodology we

explore the space of possible solutions using a genetic algorithm

(GA) (Harvey et al., 2005). We then analyze the behavioral

strategies of controllers tuned to successfully accomplish a task

(phototaxis), in the presence of several different forms of motor-

driven sensory interference. This permits us examine a range

of ways embodied systems may cope with different self-caused

sensory stimuli, and reveals that a number of alternatives to the

classical predict-and-subtract approach are viable in our model.

Clearly the simulated robot and neural network controller

that we are investigating are very different from humans and

their brains. This limits the ability to make direct predictions

about humans based on the results found in our model—we

don’t expect to find people using exactly the same strategies used

by the two-wheeled robot. Nevertheless, this type of model can

highlight how the solutions found by evolution are not always

the same as the solutions that might be identified by a human

engineer. As argued by Thompson et al. (1999), humans need

to understand what they engineer, to divide and subdivide the

problem and solution into smaller units until those units are

simple enough to address directly. For example, dividing the

problem of coping with self-caused stimuli from the general

problems of perception and action, and further dividing it into

the prediction and subtraction of self-caused stimuli. Natural

or artificial evolution, on the other hand, is under no such

constraint. The solutions it finds are the result of iterative

improvement with no need for understanding, simplification or

compartmentalization. Accordingly, it can find solutions that are

“messy” and difficult, perhaps in some cases even impossible, for

us to understand. Our evolutionary robotics model, like others

before it (Beer, 2003; Phattanasri et al., 2007; Beer and Williams,

2015), allows us to see that there are alternatives to how

an engineer might approach solving this particular problem.

Furthermore, it allows us to generate concrete examples of

alternative strategies for solving the problem at hand, and due to

the simplicity of the model these examples are easier to analyze

and come to understand than the incredibly complex behavior

found in living systems.

In Section 2 we explain the model we developed and the

GA we use to optimize its parameters. Then in Section 3

we present the results of our investigation, describing each

form of interference used, and explaining the behavior of the

most successful system evolved to perform phototaxis in the

presence of each form of interference. Finally in Section 4 we

summarize the different behaviors evolved to cope with these

forms of interference, and discuss how these findings can inform

our understanding of the role embodiment plays in coping

with self-caused sensory stimuli. We draw attention to how

the problem of disentangling self-caused and environmental

stimulation of the sensors is made easier for embodied systems

by the influence embodied systems have over both self-caused

and environmental stimulation of their sensors, and we argue

that, for embodied systems, this problem need not require the

use of an internal model.

2. Model and methods

In this section we first describe our model of an embodied

system with self-caused, motor-driven sensory interference,

which must perform a task where clear perception of the

environment is beneficial. We then describe the genetic

algorithm (GA) that we use to investigate how embodied systems

can cope with self-caused sensory input.

2.1. Model

We model a simple light-sensing robot, controlled by a

neural network, where the robot’s light sensors can also be

directly stimulated by the robot’s own motor activity. The two-

wheeled robot moves about an infinite, flat plane. It has a pair

of directional light sensors, and the environment contains a

single light source. Over the course of a single simulation, this

light source’s position remains fixed. The robot is controlled

by a continuous-time, recurrent neural network (CTRNN).

Motor-driven interference is ipsilateral and non-saturating, and

is determined by one of three different functions, which are

detailed in the Experiments section. Figure 1 provides a visual

overview of the model architecture. As the model is fully

deterministic, the course of each simulation is fully determined
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by the robot’s initial distance from and orientation toward the

light. In each simulation, the robot begins at the origin (0, 0),

facing toward positive y, and initial conditions are varied by

positioning the light at a different (x, y) coordinate.

2.1.1. Embodiment

The robot is circular, with two idealized wheels situated on

its perimeter π radians apart, at −π/2 and π/2 relative to its

facing. The wheels can be independently driven forwards or

backwards. Its two light sensors are located on its perimeter at

−π/3 and π/3 relative to its facing. The environment it inhabits

is defined entirely by the spatial coordinates of the single light

source. The robot’s movement in its environment is described

by the following set of equations:

ẋ = (mL +mR) cos(α) (1)

ẏ = (mL +mR) sin(α) (2)

α̇ = (mR −mL)r (3)

Where x and y are the robot’s spatial coordinates, and α is

the robot’s facing in radians. mL and mR are the robot’s left and

right motor activation, respectively, and are always in the range

[−1, 1]. The values ofmL andmR are specified by the controller,

which is described later. r = 0.25 is the robot’s radius. We

simulate this system using Euler integration with1t = 0.01.

Physically this describes positive motor activation turning

its respective wheel forwards, and conversely for negative motor

activation. If the sum of the twomotors’ activation is positive, the

robot as a whole moves forwards with respect to its facing, while

if it is negative, the robot moves backwards. The amount that

the robot turns is also determined by the relationship between

the two wheels.

The robot’s two light sensors are located at the coordinates

(x+ cos(α+ θ)r, y+ sin(α+ θ)r), where θ is the sensor’s angular
offset. For the left sensor, θ = π/3 and for the right sensor,

θ = −π/3. The environmental stimulation of the sensors is

given by:

s =
(b · ĉ)+

1+ D2
ǫ (4)

Where b = [cos(α + θ), sin(α + θ)] is the unit vector pointing

in the direction the sensor is facing, and c is the vector from the

sensor to the light, with ĉ denoting that the vector is normalized

to have a unit length. That is ĉ = c/|c|, where |c| is themagnitude

of c. The symbol · denotes the dot product of the two vectors, and
the superscript + indicates that any negative values are replaced

with 0. D is the Euclidean distance from the sensor to the light,

and ǫ = 5 is a fixed environmental intensity factor. sL denotes

the activation of the left sensor, with θ = π/3, while sR denotes

the activation of the right sensor, θ = −π/3.

The numerator is maximized at 1 when the sensor is

directly facing the light, and minimized at 0 when the sensor

is facing π/2 radians (90◦) or more away from the light. The

denominator is minimized at 1 when the distance from the

sensor to the light is 0. This means that the activation of a sensor

grows both as the sensor faces more toward the light, and as the

sensor approaches the light (so long as it is facing less than π/2

radians away from the light).

2.1.2. Controller

The controller is a continuous-time recurrent neural

network (CTRNN) defined by the state equation below,

following Beer (1996):

τiẏi = −yi +
N∑

j=1

ωjiσ (yj + βj)+ Ii (5)

HereN = 10 denotes the number of neurons in the network.

yi indicates the activation of the ith neuron. The parameter

τi is the time constant of that neuron, where 0 < τi < 3,

while the parameter βi is its bias, where −5 < βi < 5. Ii

is any external input to the neuron. σ (x) = 1/(1 + e−x) is

the standard logistic activation function for neural networks,

and is a sigmoid function in the range [0, 1]. ωji is a weight

determining the influence of the jth neuron on the ith neuron,

where−5 < ωji < 5.

Two neurons are designated as input neurons, and all their

incoming interneuron weights ωji are set to 0, including the

recurrent weight ωii. With the robot described above, neurons

1 and 2 are designated as input neurons, and I1 = wIsL, while

I2 = wIsR, where wI = 5 is a fixed input scaling weight.

These are the only neurons which receive an external input, so

I3..N = 0 always.

Two neurons are designated as output neurons (neurons 9

and 10), and their activation values y are treated as the output

of the network. In our case, yN−1 and yN provide the valuesmL

and mR, respectively. Output is scaled to be in the range [−1, 1]

by the function:

o(y) =
2

1+ exp(
−y√
ωmax

)
− 1 (6)

Where ωmax = 5 denotes the maximum weight value ω

permitted for a node in this CTRNN. The two output neurons do

not receive stimulus from the input neurons. That is if j ∈ {1, 2}
and i ∈ {9, 10} then ωji = 0. The remaining six neurons

are interneurons, each of which receives inputs from all other

neurons in the network. This neural network architecture is

illustrated in Figure 1.
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FIGURE 1

An embodied model with motor-driven sensory interference. This model is used throughout the paper. It consists of three parts—the “brain,” the
“body” and the “world.” The brain is a continuous-time, recurrent neural network (CTRNN), with 6 fully connected interneurons, 2 sensor
neurons which project to all interneurons, and 2 motor neurons which project to and receive projections from all interneurons. The motor
neurons determine the activation of the body’s 2 motors. The body’s position and orientation relative to the single light source in the
environment determine the activation of its 2 light sensors. The value received at a given point in time by the right sensor neuron is a linear
combination of the right light sensor activation, and a function ψ of the right motor’s activation, representing self-caused sensory
stimulation—and likewise for the left sensor, sensor neuron, and motor.

