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Abstract: Energy savings based upon use of smart WiFi thermostats ranging from 10 to 15% have
been documented, as new features such as geofencing have been added. Here, a new benefit of
smart WiFi thermostats is identified and investigated; namely, as a tool to improve the estimation
accuracy of residential energy consumption and, as a result, estimation of energy savings from
energy system upgrades, when only monthly energy consumption is metered. This is made possible
from the higher sampling frequency of smart WiFi thermostats. In this study, collected smart WiFi
data are combined with outdoor temperature data and known residential geometrical and energy
characteristics. Most importantly, unique power spectra are developed for over 100 individual
residences from the measured thermostat indoor temperature in each and used as a predictor in
the training of a singular machine learning models to predict consumption in any residence. The
best model yielded a percentage mean absolute error (MAE) for monthly gas consumption ±8.6%.
Applied to two residences to which attic insulation was added, the resolvable energy savings
percentage is shown to be approximately 5% for any residence, representing an improvement in the
ASHRAE recommended approach for estimating savings from whole-building energy consumption
that is deemed incapable at best of resolving savings less than 10% of total consumption. The approach
posited thus offers value to utility-wide energy savings measurement and verification.

Keywords: smart WiFi thermostats; machine learning; residential; energy consumption;
energy savings

1. Introduction

The U.S. Energy Information Administration (EIA) estimates that the total U.S. natural
gas consumption was about 32% in 2019 of total energy consumption. The residential
sector was responsible for 16% of this consumption [1] and 38% of the CO2 emissions
in the U.S. [2]. Reducing reliance on fossil fuels in the short term remains an existential
challenge for humanity. However, as a recent analysis by Stanford University documents,
getting to 100% clean and renewable energy by 2050 requires a substantial reduction in
energy demand (59%) [3]. Essential in this process, as never before, is the ability to measure
savings in order to validate the myriad of energy efficiency experiments which must be
conducted. The most cost-effective energy reduction must learn from all actions. This is
only possible if the means to estimate savings is certain.

Unfortunately, the state-of-the-art in measuring savings from energy improvements,
short of individual real time metering, is inadequate, especially when energy consump-
tion data is monthly. Presently, the approach recommended by ASHRAE in Guideline
14-2002, which leverages an inverse model based upon a simple three-parameter regression
of monthly energy consumption with mean outdoor temperature for each meter period,
suggests that savings of less than 10% cannot be resolved at best. More importantly, this
savings estimation resolution depends upon the quality of the regression fit for an individ-
ual building or residence. It is likely that in most buildings, commercial or residential, this
approach is unable to resolve energy savings well greater than 10% of consumption [4–7].
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This paper above all explores use of smart WiFi thermostats to improve both the
prediction of monthly energy consumption and, as a result energy savings from systems
upgrades. Such technologies are now present in an estimated 11% of residences [8]. These
thermostats measure and archive indoor temperature, setpoint temperatures for heating
and cooling, and the status of the heating, cooling, and fan systems at sampling periods
which can be as small as 1 s. The research described herein specifically utilizes “delta”
smart WiFi thermostat data from individual residences described in the prior research
Lu et al. [9] and Huang et al. [10].

2. Background

Data analytics techniques have become a common means to analyze energy data. There
has been a wealth of prior work in this area; all significantly reviewed by Amasyali et al. [2],
Mosavi et al. [11] Seyedzadeh et al. [12], and Villa and Sassanelli [13]. Table 1 summarizes
the most relevant of the research to predict different types of energy consumption at differ-
ent data collection frequencies. The frequencies associated with the energy consumption
types have ranged from hourly, to daily, to monthly. Included in the table, in addition to
the data collection frequency, is also information about the learning algorithm, predictors
used, target or response variable, building type, and quality of the prediction.

Table 1. Summary of prior research in predicting energy consumption in residential buildings.

