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Abstract: Rare tautomeric forms of nucleobases can lead to Watson–Crick-like (WC-like) mispairs
in DNA, but the process of proton transfer is fast and difficult to detect experimentally. NMR
studies show evidence for the existence of short-time WC-like guanine–thymine (G-T) mispairs;
however, the mechanism of proton transfer and the degree to which nuclear quantum effects play
a role are unclear. We use a B-DNA helix exhibiting a wGT mispair as a model system to study
tautomerization reactions. We perform ab initio (PBE0/6-31G*) quantum mechanical/molecular
mechanical (QM/MM) simulations to examine the free energy surface for tautomerization. We
demonstrate that while the ab initio QM/MM simulations are accurate, considerable sampling is
required to achieve high precision in the free energy barriers. To address this problem, we develop
a QM/MM machine learning potential correction (QM/MM-∆MLP) that is able to improve the
computational efficiency, greatly extend the accessible time scales of the simulations, and enable
practical application of path integral molecular dynamics to examine nuclear quantum effects. We
find that the inclusion of nuclear quantum effects has only a modest effect on the mechanistic pathway
but leads to a considerable lowering of the free energy barrier for the GT*⇌G*T equilibrium. Our
results enable a rationalization of observed experimental data and the prediction of populations of
rare tautomeric forms of nucleobases and rates of their interconversion in B-DNA.

Keywords: DNA mispair; PIMD; machine learning; tautomerization

1. Introduction

With five natural nucleobase monomers (G, C, A, and T/U), DNA and RNA are able to
store and transfer a rich density of genetic information with high fidelity [1,2]. Nonetheless,
the diversity of biological populations arises from processes of natural selection and genetic
variation [3,4], the latter of which is influenced by mutations that occur during DNA
replication [5,6]. Even with the precise replication process [7], including proofreading [8]
and DNA repair [8], the mutation rate still typically reaches 10−9 ∼ 10−12 per base pair
synthesized [9]. While mutations are a vital component in the creation of genetic diversity,
some mutations in eukaryotes lead to diseases, including many forms of cancer [10,11].
Mutations can arise through mispairing of the Watson–Crick G-C and A-T hydrogen
bonding bases in the DNA helix. In the Watson–Crick (WC) model, nucleobase pairs are
in their “keto” form [12] rather than their “imino” or “enol” forms. Mispairs are believed
to commonly arise from tautomeric shifts in the nucleobases [5,6] that cause a change in
the hydrogen bond pattern at the Watson–Crick edge without changing the charge [2].
These rare nucleobase tautomers are able to form WC-like mispairs that can sometimes
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circumvent proofreading and repair machinery and lead to mutations and misincorporation
in DNA replication [7,9] and translation [13]. Hence, the study of how protons transfer
between different tautomeric forms in DNA mispairs is of fundamental importance.

Despite their importance, the experimental detection of tautomeric nucleobases is
challenging due to their short lifetimes [2,14]. Nonetheless, much insight has been gained
by previous experimental studies. Allawi et al. investigated the stability of 39 oligonu-
cleotides with internal G-T mismatch using UV absorbance versus temperature profiles and
NMR [15]. Waters et al. reported the kinetics of removal of thymine DNA glycosylase from
DNA containing a G-T mismatch [16]. Fox et al. reported a G-T mismatch mechanism by
using base analogues of G and T [17] to explore the functional groups on the mismatch pair
which are recognized by the enzyme. Osakada et al. studied the kinetics of charge transfer
for the detection of single-base mismatch in a DNA molecule [18]. Koag et al. studied
mismatch discrimination mechanisms in human DNA polymerase β crystal structures and
proposed a two-stage mechanism where in the closed conformation state, polβ allows only
a Watson–Crick-like conformation [19].

In pioneering NMR work, Al-Hashimi and coworkers reported the existence of tran-
sient WC-like G-T mispairs, providing insight into their populations and rates and es-
tablishing a dynamical basis for misincorporation via tautomerization and, more rarely,
ionization [20–22]. In a follow-up computational study [23] focused on calculation of the
relative tautomer free energies, it was shown that the tautomer equilibrium was sensitive
to the B-DNA environment. This equilibrium was predicted to be shifted to become more
favorable when bound to DNA polymerase λ, as was proposed in earlier work [24].