2.1.3. Motor-driven interference

Perception necessarily involves both the system and its

environment. Nevertheless, we can consider the degree to which

the activity of the system or environment contributes to a given

stimulus. Let us take three very different points in this space. (1)

If our robot passively sat still, while a light in the environment

turned on and off, the change in the light sensors’ activations

would primarily be due to external causes—the robot’s own

activity would not play a role. (2) On the other hand, in

the model described above, all changes in the light sensors’

activations are the result of a change in the relationship between

the light’s position and the robot’s position and facing. Because

the light is static, the change is induced by the robot’s activity,

but determined by the robot’s spatial relationship with its

environment. (3) At the other end of the scale from (1), consider

the case where the robot inhabits a lightless environment in

which its sensors are directly and exclusively stimulated by its

own motor activity. In this case, neither external causes, nor

the relationship between the system and the environment play

a role—the change in the sensors’ activation is due solely to the

robot’s own activity.

For living systems in the real world, none of these three

points are typically possible—for (1) perception is rarely (if

ever) purely passive, for (2) movement will likely involve self-

produced sensations even if the environment is passive, and

for (3) self-produced sensations will depend on environmental

conditions. Nevertheless, our own experiences may lie closer

to one of these points than to another. Consider the visual

experience of (1) sitting watching a movie (a passive experience,

yet one whose visual sensations will still depend on activities

like movement or blinking), (2) turning to look around the

otherwise still room briefly (where the visual stimulation is

largely determined by the spatial relationship between the eyes

and the room, but still influenced by changes in the environment

like the ongoing movie, and self-produced sensations like the

peripheral vision of bodily movement), then (3) scratching your

nose (where a change in visual stimulation is caused by your own

hand entering the visual field, but depends also on static and

dynamic environmental factors like the general lighting of the

room and the flickering light of the movie screen).

In the model described so far, there is no possibility for

directly self-caused stimuli like (3). This is precisely the kind

of self-caused sensory input we are concerned with here, so

we extend the model with an interference function ψ(m). The

various interference functions we study are described in Section

(3). The interference function is used in a new sensory input

equation:

s′ = λψ(m)+ (1− λ)s (7)

Where s is the original light sensor activation, m is the

ipsilateral motor’s output, and λ is a scaling term controlling how

much of the sensory input is due to the environment, and how
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much is due to the system’s motor activity. Substituting for the

original input neuron equations, this gives:

I1 = ωIs
′
L = ωI(λψ(mL)+ (1− λ)sL) (8)

I2 = ωIs
′
R = ωI(λψ(mR)+ (1− λ)sR) (9)

This combination of motor-driven interference with sensor

activity is additive and non-saturating. That is, the interference

ψ(m) can never be so high that change in the environmental

stimulation s of the sensor does not result in a change in s′. This
means that if ψ(m) can be predicted by the network, then this

value can simply be subtracted from the input neuron’s output

to other nodes. This mapping also uses the ipsilateral motor to

generate interference for each sensor. This was chosen for two

reasons. Firstly, it is physically intuitive. Secondly, because the

motor neurons have recurrent connections to the interneurons,

this means that the neural activity determining mL and mR

[and thus ψ(mL) and ψ(mR)] contributes to the interneurons’

synaptic inputs, making prediction easier.

To summarize, we start with a model of a two-wheeled robot

with two light sensors, controlled by a CTRNN. In this model,

changes in a light sensor’s activation are purely the result of the

robot’s position and orientation changing relative to the light.

We extend this model by adding a function which, given amotor

activation value, produces an interfering output. Instead of the

input neurons of the controller directly receiving the current

activation of the light sensor, the light sensor’s activation is first

combined with this interference. The parameter λ controls the

weighting given to the sensor activation vs. the interference in

this combined term. For example, with λ = 0.05, instead of

the light sensor’s true reading s, the controller receives 0.95s +
0.05ψ(m). The interference functions ψ(m) are described in the

Section 3.

2.2. Methods

Parameters for the CTRNN controller were evolved

using a tournament based genetic algorithm (GA) based on

the microbial GA (Harvey, 2011). The GA operates on a

population, which consists of a number of solutions specifying

the parameters for the CTRNN. In a tournament, two

randomly chosen solutions from the population are evaluated

independently. Their fitness is compared, and then in the

reproduction step the lower scoring solution is removed from

the population and replaced by a mutated copy of the higher

scoring solution. Our microbial GA differs from the classic

presentation in that it ensures that each member of the

population participates in exactly one tournament before the

reproduction step is performed for the entire population. This

allows generations of the population to easily be counted.

The following parameters were evolved for each node i in

the CTRNN: the time factor τi, the bias βi, and a weight vector

specifying the incoming interneural weights for node i, where

ωji refers to the weight applied to the connection from j to i.

Each evolvable parameter of the network is encoded in the

genome as a single 32 bit floating point number in the range

[0, 1]. The weights and biases are translated from gene g to

phenotype ω or β via the linear scaling function (ωmin +
ωmax)g + ωmin, where ωmin and ωmax are the minimum and

maximum neural weights, respectively –5 and 5, while for τ we

use the exponential mapping e3g/10.

The reproduction procedure used, based on the result of a

tournament, is to remove the loser from the population, and add

in its place a copy of the winning genome. Each gene in this copy

is then mutated by the function

m(g) = ((g + Xµ)+ 1) mod 1 (10)

Where X ∼ N (0, 1) is a random variable drawn from a

normal distribution with a mean of 0 and a standard deviation

of 1, µ = 0.2 is the mutation factor, and the result is scaled by

adding 1 and taking the modulo with 1 to ensure the result is in

the range [0, 1].

In all cases the system was evolved to perform phototaxis

using the following fitness function:

∑T
t=0 d(xt , yt)

2t
∑T

t=0 t
(11)

Where t is the time at the current integration step, T is

the trial duration, and d(x, y) is the euclidean distance from

the point (x, y) to the light. The squared distance is used

rather then the actual distance here solely for computational

efficiency. Multiplying the distance by the current time means

that minimizing distance later in the trial is more important to

the fitness score than doing so earlier is. The final distance is

the most important, while the original distance from the light at

t = 0 is completely disregarded. However, improvement at any

time is always relevant: t = 99 is almost as important as t = 100.

In each trial, the robot begins at the origin. Each generation,

four light coordinates are stochastically generated. The first

coordinate is chosen uniformly at random to lie on a circle of

radius 3 centered on the origin. The other three coordinates

lie on the same circle and form a square with the first. Each

solution in the population has its fitness score calculated for

each of the four light coordinates. These scores are combined

before comparison in the tournament. This means that a

given solution’s score may go up or down from generation

to generation, as it may perform better or worse on that

generation’s set of light coordinates. This helps prevent the GA

becoming stuck in a local optima.

A population of 50 individuals was used. The trial duration

was chosen to allow enough time for robust phototaxis to

be selected for, either 10 or 20 time units depending on the

interference function. The GA was allowed to run for a sufficient
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number of generations for fitness gains to plateau and for the

population of solutions to converge.

3. Experiments

To investigate how embodied systems cope with motor-

driven interference, we began by using the GA to find

parameters that would allow a CTRNN controller to perform

phototaxis in the basic model with λ = 0 (i.e., with no

motor-driven sensor interference). The population of controllers

that were the product of this GA run are taken as the

ancestral population for the subsequently evolved populations

in Experiments 2–4. That is, parameters for these populations

were evolved starting from this ancestral population, rather

than starting from a new, random population. We chose to

use an ancestral population, rather than evolving subsequent

populations from scratch, in order to allow for direct

comparison between the behavior of the systems optimized with

and without the presence of motor-driven interference. The

results of Experiment 1 are presented in Section 3.1.