Ref. Learning
Algorithm (Type) Predictors Target Building

Type
Model
Type Performance

[14]

Random Forest
Regression (RF)
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door temperature) 
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temperature, gas/electric base-
line intensity) 

 Number of occupants 
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0.00026 (MSE) 

Artificial Neural 
Network—Deep 
Learning (ANN-

DL) 
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[15] 

Multivariate 
Adaptive Regres-

sion Splines 
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 Energy data (i.e., previous day 
natural gas consumption) 
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Building geometrical data (e.g.,
floor, attic, window, and wall
area)
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solar radiation)
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consumption residential Static
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Regression
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results

[17]
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Machine (SVM)
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dry-bulb temperature, relative
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Hourly
building

cooling load
Mixed

Multi-
step

Jul: 0.006
(RMSE)

May: 1.146
(RMSE)

Jun: 1.157
(RMSE)

Aug: 1.168
(RMSE)

Oct: 1.182
(RMSE)

Artificial Neural
Network—Back

Propagation
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(RMSE)
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(RMSE)

Jun: 2.321
(RMSE)

Aug: 2.223
(RMSE)
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(RMSE)
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All of these machine learning models have used as predictors different weather, indoor,
building, and calendar inputs. The weather data used included dry bulb temperature ([14–21]),
relative humidity, and solar radiation ([17–19]). An hourly weather data frequency was
used by Al Tarhuni et al. [14], Li et al. [17], Massana et al. [18], Kwok et al. [19], and
Zhao et al. [21], whereas Özmen et al. [15], Iwafune et al. [16], and Jovanovic et al. [20]
relied upon daily data.

Several researchers used building envelope data to improve the models. Al Tarhuni et al. [14]
relied upon knowledge of the insulation characteristics of the walls, attic, and windows.
Li et al. [22] and Ekici et al. [23] included information about the thermal inertia of building.
Additionally, Li et al. [22], and Ekici et al. [23] added extra information about the residences
shading and building transparency ratios.

A number of the researchers used building geometry and energy system characteristics
as predictors. For example, Al Tarhuni et al. [14] used furnace efficiency, water heater
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energy factor, and Seasonal Energy Efficiency Ratio (SEER) value for the cooling system as
predictors.

Lastly, relative to the predictors employed, a number of researchers used prior energy
consumption data in various forms. Al Tarhuni et al. [14] utilized prior monthly energy
consumption data to predict future consumption. Özmen et al. [15] developed a model for
a specific city to estimate natural gas consumption for one-day ahead using the previous
day, six, seven, and 14 days of natural gas consumption. Similarly, Jovanovic et al. [20]
employed previous day consumption to forecast energy consumption for one day ahead.

In terms of approaches employed, the techniques used have been quite diverse. Most
of the researchers evaluated the performance of at least one type of Artificial Neural Net-
work (ANN). For instance, Ekici et al. [23] developed an Artificial Neural Network–Back
Propagation (ANN-BP) model to predict annual building heating energy. Kwok et al. [19]
predicted hourly building cooling load using only Artificial Neural Network–Multilayer
Perceptron (ANN-MLP). Moreover, Li et al. [22] evaluated the performance of three types of
ANN including Artificial Neural Network–Back Propagation (ANN-BP), Artificial Neural
Network–Radial Basis Function (ANN-RBF), Artificial Neural Network–General Regres-
sion (ANN-GR), as well as Support Vector Machine (SVM). Another study by Li et al. [17]
developed a predictive model to estimate hourly building cooling load based on the Sup-
port Vector Machine (SVM) and Artificial Neural Network–Back Propagation (ANN-BP)
techniques. Massana et al. [18] estimated hourly building electric load based on Multiple
Linear Regression (MLR), Artificial Neural Network–Multilayer Perceptron (ANN-MLP)
and Support Vector Regression (SVR). Multiple Linear Regression (MLR), Random Forest
Regression (RF), Gradient Boosting Machine (GBM), and other algorithms were used as
well. Villa and Sassanelli likewise employed a dynamic multi-step approach to predict
internal temperature in a building. Their approach leverage a Support Vector Machine
algorithm. Their reported accuracy was exceptional (0.1 ± 0.2 ◦C) [13].

A large number of studies used a static modeling approach including those by
Al Tarhuni et al. [14], Özmen et al. [15], Li et al. [22], Iwafune et al. [16], Ekici et al. [23],
Massana et al. [18], and Jovanovic et al. [20], while Li et al. [17] used dynamic model.
On the other hand, Kwok et al. [19], and Zhao et al. [21] used a multi-step model approach.

Finally, in terms of predictive accuracy, one trend is apparent. Use of hourly infor-
mation to predict energy consumption at higher frequency (e.g., sub-hourly or hourly)
yields better predictive models. The best of these employed models relies upon prior con-
sumption data to predict future consumption (Özmen et al. [15], R-squared value > 0.989,
Jovanovic et al. [20], R-squared value > 0.972, Villa and Sassanelli [13], temperature predic-
tion accuracy of 0.1 ± 0.2 ◦C).