In addition to Experiment 1 with the basic version of the

model where λ = 0 (and therefore s′ = s), we consider

three further versions of the model in Experiments 2–4, each

corresponding to a different interference functionψ(m). We use

λ = 0.5 with each of these three functions. In turn we consider:

(i) a threshold-like sigmoidal function, whose interference can

be completely avoided by appropriately modified behavior; (ii)

a form of unavoidable interference, taking the square of the

motor activity; and (iii) a time-dependent interference function,

a sine wave whose frequency depends on the motor activity,

which eliminates a degree of control that was present with the

squared interference. The three interference functions used for

these experiments can be seen in Figure 2, and are introduced

and explained in more depth in Sections 3.2–3.4, where the

corresponding results are also presented.

3.1. Experiment 1: Phototaxis without
interference

A highly fit population of controllers was evolved to

perform phototaxis in the basic model, with no motor-

driven interference. Evolution of this population began from

a population of solutions with uniformly random interneuron

weight and time constant values, and with center-crossing biases

(Mathayomchan and Beer, 2002). A trial duration of 10 time

units was used. After evolution, genomes for this population are

highly convergent, indicating that the population has become

dominated by a single solution. Examining the fittest member

of this population, we found that the controller reliably brought

the robot close to the light across a collection of light coordinates

representative of those used during evolution (Figure 3). The

robot’s behavior results in it remaining close to the light even

over time periods orders of magnitude longer than the trial

duration used during evolution. This indicates that the solution

produces a long term, stable relationship with the environmental

stimulus.

The ancestral solution’s behavior is well preserved in

the descendent populations evolved to handle the various

interference functions studied. Understanding how this solution

works is helpful for understanding how the descendent solutions

handle motor-driven sensory interference.

The ancestral solution’s behavior can be divided into 2

phases:

A) The approach phase, where the robot makes its way close to

the light. This phase has to account for the light starting at

an unknown point relative to the robot.

B) The orbit phase, where the robot’s long-term periodic

activity maintains a close position to the light.

Note that this two phase description does not imply

switching between two different sets of internal rules. These

phases are driven by the ongoing relationship between the robot

and its environment, and are better thought of in dynamical

systems terms as a transient and a periodic attractor.

The orbit phase (Phase B) is simpler to explain, so we will

begin with it. Here we can approximate the robot’s behavior with

a simple program:

1. Approach the light while driving backwards, such that you

will pass the light with the light on your right hand side.

2. When the light abruptly enters your field of vision, it causes

a spike in your right sensor: quickly respond by switching to

driving forwards instead, turning gently to the left.

3. After driving forward has brought the light behind you and

out of the sensor’s field, go to 1.

We observed this behavior across all the light coordinates

we examined. Figure 4 and the corresponding caption explains

how this behavior applies to the trajectory for a specific light

coordinate, showing how the simple program described above

matches its behavior. The left sensor is completely uninvolved

in this process. In fact for some initial light positions, namely

when the robot begins with the light on its right, the left sensor is

also completely uninvolved in the approach phase. That is, if the

left sensor is completely deactivated throughout certain trials,

the trajectory is completely identical to if it were active.

The approach phase (Phase A) often consists of simply

driving forwards, and then continuing to drive forwards until

the right sensor is not stimulated. Thereafter the procedure for

Phase B is followed, with the approach differing from the orbit

primarily in that the amount of time spent on each step of the

‘program’ while approaching the light varies more than it does

when the robot is stably orbiting the light. This is what we see in

trajectory shown in Figure 4, and in all conditions when the left

sensor is not stimulated. However in conditions when the left
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FIGURE 2

Plots of the interference functions used in Experiments 2–4. (A,B) Plot pure functions of m corresponding to Equations (12) and (13)
(Experiments 2 and 3, respectively). (C) Plots a function of time that depends on the cumulative history of m, Equation (14) (Experiment 4). The
blue line is the interference, while the orange line is the motor activity.

FIGURE 3

Spatial trajectories for the best individual from the ancestral
population for 12 di�erent light coordinates. The robot always
begins at the origin, facing toward positive y (upwards). Stars
mark the final position reached during the trial duration used
during evolution. The colored circles show the light position for
the correspondingly colored trajectory. The triangles along the
trajectories point in the direction the robot is facing. They are
plotted at uniform time intervals, so more spaced out triangles
indicate faster movement.

sensor is stimulated during the approach phase, the left sensor

is involved in guiding the robot into a state where Phase B takes

over. This can be seen in Figure 5.

This solution is an instance of a more general robust

strategy for performing phototaxis in this model, which can be

summarized even more simply as:

• If you don’t see the light, drive backwards (it must be

behind you).

• If you do see the light, drive forwards until you can’t see it

any longer.

The reason this does not result in just driving backwards

and forwards along the same arc is that the robot turns

a different amount when driving forwards vs. when driving

backwards. The turn amount is determined by mR − mL,

while the direction of travel is determined by whether mR +
mL is negative or positive. When adjusting motor activity to

change directions, it’s trivial to also change the amount of turn.

Of course this general strategy is not a complete description

of the robot’s behavior, the effect of sensor stimulation can

be time dependent and differ for the left and right sensors.

Particularly during Phase A, the approach to the light, the exact

trajectories taken by the robot depend on continually regulating

the 2 independent motors’ speed and direction of activity to

perform both gradual turns and sharp changes in direction

via 3 point turns with sufficient precision to reliably enter

Phase B and maintain it. However, we see this general strategy

well preserved in populations descendent from this ancestral

population as well as evolved independently in non-descendent

populations.

To summarize, the ancestral solution takes advantage of

the particular nature of its sensors, driving backwards so

that the sensors are stimulated sharply. It adjusts its motor

activity in response to this sharp stimulation in such a way

that the stimulation is extinguished. This environmentally

mediated negative feedback loop plays a critical role in enabling

the system to remain stably in close proximity to the light

source. Capturing this type of natural feedback loop is a

strength of modeling work following the SED approach. In the

subsequent sections, we will see the role this pattern of behavior

plays in coping with additional self-caused interference, and

how this behavior is modified when this population of

solutions is taken as the ancestral population for subsequent

optimisation via the GA with the addition of motor-driven

interference.
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FIGURE 4

Detail of the orbit phase (Phase B) for the ancestral solution. The plots marked (A) Show the ancestral solution when the light is at coordinates
(0, 3)—position 12 in Figure 3. The highlighted sections of these figures mark the time period 10–13, which is shown in more detail in (B). The
vertical line in B(i,ii) marks the peak of right sensor activation, which corresponds to the + in B(iii). The activity shown in (B) corresponds to the
Phase B program (see main text). Before t = 11, the robot drives backwards, passing the light on its right side. As the right sensor is stimulated,
the robot changes direction, driving forwards. After the right sensor stimulation peaks and dies down, the robot changes direction again,
reversing toward the light. (A) Show how the process repeats.

3.2. Experiment 2: Avoidable interference

Having evolved a system to perform phototaxis

in the absence of directly self-caused sensory stimuli,

we take this population of solutions as the ancestral

population for subsequent evolution in the presence

of motor-driven interference functions to begin

investigating how embodied systems can cope with

this type of interference. In this section we describe

the first form of self-caused sensory interference

modeled, and how the ancestral solution is modified to

accommodate it.

The simplest possible interference would be adding a

constant value to all the sensor inputs. However this would

not depend on the system’s motor activity. Therefore the first

ψ(m) that we model is a threshold-like interference function,

where interference is maximized when motor activation is above

a threshold value, and≈ 0 elsewhere. To achieve this effect with

a smooth function, we use a relatively steep sigmoidal function,

with the equation:

ψ(m) =
1

1+ exp(−k(|m| − p))
(12)

Where exp(x) = ex and |m| is the absolute value of m,

and where k = 50 is the term controlling the steepness of the

sigmoid’s transition from 0 to 1, while p = 0.5 determines the

midpoint of the transition. So when m < −0.5 or m > 0.5:

ψ(m) ≈ 1 and when−0.5 < m < 0.5: ψ(m) ≈ 0. This function

is unique among the three in that were the system to constrain
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FIGURE 5

An example approach phase (Phase A) for the ancestral solution which is guided by the left sensor. (A–C) Show the sensorimotor activity of the
ancestral solution when the light is at coordinates (0, –3), position 6 in Figure 3. (D) Plots the spatial trajectory of the robot. The vertical lines in
plots (A–C) show the peaks in sensor activity. These correspond to the + markers in (D). Initially the robot drives backwards. The left sensor
stimulation between t = 2 and t = 8 is associated with the robot to driving forwards while turning strongly to the left. Once this turn has oriented
the robot such that the right sensor is being stimulated and the left sensor is no longer being stimulated, the robot drives forward until the right
sensor is no longer stimulated. From here, this is just the same Phase B behavior presented in Figure 4.

its motor activity to the appropriate range, it would avoid

the interference altogether. We will refer to the interference

generated by this function as avoidable or sigmoidal interference.

With motor activity capped at 50%, motor-driven

interference can be avoided, and phototaxis can still be

performed, just more slowly. Moving more slowly comes at

a cost to fitness though, since the fitness function (Equation

11) rewards reaching the light quickly. Therefore, a predict-

and-subtract solution to the interference which preserves

the speed of the high-performance ancestral solution should

outperform a solution which simply avoids the interference.

However, we instead found that the fittest solution from the 5

populations evolved to perform phototaxis with the sigmoidal

interference functionmodifies the motor activity of the ancestral

solution significantly.

Figure 6 illustrates how the characteristic motor activity of

the solution evolved with sigmoidal interference differs from

that of the ancestral solution. Keeping in mind that the ancestral

solution often involved minimal environmental stimulation of

the left sensor, we observe that the left motor in this evolved

solution never produces interference. This comes at the cost

of greatly decreased absolute motor activity relative to the

ancestral solution. The ancestral solution’s left motor activity

ranges widely, from –0.96 to 0.10 with a median of –0.82, close

to the maximum possible absolute value of 1. See Figure 4A(ii)

for ancestral motor activity as a time series. In contrast, the left

motor activity of this solution ranges only between –0.42 and

–0.32 with a median value of –0.38. Time series of this motor

activity can be seen in Figures 8A(iv),B(iv). This drastic decrease

in motor activity lowers the speeds attainable by the robot,

but prevents motor-driven interference with the left sensor.

While the activity of the left motor is kept below the threshold

for producing interference at all times, keeping the left sensor

free of interference, the right motor does produce interference.

The distribution of right motor activity is bimodal, with peaks

just below the interference threshold of 0.5, and close to its

maximum value of 0.84. This bimodal distribution is the result

of this solution producing two distinctly different orbit types.

The orbiting behaviors of this system are of interest because

they demonstrate ways in which a long term, stable relationship

with an environmental source of sensor stimulation can be

maintained in a model with motor-driven sensor interference.

As with the ancestral population, a trial duration of 10 time

units was used for this population. Due to the decreased overall

motor activation relative to the ancestor, and the consequently

decreased speed, the robot does not get as close to the light in

that time as the ancestor did. This means that what has been

selected for by the genetic algorithm here is modification of

the approach phase to maintain accuracy in the presence of

this novel interference. However, due to a sufficiently accurate

approach and the evolved regulation of the motor-driven

interference, stable orbits are still achieved across all light
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FIGURE 6

Motor activity for the 12 light positions shown in Figure 3 for time 20 to time 50 (integration steps 2,000–5,000), for the evolved solution to each
experiment. This is one way of visualizing aspects of the ancestral behavior that have (and have not) been modified by further evolution in the
presence of an interference function. The boxes extend from the first to the third quartile of the motor activity, and contain a yellow line
showing the median, and a green × showing the mean. The whiskers extend to 1.5 times the inter-quartile range. The half-violin plot to the right
of each box plot estimates the distribution of the motor activity, while to the left is a scatter plot of each simulated moment of motor activity
with randomized horizontal placement. The column labeled control plots exactly the same information for the fittest solution evolved with
λ = 0.5 and the null interference function ψ (m) = 0, showing the scope of change seen simply due to the presence of λ and to genetic drift. (A)
plots the motor activity for the left motor of each system, while (B) plots this information for the right motor. Of particular relevance to the
solutions cataloged in this paper are the depressed (absolute) left motor activation with sigmoidal interference and the corresponding bimodal
distribution of right motor activity; the reduced range of left motor activity with squared interference, and the fact that the right motor activation
with squared interference continues to cover a wide range; and the reduction in low (absolute) values of motor activity with the sinusoidal
interference function.

positions in the very long term. Unlike the ancestor, we see

two distinctly different orbit behaviors. Across all interference

functions we refer to those orbits reminiscent of the ancestral

solution, involving forward and backward motion around the

light, as Type 1 orbits, and to orbits which loosely circle

the light while driving forwards as Type 2 orbits. These are

easily distinguished visually (see Figure 7). As with the ancestor,

approaches can broadly be divided into those guided by the left

sensor, and those that are not. In the majority of cases for this

solution, the approach phase preceding Type 1 orbits is guided

exclusively by the right sensor, while Type 2 orbits tend to follow

a left sensor guided approach phase.

Type 1 orbits come much closer to the light. They display

similar sensorimotor behavior to the ancestor’s orbit behavior

(Phase B), maintaining a stable relationship to the light by

repeatedly driving backwards and forwards, albeit with greatly

reduced motor activity compared to the ancestor. Figure 8A

shows a typical example of sensorimotor activity for Type

1 orbits. Right motor-sensor interference is almost entirely

avoided. A very low amount (not visible in the figure) coincides

with the robot driving forwards slowly. This interference is

necessary because the left motor’s activity is negative, and is

maintained very closely to the threshold for interference, so the

right motor’s positive activity cannot be raised sufficiently highly

to drive forwards without producing at least a small amount of

interference.We summarize this orbit strategy as performing the

known good ancestral strategy while constraining motor activity

to avoid sensor interference.

Type 2 orbits loosely circle the light, and are very different

from the ancestral orbit behavior. Figure 8B shows an example

of typical sensorimotor activity for this type of orbit. These

orbits do not involve environmental stimulation of the right

sensor, instead the left sensor is stimulated throughout the

orbit phase. Unlike Type 1 orbits, where the relationship to

the light is maintained by repeatedly driving forwards and

backwards, the robot exclusively drives forwards. It does so

very quickly, producing high right motor-sensor interference.

We characterize this orbit strategy as keeping “one eye on
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FIGURE 7

Two distinct types of orbits are visible in the spatial trajectories
for the best individual from populations evolved with sigmoidal
interference (Equation 12). Type 1 orbits, reminiscent of the
ancestral solution, are seen for Lights 11, 12, 1, 2, 3, and 4. Type
2 orbits, which feature a forward moving, counter-clockwise
orbit of the light are seen for Lights 5, 6, 7, 9, and 10. For Light 8,
an approach typical of a Type 2 orbit instead puts the robot in
position for a Type 1 orbit.

the prize,” where the left sensor, facing the light, is kept free

of interference. Meanwhile the right sensor, facing away, is

continually stimulated by the right motor’s activity. This orbit

strategy is uniquely enabled by the ipsilateral nature of the

motor-driven sensory interference.