This research builds upon the prior efforts to predict monthly energy consumption,
by leveraging for the first time the burgeoning and much more readily available higher
frequency smart WiFi thermostat. Given that models employing to predict energy consump-
tion where data is available at smaller periods than monthly, the additional bandwidth
afforded from use of thermostat data offers hope for improving energy consumption pre-
diction and therefore energy savings prediction in residences subject to monthly metering.

Specifically, this research combines thermostat data and derived thermostat data in
the form of power spectral density data developed from the measured thermostat tem-
perature with other data features which have already been shown to yield quality energy
consumption predictions, including geometrical, energy characteristics, and occupancy,
and weather data. Table 2 documents the input features used in this study, subset into
features used prior and new features considered here. The new features included in this
study the thermostat derived features and the binned input weather features employed
previously by Alanezi et al. [24] which considered the statistical variation of the weather
features developed for each energy meter period.
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Table 2. Features used to predict consumption as categorized by prior use and new additions.

Study Data Title Used

Prior

Monthly weather features

Indoor temperatures

Building geometrical
√

Building envelope
√

Energy system characteristics
√

Historical energy consumption
√

Heating Degree Days (HDD)

Calendar

Geography

Number of occupants
√

New

Statistical variation of the outdoor temperature
√

Power spectrum density from thermostat temperature
√

Questionnaire with regards to the presence of a washer/dryer
√

Questionnaire with regards to the presence of a dishwasher
√

3. Methodology

The methodology employed to both estimate energy savings and predict consumption
follows. Step 1 in the process is the collection and preparation of data. The data includes
thermostat derived information, geometrical and energy consumption, and weather data
aligned with energy consumption. Step 2 in the process involves the development and
testing of machine-learning based static models to improve the prediction of monthly
energy consumption of any residence (using a singular model) relative to prior work. This
process above all seeks to demonstrate the value of smart WiFi thermostat derived data in
predicting consumption. Finally, the last step involves application of the developed model
to estimate savings in real residences. Most importantly in this step, the methodology
describes how the uncertainty in estimating savings is quantified in order to validate
potential improvements in resolving smaller percentage savings than achievable with the
currently employed ASHRAE inverse-modeling toolkit.

3.1. Collection and Preparation of Data with New Thermostat Derived Predictors

This study considered 101 houses owned by a university in the Midwest region of the
US. Detailed energy audits were conducted on these houses during the summer 2015 [14]
and again in the summer of 2020 to validate the original assessment and to validate energy
efficiency upgrades to some of these residences. As described previously [24], this set of
houses offered variety in size, insulation, and energy effectiveness, which is necessary for
developing a generalizable single model capable of predicting the energy consumption of
any residence.

Overall, the data employed for model development includes historical monthly energy
consumption data for each residence, weather data obtained via the NOAA’s National
Climate Data Online resource [25], geometrical data obtained from the local county auditor
public data, and smart WiFi thermostat data for each of the residences. All of this data is
attainable remotely. Additionally, energy characteristics associated with insulation amount
in the walls and ceiling, heating/cooling/water heating efficiencies, and occupancy data
were included as predictors in order to ascertain their necessity in developing accurate
models. Ideally the goal of this research is to show that accurate energy consumption and
energy savings predictions can be achieved without on-site energy audit information.

In the summer of 2019, attic insulation was added to two of the included in this
study. Smart WiFi thermostat data and natural gas consumption pre- and post-upgrade
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were available. Table 3 shows the attic R-Value before and after the retrofit for these two
residences.

Table 3. Upgraded houses attic R-Value information.

House Number
Attic R-Value (m2 K W−1)

Before Upgraded

House 1 1.13 3.34

House 2 3.13 3.34

Data preprocessing is necessary to develop an appropriate dataset for creating an
accurate model, regardless of the application. Moreover, effective data preprocessing
plays an important role in the development of machine learning models by improving
the data sample quality [26]. The data preprocessing here follows that described in prior
work [24]. The most critical steps are (i) creating power spectra from the uniformly spaced,
measured thermostat interior temperature data; (ii) establishing histograms of the outdoor
temperature for each meter period; (iii) synching data according to the time stamp and
address; and (iv) elimination of similar houses to prevent model bias for such residences.