In the presence of this threshold based interference, the

best solution found by our GA when modifying the ancestral

population to accommodate this interference constrains the

ancestral solution’s motor activity to avoid interference while

performing the same function of phototaxis, using (in some

situations) the same basic strategy. This approach contrasts with

the predict-and-subtract approach of modifying the controller

to subtract the anticipated interference from the sensor neurons’

outputs, allowing the behavior of the ancestral solution to

be performed without modification. This suggests that in our

model such solutions are far closer in evolutionary space to the

ancestral solution than a predict-and-subtract solution would

be. The relevance of this to the evolutionary history of biological

control systems is unclear, however it may suggest that adjusting

neural activity to accommodate a novel form of motor-driven

sensory interference would involve regulation of the behavior

producing that interference in addition to or instead of the

neural subtraction of internally predicted interference. This

demonstrates that behavior modification does indeed work

as a solution to motor-driven sensory interference, and that

the precise way in which behavior is modified can depend

heavily on the particularities of the sensorimotor contingency

in question. Specifically we have seen how two ways of

compensating for motor-driven sensory interference emerged

in our model. Firstly, motor activity may be constrained to

ranges that minimize or avoid interference with the sensors.

Secondly, interference can be avoided for only one sensor, which

is kept trained on relevant environmental stimuli. This permits

unconstrained use of motor activity which interferes with the

other sensor. While this robot is clearly much simpler than a

human, this demonstration of how pre-existing behavior can

be modified to avoid the effects of novel, self-produced sensory

interference may suggest a role for such solutions in other

contexts, such as less complex organisms (including perhaps our

deep evolutionary past) and simple robots.

3.3. Experiment 3: Unavoidable
interference

Sigmoidal interference certainly does not exhaust the

possibilities for modeling interference, nor does it capture

the fact that many self-caused stimuli cannot be avoided

when taking action. Therefore, we also model non-avoidable

interference, where the interference increases with the absolute

magnitude of the motor activation. To minimize discontinuities

in the system, and to ensure the interference can be

approximated by the CTRNN controller, we use a smooth

function—the square of the motor activity:

ψ(m) = m2 (13)

We will refer to the interference generated by Equation

(13) as unavoidable or squared interference. Like the avoidable,

sigmoidal interference function modeled previously, the

magnitude of the interference correlates with the magnitude

of the motor activity. However, unlike with the avoidable

interference function, now all changes in motor activity produce

a corresponding change in the sensory interference.

Examining the fittest solution produced by the GA’s

modification of the ancestral solution, we again find the ancestral

solution well preserved. A trial duration of 20 time units

was used during evolution to compensate for any decreased

speed compared to the ancestor. The general strategy of

approaching the light while driving backwards is maintained,

however motor activity has changed to accommodate the

addition of the squared interference function. The left motor’s

activity is now constrained to a much smaller range (see

Figure 6A), which lowers interference dramatically compared

to the interference that would be produced by the ancestral

solution’s motor activity (see Figure 9A). The right motor

generates significant interference, but we find that rather than

destructively interfering with the sensor in such a way that the

environmental stimulus is masked, this motor-driven sensor
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FIGURE 8

Two distinct orbit types produce the bimodal right motor activity distribution seen for the solution evolved with sigmoidal interference in
Figure 6B. (A) The type 1 orbit, which alternates between driving forwards and backwards to stay close to the light. (B) The type 2 orbit, where
the robot exclusively drives forwards during the orbit phase. (i) The spatial trajectory of the robots, (ii,iii) the robots left and right sensor activities
respectively, and (iv) the robots’ left and right motor activations. The black line in (ii,iii) shows the environmental stimulation of the sensor, while
the grey line and corresponding shaded region shows the total activation of the sensor when both the environmental and motor-driven
stimulation are combined. Note the minimization of interference during the Type 1 orbit, in contrast with high level of right sensor interference
during the Type 2 orbit.

stimulation is actually constructive in that it synchronizes with

and amplifies the environmental stimulus’s effect on the sensor.

Figure 6B makes it clear that the right motor’s activity has not

been lowered or even constrained to a tighter range the way

the left motor’s has—though we still see a slight reduction in

interference compared to what the ancestral solution would

produce (see Figure 9B). How the system performs so accurately

in the presence of this interference becomes clear when we

consider the relationship between the right motor activity and

the right sensor. As with the ancestor, the robot approaches

the light while driving backwards, in such a way that the light

enters the right sensor’s field from it’s blind spot at very close

proximity to the sensor. Figure 10A shows an example of this

approach. When the light enters the right sensor’s field, its

activation immediately spikes. In response, the right motor’s

activity also spikes, causing the robot to drive forwards, and

also causing a spike of interference in the same sensor. This is

a version of the ancestral Phase B orbit behavior, executed with

reduced baseline motor activity, and high right motor activity

coordinated with right sensor stimulation. By keeping motor

activity at a low baseline and interacting with the environment in

such a way that environmental stimuli are sharp and intense, this
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FIGURE 9

Motor-driven interference is reduced in Experiment 2 relative to the ancestral population. The figure shows ψ (m) = m2 for the 12 light
coordinates shown in Figure 3, for 20 < t < 50. (A) Note primarily the lowered mean, median and maximum interference with the left motor.
Despite the right motor’s activity being spread across a wider range than either ancestor or control (see Figure 6), this spread is to low motor
activity values, decreasing maximum right motor-sensor interference. (B) However, the right motor activity has definitely not been suppressed
the way the left has, and the systems successful performance in the presence of this interference ultimately depends on the coordination of
right motor-sensor interference with environmental stimulation of the right sensor (see main text).

solution facilitates distinguishing environmental stimuli from

low levels of self-caused background noise. By then coordinating

motor activity with elevated environmental stimulation of the

ipsilateral sensor, motor-driven interference can be raised to

high levels without interfering with the system’s function,

“hiding” in the shadow of the environmental stimulus. Not

only does this activity not interfere with perception of the

environment, the stimulation caused by right motor’s activity

actually reinforces and amplifies the environmental stimulus’s

effect on the sensor above the maximum level it would be able

to achieve on its own.

Since right sensor stimulation leads to right motor activity,

which in turn leads to more right sensor stimulation, we should

address the possibility of a self-sustaining positive feedback loop.

This possibility is limited by two forms of negative feedback.

The system’s relationship to the light source is structured in

such a way that elevated right motor activity in response to

the environmental stimulus moves the right sensor away from

the light, eliminating that stimulus. This is environmentally

mediated negative feedback. It is complimented by internal

negative feedback. Figure 11A shows how a spike in right sensor

stimulation causes an initial strong response in motor activity.

However, despite continued stimulation at an elevated level,

sufficient to saturate the output of the sensor neuron, motor

activity quickly falls from the initial peak. Thus, both internal

and environmentally mediated negative feedback play a role in

preventing this orbit behavior from being disrupted by motor-

driven positive feedback.

As we also saw with sigmoidal interference, this solution

realizes a second orbit pattern of Type 2. Positive rather than

negative feedback plays a dominant role in this orbit, which

comes into effect when the robot is close to the light, but the

light is on its left (see Figure 10B). The system’s response to

left sensor stimulation does not feature the internal negative

feedback that right sensor stimulation does, and it produces

a response in both right and left motor activity. This in turn

produces interference in both sensors. The ultimate effect is that

the robot drives forwards in a counter-clockwise orbit around

the light. This keeps the left sensor continually stimulated by

the light, while the right sensor is continually stimulated by the

right motor’s activity. In this case we have an environmentally

mediated, positive feedback loop, where left sensor stimulation

causes the robot to turn toward that stimulus, and the resulting

motor-sensor interference produces the same effect.
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FIGURE 10

Spatial trajectories and sensorimotor activity showing a Type 1 and Type 2 orbit for the solution evolved with squared interference. Subfigures
are labeled as in Figure 8. (A) Shows a Type 1 orbit reminiscent of the ancestral solution, where motor activity is coordinated with sharp spikes of
environmental stimulation of the right sensor. A(iii) Shows how elevated right motor interference coincides with environmental right sensor
stimulation, amplifying it. The spiking activity is characteristic of negative feedback in this solution, where action resulting from sensor
stimulation leads to the stimulus diminishing. (B) Shows a Type 2 orbit, where the robot orbits while driving forwards. B(iv) Shows how the motor
activity plateaus during the orbit, with high right motor interference seen in B(iii). This is associated with positive feedback in this solution, where
sensor stimulation leads to activity prolonging that stimulation.