Most critical to this study is the creation of histograms from power spectra of the
interior temperature obtained from the smart WiFi thermostat data for each individual
residence. Effectively this data provides evidence of the thermal dynamics of the residences.
Alanezi et al. [24] had shown previously the value of this processed thermostat data in the
prediction of building energy characteristics. Then, this data was merged with historical
energy consumption data with synched weather data, and unique geometrical and energy
characteristics for each of the residences, all in one data file, thus permitting development
of a singular model capable of applicability to all residences.

3.2. Model Development to Predict Monthly Consumption Using Thermostat Derived Data

The selection of an appropriate machine learning algorithm depends on data type,
number of observations, and number of input features. Multiple machine learning model-
ing algorithms should be considered. Application of any technique also requires tuning of
hyperparameters. In order to produce the best models, the hyperparameters controlling
the different machine learning algorithms need to be optimized. For example, the major
hyperparameters in Random Forest (RF) models are number of trees, maximum number of
features considered for splitting a node, maximum number of levels in each decision tree,
minimum number of data points placed in a node before the node is split, and minimum
number of data points allowed in a leaf node, etc. [27,28]. This research employed the
AutoML H2O package [29] to evaluate different machine learning model performance in
predicting monthly natural gas consumption utilizing the acquired and processed data
described in the previous sub-sections. The considered algorithms included Random
Forest, Extremely Randomized Tree, Gradient Boosting Machine (GBM), Extreme Gradient
Boosting (XGBoost), Deep Neural Network, and Stacked Ensemble. Table 4 shows the
input features employed to predict monthly gas consumption.

The model performance for both validation and testing was evaluated using root
mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), and R-squared metric. RMSE, MAE, and R-squared parameters can be shown
respectively as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 =
√

MSE, (1)

MAE =
1
N

N

∑
i=1
|yi − ŷi|, (2)
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MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, (3)

R2 = 1− MSE(model)
MSE(baseline)

=
1
N ∑N

i=1(yi − ŷi)
2

1
N ∑N

i=1(yi − yi)
2 , (4)

Table 4. Input features used to develop the model.

Input Features Input Output

Floor area (m2) X
Basement area (m2) X
Attic area (m2) X
Window area (m2) X
Wall area (m2) X

Attic thermal insulation (m2 K W−1) X
Walls thermal insulation (m2 K W−1) X
Furnace efficiency (-) X
Water heater efficiency (-) X

Is there a wash and dryer machine (yes/no) X
Is there a dishwasher machine (yes/no) X

Number of occupants X

Probability density bins for outdoor temperature for
individual meter periods X

Power spectrum bins for indoor temperature (PSD Freq) X

Monthly gas usage (MJ month−1) X

3.3. Measurement of Energy Savings from Improved Means to Predict Consumption

To estimate the savings from energy-efficiency upgrades, step 1 was to collect and
organize new energy consumption data (Ea) for the upgraded residences post-retrofit and
develop the needed weather inputs for the new meter periods. Step 2 was to apply the
developed model to these residences using this weather data as inputs and the derived
thermostat data pre-retrofit to predict consumption post-upgrade, P. Step 3 was to forecast
energy consumption for the new meter periods using the developed model. The forecast en-
ergy consumption effectively represents the energy consumption were no upgrade to have
been made. Lastly, in step 4 the actual energy consumption is compared to the forecasted
energy consumption based upon the pre-retrofit model in order to predict savings.

% Savings, predicted = S =
|Predicted Consumption− Actual Consumption|

|Precicted Consumption | × 100%,

(5)
The derived savings from the upgrade is only dependent upon the savings in heating

energy. Water heating energy should remain roughly the same. The uncertainty in the sav-
ings estimation inevitably depends upon the error associated with estimating consumption,
according to

δsavings =
dS
dP

δP =
Ea

P2 δP, (6)

Thus, if the uncertainty in measuring energy consumption can be estimated, then so
too can the error in estimating energy savings be estimated.

4. Results

In this section, results are reported to (1) assess the value of smart WiFi thermostat
derived information in the form of residence power spectra bins in improving the prediction
of monthly energy consumption; and (2) demonstrate the potential of employing the
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developed model to improve the accuracy of energy savings predictions and the ability to
resolve smaller percentage savings from energy system upgrades in residences.