The way this system has been parametrized by the GA

relies on the presence of motor-driven stimulation to perform

phototaxis. Recall that the ancestor evolved to have zero left

sensor activation in many situations, with a left sensor guided

approach phase (Phase A) for a number of initial light positions.

This trait remains in a way, where the left sensor is often

completely free of environmental stimulation, and the left motor

activity is constrained to produce lower levels of interference.

Nevertheless, this interference plays an important role. Figure 12

illustrates how removing the motor-driven sensor stimulation

from just the left sensor causes the approach phase to fail

in the majority of cases, succeeding only when its trajectory

inadvertently brings it close to the light. This is not unexpected,

given that the system was optimized for the presence of motor-

driven interference. However, it means that accurate control of

the system’s motor activity has been optimized in such a way that

it now depends on perceiving the direct sensory effects of its own

activity. Like the right motor, the left motor responds to sensor

stimuli, though in a smaller range and with elevated negative

rather than positive activation. This plays an interesting role in

the system’s response to right sensor stimulation (as in the Type

1 orbit shown in Figure 10A). Note how the coordinated peaks

of right environmental and motor-driven sensor stimulation

coincide with elevated left motor activity and corresponding

motor-driven left sensor stimulation. Figure 11 shows how the

presence of left motor-sensor interference amplifies and extends
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FIGURE 11

The magnitude and duration of the initial motor response to sensor stimuli are strengthened by the presence of left motor interference.
Sensorimotor activity and sensory neuron output time series are shown for the solution evolved with squared interference (Equation 13), when
the right sensor is presented with an artificial environmental stimulus, which spikes and plateaus around t = 8. (A) Shows the response under the
condition of evolutionary adaptation for the robot, with motor interference present. (B) Shows the response when the left motor-sensor
interference is removed. The duration and intensity of the motor response to the stimulus is diminished without the interference, indicating that
the interference plays a functional role in the evolved behavior. Additionally, it can be seen that the response to sudden right sensor stimulation
is accompanied by internal negative feedback—even when the stimulation persists, motor activity quickly falls from the initial peak.

the initial motor activity response to right sensor stimulation.

This demonstrates not only a specific way in which the system

has been optimized for the presence of interference, but also how

self-caused stimuli can play a directly functional role in behavior.

To summarize, we see the ancestral strategy is well preserved

in this evolved solution. This solution can be characterized

as minimizing interference to an extent, as we also saw in

the case of sigmoidal interference. We also see a condition

where motor-driven sensor interference does not need to

be minimized, namely when it can be made to coincide

temporally with environmental stimulation of the same sensor.

Here the onset of the environmental stimulus prompts the

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2022.896465
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Garner and Egbert 10.3389/fcomp.2022.896465

FIGURE 12

When motor-driven interference is removed, the behavior
evolved with squared interference fails. Spatial trajectories for 12
light coordinates (Figure 3) are plotted with all motor-sensor
interference removed. The approach phase now only succeeds
in two out of 12 cases, where the blind approach brings the
robot close to the light. The orbit phase only succeeds in one of
these two cases.

interfering motor activity, and a combination of internal and

environmentally mediated negative feedback extinguishes both

interfering activity and stimulus. In this case the motor-

driven stimulation does not interfere with perception of the

environmental stimulus, instead reinforcing and amplifying

it. This obviates the need to distinguish or subtract the

self-caused stimulus from the environmental. Separately, we

also see that a stable, periodic orbit phase can be facilitated

by positive feedback. Finally, we found that while left motor-

sensor interference is confined to a narrow range, the system has

been optimized to rely on its presence and even incorporate it

functionally.

3.4. Experiment 4: Time dependent
interference

With both of the preceding interference functions, if the

motor activity is held constant, then the interference will also

take on a constant value. Since the interference is additive

and non-saturating, subtracting a constant term can remove

the interference and leave only the environmental signal—no

prediction required. In general a CTRNNwith a sufficiently high

bias β for the input neurons can do this, though in our case

the maximum value we permit the GA to assign to β is too

low to fully compensate for maximal interference. Nevertheless,

solutions to the previous two interference functions have

shown both the utility of avoiding or minimizing motor-sensor

interference, as well as the role that holding motor activity and

its corresponding interference constant can have in constructing

long-term stable relationships with environmental sources of

sensor stimulation. With the following function it is not possible

for the interference to plateau at a constant value. It describes

a sine wave with a maximum of 1 and a minimum of 0, whose

frequency is determined by the motor activation:

ψ =
sin(c)+ 1

2
(14)

ċ = (b+ |m|)r (15)

Here c gives the phase of the sinusoidal, capturing the

previous values of m. b = 0.1 determines the base frequency

of the sinusoidal in the absence of any motor activity, while

r = 8 is the frequency range term determining the maximum

frequency the sinusoidal can reach. The effect of adding 1 and

dividing by 2 is simply to shift the wave from the range [−1, 1]

to the range [0, 1]. This equation essentially advances through a

standard sine wave at a rate determined by the motor activity.

As with the previous interference functions, the interference for

a given sensor is calculated from the ipsilateral motor, such that

when computing the interference for the left sensor we have

m = mL, and for the right sensorm = mR.

Unlike the previous interference functions, this is not purely

a function of the motor activity, such that if you know m at

time t, you know ψ at time t. Instead it is a function of time,

depending on the prior history of the system, specifically on

all the previous motor activity up to the current time. More

importantly for our purposes, if the input is held constant,

the output continues to vary over time. We will refer to the

interference generated by Equation (14) as time dependent or

sinusoidal interference. A trial duration of 20 time units was used

during evolution for this interference function.

Using this time dependent interference function we find that

while avoiding interference, minimizing it, or holding it constant

are all important ways of coping with self-caused stimuli,

they are not the only ways. Timescale differences between the

frequency of the motor-driven interference and the frequency

of environmental stimulation of the sensor can be exploited to

distinguish the two, and behavior can shape both interference

and environmental stimuli to amplify these differences.

In this system the environmental signal is able to be

detected despite the presence of interference, due to differences

in timescale between the motor-driven interference and the

frequency of environmental stimulation of the sensors. First

let’s demonstrate that the system actually can respond to

environmental stimuli. Figure 13 illustrates how a spike in

environmental stimulation of the left sensor has an excitatory

effect on both motors, causing the system to switch from driving

backwards to driving forwards. Observing the behavior of the
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FIGURE 13

Sensorimotor activity and sensory neuron output time series are shown for the solution evolved with sinusoidal interference (Equation 14), (A)
The left sensor is presented with a spike in environmental stimulation at around t = 28. (B) The neural response to the environmental stimulus is
clearly visible—prolonged saturation of the left sensor neuron’s output function (see Equation 5). (C) The spike of environmental sensor
stimulation causes the robot to drive forward instead of backwards for a time, demonstrating that the system can respond to environmental
stimuli.

output functions of this system’s two sensor neurons, we found

elevated neural biases β compared to the ancestral solution:

remembering that −5 ≤ β ≤ 5, we observe 4.67 and 3.73 for

the left and right motor, respectively, compared to –0.75 and

0.99 in the ancestral solution. These sensor neuron biases are

calibrated such that (A) with no environmental stimulation, the

neuron’s output function ismaximized only with the peaks of the

sinusoidal interference, and (B) when combined with sufficient

environmental stimulation, the troughs of the sinusoidal

interference are high enough that the output function is

maximized continually. This can be seen in the neural response

to environmental stimulation shown in Figure 13B. This makes

the environmental signal detectable despite the continuously

varying interference. This solution is made possible by the large

difference in timescale between the frequency of the sinusoidal

interference and the frequency with which the sensor receives

the environmental stimulation. In this system, the frequency

of the interference can be an order of magnitude higher than

the frequency of environmental stimulation, as can be seen in

Figure 14. This difference in timescale means that the minimum

value of the sinusoidal interference is bound to coincidemultiple

times with each period where there is no environmental sensor

stimulation. This means that a drop in neuron firing always

coincides with the absence of environmental sensor stimulation,

so over time the system can reliably respond to environmental

stimuli.