4.1. Assessing the Importance of Thermostat-Derived Data in Improving Prediction of Monthly
Energy Consumption

First, all predictors (residential building geometry, energy characteristics, and occu-
pancy, thermostat derived power spectra data, and monthly probability density of outdoor
temperature) were considered in developing a singular model representing all residences
in the study using the H2O AutoML toolkit [29] to predict the monthly gas consumption
for all residences. A variable importance plot was developed for the best model obtained,
shown in Figure 1. Of note in this figure is that while the geometrical characteristics associ-
ated with the wall and attic areas are deemed most important, the power spectrum features
(indicated as PSD Freq.X) are also very important. In fact, a number of the frequency
bins are deemed more important than energy characteristic features such as the attic and
wall R-Values. Most importantly, these features can be derived from the thermostat data
alone; potentially mitigating the need to collect energy characteristics for the residence
from on-site assessments.
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4.1.1. Development of Best Model to Predict Energy Consumption

The GBM model showed outstanding prediction accuracy. Table 5 shows the error
metrics from the testing dataset for the best models developed using this machine learning
algorithm for subsets of the input features available. The predictor subsets considered for
model development are documented in the table below. Additionally included are the
error metrics. The MAE and RMSE error metrics are based upon energy consumption for
whole year. In this table, Case (a) includes as predictors only geometrical and outdoor
temperature probability density bin values. Case (b) adds consideration of both number
of occupants and energy system characteristics data. It is clear that the addition of these
features improved the model performance considerably. Case (c) adds questionnaire data
with regards to the presence of a washer/dryer and dishwasher. The addition of this data
did little to improve the model. Case (d) adds all thermostat measured indoor temperature
power spectrum data. Again, there is significant improvement in the model from these
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input features. Thus, thermostat data conclusively improves the ability to accurately
model monthly energy consumption. Case (e) considers only the top five frequency bins
of the power spectra information obtained from a variable importance analysis. The
model performance actually deteriorates. Case (f) adds six frequency bins used to predict
energy characteristics (attic R-Value, walls R-Value, furnace efficiency, and AC SEER) by
Alanezi et al. [24]. These frequencies were shown in this prior study to best enable accurate
prediction of the actual energy characteristics for a residence. The model performance
for this case is seen to improve markedly; the R-squared value is 0.9519 and the MAE is
996.52. In Case (g) the energy characteristics and occupancy data are removed from this
best model. The model performance is noted to have declined considerably. Thus, while
the goal was to develop a model that would require no on-site collected data, it is clear
that such data is valuable in terms of producing an accurate model for estimating energy
consumption, and likewise energy savings (see Equation (6)).

Table 5. Feature selection cases with model prediction evaluation parameters for the testing dataset.

Case Feature Types R2 RMSE MAE, Annual Gas
Consumption (MJ) MAPE

(a) geometrical and outdoor temperature
probability density bin 0.7533 2724.36 2319.08 0.2191

(b)

geometrical, outdoor temperature
probability density bin, number of
occupants, and energy
system characteristics

0.8641 1993.98 1641.50 0.1644

(c)

geometrical, outdoor temperature
probability density bin, number of
occupants, energy system characteristics,
and questionnaire

0.8646 1939.65 1602.43 0.1644

(d)

geometrical, outdoor temperature
probability density bin, number of
occupants, energy system characteristics,
questionnaire, and all PSD bins

0.9109 1673.73 1413.29 0.1650

(e)

geometrical, outdoor temperature
probability density bin, number of
occupants, energy system characteristics,
questionnaire, and top five PSD
frequency bins (35, 30, 25, 7, and 2)

0.8867 1770.57 1415.60 0.1561

(f)

geometrical, outdoor temperature
probability density bin, number of
occupants, energy system characteristics,
questionnaire, and six PSD frequency
bins (6, 13, 16, 23, 24 and 46)

0.9519 1234.80 996.52 0.1465

(g)

geometrical, outdoor temperature
probability density bin, number of
occupants, questionnaire, and six PSD
frequency bins (6, 13, 16, 23, 24 and 46)

0.8881 1728.65 1396.56 0.1586

Overall, the best model (case f) yielded an average residential consumption over
this time frame of 11,463 MJ, associated with a mean error in predicting monthly energy
consumption for all of the residences considered of ±8.69%. The associated R-squared
value is 0.9519. This prediction is better than the best to date in terms of predicting monthly
energy consumption (Altarhuni et al.; R-squared value = 0.94, [14]). It should be noted
that Altarhuni’s approach used a regression of monthly energy data for each residence
against monthly average outdoor temperature to derive predictors which could be used in
a singular model to predict consumption of any residence. So, in effect, it used energy data
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to develop predictive features to predict energy consumption. The approach developed
here does not do this.

4.1.2. Best Model Testing Results

The best model developed for Case f above, was tested on six residences not used
in the training of the model. The testing results for these six residences are shown in
Table 6. The R-squared and MAE values for predicting the monthly natural gas usage
were respectively 0.9472, 0.9485, 0.9725, 0.9201, 0.9788, and 0.9446 (R-squared), and 1073.18,
910.01, 646.85, 1678.40, 613.37, and 1057.32 MJ (MAE). These results illustrate that the
model predictive effectiveness is consistent with the validation metrics used in the training,
helping to establish the generalizability of the model to new residential data.

Table 6. Model prediction evaluation parameters for testing dataset.

Target R2 RMSE MAPE MAE

Test House 1 0.9472 1406.42 0.1240 1073.18

Test House 2 0.9485 1306.15 0.0842 910.01

Test House 3 0.9725 913.75 0.0729 646.85

Test House 4 0.9201 1822.71 0.3276 1678.40

Test House 5 0.9788 743.02 0.1233 613.37

Test House 6 0.9446 1216.73 0.1470 1057.32

Average 0.9519 1234.80 0.1465 996.52

A time series plot of the monthly natural gas consumption as a function of time for the
six test residences is shown in Figure 2. The figure compares both the actual and predicted
consumption. It is clear that the two lines representing actual and predicted consumption
correspond very well. Note that the actual and predicted values for each of the testing
houses are shown in Table A1 at the Appendix A section.

4.2. Estimating Savings and Quantifying Uncertainty in the Savings Predictions

As noted previously, two of the residents included in the study received upgrades
in terms of attic insulation. The estimated energy savings for one month of these two
residences using Equation (5) are shown in Table 7. The results indicate the natural gas
consumption savings from attic insulation upgrade for House 1 and 2 are respectively 21.5%
and 15.3%. Improvement to attic insulation in House 1 show significantly superior energy
savings relative to House 2. The results are consistent with expectation, because House 1 no
insulation prior to the upgrade, while House 2 had a very small amount of insulation. The
uncertainty in the reported savings is respectively for House 1 and 2 ±4.18% and ±6.26%.

In an effort to generalize the results, the following questions are posed. What-if the
energy savings is less? What percentage savings could we resolve? What percentage
savings can be resolved?

Figure 3 shows a plot of the predicted savings (MJ) versus percentage savings for
House 1 above were the actual savings to be less than that reported in Table 7. Error bars
are shown to represent the uncertainty in predicting the savings (from Equation (5)). It is
clear from this figure that as the percentage savings declines, the uncertainty in estimating
savings increases slightly. It is also clear that accuracy in estimating savings declines. In
fact, no savings can be resolved for savings percentages of less than roughly 5% based
upon this approach. At this cut-off the uncertainty in estimating savings is approximately
equal to the estimated savings. This savings resolution is valid for any residence, given
that it derives from a model based upon a large number of residences. In comparison, the
ASHRAE guideline for estimating savings from whole-building energy consumption at
best renders an estimation of savings no less than 10% of total consumption. Thus, there
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is certainty that this approach renders substantial improvement in both the estimation
accuracy of savings and the percentage savings which can be resolved.
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Table 7. Savings percentage and uncertainty for an attic retrofit.

House
Number

Bill Month
Post-Retrofit

Measured
Natural Gas

Consumption
(MJ)

Predicted
Natural Gas

Consumption
Assuming no
Upgrade (MJ)

Uncertainty in
Estimating

Consumption
(MJ month−1)

% Savings
Uncertainty in

Estimating
Saving (%)

House 1
December 2019

14,677.20 18,712.95
±996.52

21.57 ±4.18

House 2 11,415.60 13,476.24 15.29 ±6.26
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Figure 3. Plot of savings (MJ) versus percentage savings for House 1 with error bars associated with
the uncertainty in estimating savings.