While the evolution of our model was constrained in such a

way that it could not implement it, there is another solution for

filtering out interference of a sufficiently high timescale relative

to the frequency of environmental sensor stimulation that peak

interference is guaranteed to coincide with all instances of

environmental stimulation. The maximum bias of nodes in our

model was constrained to the maximum weight of a single

incoming connection (5), which is lower than the product of

the environmental intensity factor with the input scaling factor

applied to inputs to the sensor neurons (5 × 5 = 25). However,
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FIGURE 14

Spatial trajectories and sensorimotor activity for the solution evolved with squared interference. Subfigures are labeled as in Figure 8. The sensor
plots show how the relatively slowly changing environmental sensor stimulation raises the minima of the high frequency interference, allowing
the environmental stimulus to be responded to despite the interference. The di�erence in timescale that makes this possible is clearly visible
here. Responsiveness to the environment is most clearly visible in A(iv), where more positive motor activity is associated with environmental
stimulation of the left or right sensor. The continual oscillations in motor activity (most clearly visible in the gray net motor activity line) are
driven by the high frequency interference. These oscillations produce the elliptical Type 2 orbit seen in B(i).

a sufficiently high bias (around 12) can indeed induce the

sensor neurons’ output function to only be maximized when

environmental stimulation is high.

These two ways of adjusting the neural biases demonstrate

how a large difference in timescale between environmental

signal and interference means that over time it is possible to

extract the environmental signal from the summation of the two.

However, such differences in timescale are not guaranteed, and it

is here that the embodied nature of this system comes into play.

The robot’s motor activity actually amplifies any pre-existing

difference in timescale, as typical motor activity is constrained to

higher absolute ranges than the ancestral solution—see Figure 6.

Due to the way this time dependent interference periodically

saturates the input neurons, the system is not sensitive to

environmental stimuli spikes that are of sufficiently low duration

to perfectly coincide with motor interference peaks as the

corresponding input neuron’s output function would already be

saturated. Note that spikes of this duration do reliably induce

a motor response in the other systems we’ve examined in this

paper. This represents a problem for the ancestral solution’s

strategy of taking advantage of sharp spikes in the right sensor.

Significantly—and despite the system’s elevated right motor

activity—this system’s Type 1 orbit is much slower than the

ancestor’s, with the periods of environmental stimulation of
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the sensor lasting for longer. This avoids the problem of the

environmental stimulus being too short duration, and further

amplifies the differences in time scale. So when it comes to

distinguishing environmental and self-caused stimuli, the motor

activity of the system not only shapes the self-caused stimuli to

facilitate this, it shapes the environmental stimuli too.

As with the unavoidable squared interference, the behavior

of this system depends on the presence of its motor-

driven interference. For example, with the left motor-sensor

interference removed, environmental stimulation of the left

sensor inhibits rather than excites the activation of both motors.

Significantly, in the absence of environmental stimulation, the

motor activity and corresponding interference of this system

features a long transient before settling into lower magnitude

oscillations, and this transient is restarted by environmental

sensor stimulation. This effect can be seen in Figure 13. These

prolonged effects of momentary environmental stimulation are

not seen in the systems examined in Experiments 1–3. They

mean that the frequency of the motor-driven interference varies

significantly both during the approach to the light and during

Type 1 orbits. Altogether these qualities demonstrate that the

evolved behavior of this system depends on its motor-driven

interference, emphasizing that even interference as seemingly

unruly as this can be incorporated into successful behavior.

To summarize, this system has the ability to respond to

environmental stimuli despite continually varying sinusoidal

interference. Rather than subtracting out the motor-driven

interference, the behavior of the system is deeply entangled

with it, displaying oscillatory motor activity driven by the

interference and prolonged transient motor activity following

activation of the motors in response to stimuli. Additionally,

whether an environmental stimulus is excitatory or inhibitory

depends, respectively on the presence or absence of motor-

driven sensor stimulation. This demonstrates that rather than

suppressing self-caused stimuli, proper functioning for some

systems relies on the presence of self-caused stimuli. In this

system we see responsiveness to the environment facilitated

by a fixed solution that is implemented at the evolutionary

timescale, rather than prediction and subtraction of self-caused

stimuli on the timescale of actions. Because of the difference in

timescale between the frequency of the sinusoidal interference

and the frequency of environmental stimulation, a CTRNN

neuron can be parametrized such that the maximization of

its output function only coincides with environmental sensor

stimulation, or such that the minimization of its output function

only coincides with the absence of such stimulation. Most

significantly for the role of embodiment in coping with self-

caused sensory stimuli, we see that this difference in time scale

between motor-driven and environmental sensor stimulation

is amplified by the system’s behavior, which both elevates the

frequency of motor-driven sensory stimulation and lowers the

frequency of environmental sensor stimulation.

4. Discussion

One explanation of the sensory attenuation effect is that

self-caused sensory stimuli are predicted internally using a copy

of the relevant neural outputs, and then subtracted out of the

sensory inputs (Wolpert et al., 1995; Miall and Wolpert, 1996;

Roussel et al., 2013; Klaffehn et al., 2019). This may well be

the case, but even in a model where this predict-and-subtract

mechanism would be a perfect solution, our GA instead found

other viable alternatives. We have shown that a neural network

controller can be successfully adapted to handle several different

forms of motor-driven sensory interference, and significantly,

the adaptations we have cataloged here do not rely on predicting

this interference. We now summarize these adaptations.

Avoidance: When self-caused sensory interference is only

triggered by certain motor outputs, and if the task at hand

can be accomplished while avoiding those outputs, it may be

easiest for a control system to simply modify its behavior to

avoid motor-sensor interference. We saw this emerge when our

model was evolved with sigmoidal interference. It is not clear

whether we should expect this avoidance approach to scale well

to a more numerous and complex arrangement of sensors and

motors, though it seems that the problem of prediction would

also become more complex in such circumstances. In the special

case where there are multiple independent sensors and motors,

where each motor interferes with only one sensor, an alternative

solution is possible. If the task can be accomplished using only

one sensor, then only one source of interference needs to be

regulated. Doing so permits the other motors to operate freely

over a wider range of activity. We describe this strategy as

“keeping one eye on the prize”. This is arguably just avoiding the

interference, with extra steps. We again saw this strategy used in

the case of sigmoidal interference.

Where interference is unavoidable but the magnitude of

the interference does depend on motor activity, motor activity

can be constrained to ranges that limit the quantity of

interference, reducing its magnitude relative to environmental

stimuli. This is used in the case of the unavoidable squared

interference.

Minimization and avoidance could be seen as special cases

of causing the interference to plateau at a constant value. If

interference is additive and non-saturating, as it is in our

model, it can be eliminated by simply subtracting a constant

term from the input. In general this is trivial for a CTRNN.

However even without subtracting the interference out directly,

constant interference just shifts an environmental stimulus’s

contribution to the sensor to a higher range, which does not

actually change the information available when the interference

is non-saturating.

Coordination: The timing of motor-driven interference

with a sensor may be regulated to coincide with environmental

stimulation of that same sensor. One way to look at this
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is that the detection of a sufficiently ‘loud’ environmental

stimulus renders any coincident interference irrelevant. With

a one dimensional sensor like those used in this model, the

interference is actually constructive, that is the coincidence of

motor-driven and environmental stimuli amplifies the effect

of the environmental stimulus on the sensor. If the response

to such a stimulus tends to diminish that stimulus (negative

feedback), as we see when stimulation of the sensor causes

the robot to turn away from the light, then this strategy

of coordination can play a powerful role in establishing a

stable relationship with environmental stimuli. This can be

effectively combined with a strategy of avoiding or minimizing

interference, which we saw with the squared interference

function. The constructive interference we saw here may not

be possible with more complex collections of sensors, where

environmental and self-caused stimulation do not interact as

straightforwardly as in our model. This is not to say that non-

predictive, embodied solutions would not be found in such

situations. On the contrary, discovering solutions afforded by

richer embodiments may be a fruitful avenue for future work.