5. Discussion and Conclusions

This research presents an improved accuracy approach to predict monthly natural
gas consumption for residential buildings from accessible residential building information,
historical weather data, and archived smart WiFi thermostat data utilizing a machine
learning-based approach. The singular model developed using data from a collection of
residences can be used to accurately predict consumption and savings from upgrades
or changes in behavior for any residence with geometrical and energy characteristics
represented within the minimum–maximum bounds of the features of the residences
included in the training. Specifically the approach employed, because of the use of data
derived from high frequency smart WiFi data, yields a mean error rate of ±8.69% for
predicting annual consumption. Most significantly, for two houses for which insulation
upgrades were implemented during the study period, savings estimation uncertainty was
less than ±7%. This result shows the promise of the approach used here in estimating
HVAC and envelope upgrades in any residence where monthly energy consumption
is known, and smart WiFi thermostats are available. In fact, results are shown which
demonstrate the ability to resolve energy savings of less than 5% for any residence. This
is a big improvement upon the ASHRAE recommended guideline for estimating savings
from whole-building energy consumption, where at best energy savings no less than 10%
of total consumption can be resolved. It is expected that model improvement and therefore
improvement in estimating both energy consumption and savings is possible through the
addition of additional residential data.

With this technique, there is significant potential for implementing utility-scale pro-
grams to estimate consumption and measure savings from energy efficiency upgrades
and/or behavior-based changes with accuracy. Precise savings estimates can help to vali-
date value from all energy measures implemented in any house. The knowledge derived
could help to inform more strategic energy reduction programs at a utility scale. Investment
could be focused on measures having the potential for measurable savings.

Unfortunately, the results did not show that only remotely obtainable data were
sufficient to yield high accuracy estimations of consumption and savings. The results
showed a need to document wall and attic insulation amount and heating/cooling system
efficiencies prior to an upgrade. This data likely requires on-site inspection.

Additionally, there are several notable limitations of this research and it can be future
work to improve the study. First, it is necessary to expand the training dataset to contain
a greater number of residences and more variety in the residences included. The current
training data did not include very large and very small residences. Nor did it contain any
stone, stucco, or brick residences. Second, the training data should use more behavioral
information derive from smart WiFi thermostat including thermostat temperature set point
history. Lastly, this approach was tested only in a single climatic region. In order to develop
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truly generalizable models applicable to anywhere, it is essential to broaden the location of
the residences included in the singular model training data.
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Appendix A

Table A1. Actual and predicted data for 12 months of the testing houses using the best model.

Date
House 1 House 2 House 3

Actual Predicted Actual Predicted Actual Predicted

Oct-16 6414 7757 5762 6549 6088 5229

Nov-16 17,069 15,463 15,546 15,760 17,503 15,136

Jan-17 17,612 14,589 14,242 15,107 15,873 14,537

Feb-17 17,286 14,580 15,003 15,607 14,785 15,031

Mar-17 5544 6321 5436 5779 4892 4881

Aug-17 1956 2721 1848 1920 1195 1516

Sep-17 2283 2682 1630 1880 1630 1565

Oct-17 9784 9424 10,763 9229 7827 7796

Nov-17 14,894 14,825 18,699 15,162 13,155 12,821

Jan-18 19,569 19,127 16,851 18,465 15,220 14,417

Feb-18 16,742 15,693 15,220 15,303 13,807 13,157

Mar-18 13,916 13,578 14,242 13,224 12,720 11,980

Date
House 4 House 5 House 6

Actual Predicted Actual Predicted Actual Predicted

Oct-16 5762 8108 5762 6302 7066 5737

Nov-16 16,742 17,721 15,220 15,087 15,329 16,560

Jan-17 15,220 16,496 14,024 13,737 13,807 16,027

Feb-17 16,742 17,606 14,568 15,366 14,785 16,702

Mar-17 5979 7654 5218 6703 5762 6291

Aug-17 1304 3241 1630 2523 2935 1641

Sep-17 1739 3473 2065 2561 3152 1683

Oct-17 12,720 10,528 7066 7570 9567 8646

Nov-17 19,895 16,484 13,590 13,586 15,220 15,434

Jan-18 19,134 18,237 15,112 16,157 18,156 17,737

Feb-18 17,177 16,091 14,351 14,159 16,416 15,694

Mar-18 15,112 13,367 12,828 11,846 14,459 14,882
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