Time scale differences: The previous solutions don’t work

for interference which is continually varying in such a manner

that the interference’s minima and maxima are not under direct

control of the motors. However, if such interference is of a high

enough frequency relative to the frequency of environmental

sensor stimulation, then this difference in time scale can be

leveraged to separate interference from environmental stimuli.

Slowly varying stimuli can be perceived through quickly varying

interference, which we saw with the sinusoidal interference

function. The evolved behavior we saw with this interference

function elevated the frequency of motor-driven stimulation

further, amplifying this differential.

Shaping environmental stimuli: Time scale differences

are a case of natural differences between the characteristics

of the interference and the environmental stimuli. So far

we’ve described how the system can shape the interference to

minimize its negative effects or make it easier to distinguish

from the environmental stimuli. However, the ancestral

solution demonstrates that the shape that environmental sensor

stimulation takes depends on the system’s activity—sharp

spikes in sensor stimulation are produced by passing close

to the light while driving backwards. With the sinusoidal

interference function, we found that sharp spikes could be

lost in the high frequency interference, and that in addition

to the system’s behavior raising the frequency of the motor-

driven interference, its behavior also lowered the frequency

of environmental stimulation. Embodied systems can reliably

respond differently to environmentally and self-caused stimuli

because the characteristics of both forms of stimuli are at least

partially determined by the system’s own activity.

Removing motor-driven interference from a system

optimized to perform a task in the presence of that interference

does not necessarily improve performance, and may instead

degrade it significantly. Instead the successful phototactic

behavior of the systems we’ve studied often incorporates

interference functionally. Coordination of interference with

environmental sensor stimulation is one case of this, where

the coordination amplifies the stimulus, but we also saw how

the response to environmental stimulation of one sensor can

be mediated by motor-driven stimulation of the contralateral

sensor. This suggests that it is a mistake to view the problem

of coping with self-caused sensory stimuli as primarily about

subtracting out the interference—even viewing it in terms of

perceiving the environment clearly despite the interference

may be going too far. It’s natural to think of the phototaxis

task this way, but the evolutionary algorithm we used selected

purely for phototactic ability, and as we’ve seen this can involve

incorporating motor-driven interference into behavior. Despite

our attempt to set up a model and problem where sensory

attenuation is a perfect solution, the solutions cataloged here

for coping with self-caused sensory interference do not align

with the sensory attenuation phenomena that has been studied

experimentally (e.g., Pareés et al., 2014), raising the broad

question of what conditions would lead to sensory attenuation

emerging.

This all reinforces that prediction and subtraction cannot tell

the whole story when it comes to coping with self-caused sensory

stimuli. In some ways this is obvious, as self-caused sensory

stimuli are involved in a range of activities in which they do not

play an interfering role. For example, the sensation of self-touch

when kneading an aching muscle, or occlusion of the visual

field when engaging in visually guided reaching and grasping. In

these activities, self-caused sensory stimuli are actually desirable.

Nevertheless, our model shows that even in situations where

clear perception of the environment is prima facie desirable,

self-caused sensory stimuli may not play an entirely interfering

role. Furthermore, we see that even when responsiveness to the

environment is needed, prediction and subtraction are not the

only game in town.

How do these results actually relate to the predictive account

of coping with self-caused stimuli? A criticism of our results may

be that the problems being solved in our model are insufficiently

“representation-hungry” to require prediction. Representation-

hungry problems are those that seem to require the use of

internal representations to be solved, defined by Clark and

Toribio (1994) to be a problem where one or both of the

following conditions hold. Condition one is that the problem

involves reasoning about absent, non-existent, or counterfactual

states of affairs. Condition two is that the problem demands

selective sensitivity to parameters whose sensory manifestations

are “complex and unruly” - that is, the system must be able to

treat differently inputs whose sensory manifestations are highly

similar, and conversely be able to treat similarly inputs whose

sensory manifestations are very different. We actually agree that

our model does not solve a representation-hungry problem,

and in fact see this is a primary contribution of our results. In
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general, coping with self-caused sensory stimuli need not be a

representation-hungry problem.

How we process self-caused stimuli is often taken to involve

an internal predictive model (e.g., Roussel et al., 2013; Klaffehn

et al., 2019). Prediction itself is a task which meets Clark and

Toribo’s first condition, since prediction inherently involves

states of affairs that do not yet exist. However, the fundamental

problem the predictive model is being used to solve meets only

the second criteria, that is treating differently self-caused and

externally-caused inputs whose sensory manifestations may be

identical. Otherwise identical inputs can be distinguished by

predicting, based on an internal model, whether an input is self-

caused or externally-caused. If prediction is necessary then the

problem of coping with self-caused stimuli would seem to meet

the criteria for representation-hunger.

The way self-caused stimuli have been studied

experimentally highlights what we see as a key limitation

of the representational paradigm. Experiments such as

force matching (intentionally and justifiably) aim to isolate

specific psychological phenomena and neural mechanisms.

We would like to suggest that doing so may naturally lead

to overemphasizing the role of these studied mechanisms

when extrapolating explanations back from the experiment

to real world behavior. Specifically, a limitation of the force

matching experiment is the highly constrained motor outputs

of the subject—the subject is responding to one specific

stimulus (force applied to a finger) with a very limited range

of motor outputs, either pressing on that finger or moving

a mechanism with their other hand (Pareés et al., 2014).

In contrast, coping with analogous perceptual problems in

the “real world” might tend to take advantage of their less

constrained sensorimotor coupling with the environment—but

this wouldn’t show up in force matching experiments. This

is not a criticism of the experiments, but we do suggest that

evolutionary robotics models like this one can help highlight

that behaviors depending on a more dynamical, ongoing, and

open ended context may play important roles in problem-

solving, which may not manifest clearly in the deliberately

restricted range of sensorimotor interactions possible in tightly

controlled experiments. Under laboratory conditions, a strict

interpretation of Clark and Toribio’s second criteria may

hold—where self-caused and externally-caused stimuli are

identical to the extent that only knowledge over and above their

sensory manifestations can distinguish them. However, the

everyday problem of coping with self-caused sensory stimuli

occurs outside the lab, where these stimuli are part of our

ongoing sensorimotor activity. In this case our model has

shown that there are diverse ways to perform successfully and

even to disentangle self-caused and externally-caused stimuli.

A key part of this is that both types of stimuli are shaped by

our own activity, and thus encountered on our own terms. In

these circumstances, the strict definition is unlikely to hold,

as we can shape both self and externally caused stimuli to

differentiate them.

While the problem of distinguishing truly identical

sensory inputs may well be representation-hungry, our model’s

embodiment allows it to shape its inputs such that they are

distinguishable by non-predictive means. Thus, we grant that

our model does not capture a strictly representation-hungry

problem, a conclusion directly supported by our results. This is a

not a limitation of this study, it’s a feature. Our model shows that

representational cognition is not necessary in general to cope

with self-caused stimuli, because of the capabilities afforded by

embodiment. In effect, this shrinks the set of human capabilities

which are taken to require representational cognition.

The idea of representation-hunger highlights a long

running critique of embodied cognition, where solving tasks

in representation-free, embodied ways aren’t considered

central examples of what we really mean by cognition. A

distinction is drawn between tasks solvable via online and

potentially representation-free sensorimotor processing, and

offline cognition operating on internal, representational

models (Zahnoun, 2019). It is worth noting that similarly

minimal, CTRNN controlled models have successfully solved

problems with requirements like memory without the use of

internal representations. Beer and Williams (2015) demonstrate

how a robot can both remember a cue and categorize a

subsequent probe relative to that cue by offloading memory

to the environment and structuring its relationship with its

environment to facilitate direct perception on the relative

difference between cue and probe. It was only when the robot’s

ability to move while being presented with the cue was removed

that information about the cue was retained internally in the

neural activation. Studies like this push back at the idea that

internal representation is necessary to solve problems requiring

responses to abstract or absent stimuli, by showing that other

possibilities are facilitated by the way embodiment structures

the ongoing relationship between controller and environment.
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