Other computational studies have examined tautomerization in DNA [5] and G-U
wobbles in RNA [25]. Very recently, tautomerization in GT wobble pairs has been studied
using a coupled first-principles quantum chemistry and open quantum system master
equation approach [26]. Results illustrate that quantum tunneling plays an important role
in these reactions and has significant influence on rates and transcription error frequency.

In the present work, we examine the mechanism of tautomerization of G-T mispairs in
B-DNA, with emphasis on the reaction paths and transition states, sensitivity of the free en-
ergy profiles and barriers to sampling, and inclusion of nuclear quantum effects. As a model
system, we use the B-DNA crystal structure [27] with two G-T wobble pair mismatches,
illustrated in Figure 1. We perform a series of combined quantum mechanical/molecular
mechanical (QM/MM) simulations using semiempirical, ab initio, and machine learning
models to study the mechanism of the tautomerization reaction. Path integral molecular
dynamics (PIMD) simulations are performed to deduce the role of nuclear quantum effects
on the calculated barriers in order to help rationalize the observed experimental data. The
remainder of the manuscript is outlined as follows. The Section 3 provides a description of
the computational details, including the QM/MM and QM/MM-∆MLP models, construc-
tion of the free energy profiles, and PIMD methods. The Section 2 compares free energy
profiles using different QM/MM and QM/MM-∆MLP models, examines the sensitivity of
the profiles to degree of sampling, and predicts the influence of nuclear quantum effects
on the barriers. Results are discussed in the context of experiments and other related
computational work reported in the literature. This paper concludes with a summary of
key take-home points.
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Figure 1. (a) B-DNA secondary structure with 2 G-T wobble mispairs highlighted in green; (b) B-DNA
structure examined in this work prepared from the crystal structure [27] (PDB ID: 113D); (c) structure
of the G-T wobble mispair residue; (d) schematic of the general reaction.

2. Results and Discussion

Figure 1 shows the B-DNA sequence and structure studied in the current work. The
figure highlights the G-T wobble (wGT), and it illustrates the general process of tautomeriza-
tion. The formation of rare GT* and G*T states, where G* and T* indicate the higher-energy
enol tautomeric form of G and T, respectively, leads to Watson–Crick-like mispairs con-
taining three hydrogen bonds, similar to a GC base pair. The wGT mispairs have been
proposed to lead to misincorporation errors in DNA replication [21,23]. Tautomerization in
GT mispairs have been studied previously using ab initio QM/MM simulations [23], and it
has been shown that the tautomer equilibrium is sensitive to the environment. Specifically,
Li et al. reported an insightful study of the reaction in aqueous solution in canonical A-form
and B-form DNA helices in solution, as well as B-DNA bound to DNA polymerase λ. The
main goal of the work was to compute the relative free energies of the wGT, GT*, and
G*T tautomers, with less emphasis on the reaction paths and barriers as is the focus of
the current work. Results of ab initio QM/MM simulations predicted that the wGT→GT*
tautomerization is endoergic in B-DNA in aqueous solution but exoergic in the polymerase
environment [23].

The goal of the present work is to use a B-DNA helix exhibiting a wGT mispair as a
model system to study the tautomerization reactions in greater detail with regard to the
reaction paths and transition states, sensitivity of the free energy profiles and barriers to
sampling, and inclusion of nuclear quantum effects. The following briefly highlights the
main methodological differences in the classical ab initio QM/MM simulations used in
the current work with respect to that of Li et al. [23]. The latter study used the ωB97X-D3
functional [28,29] and 6-311G** basis set [30,31] and performed string calculations using
25 images with 0.1 ps sampling per image. Simulations were performed under aperiodic
(frozen) boundary conditions outside of an 18 Å distance. In the current work, the PBE0/6-
31G* ab initio QM/MM model was used under full periodic boundary conditions (no frozen
boundary) with rigorous electrostatics [32], and string simulations were conducted with
32 images, 2 ps sampling per image, and 40 ps of production sampling (four independent
10 ps trials) along the final path in order to accurately obtain barriers.

In order to ascertain the contribution of nuclear quantum effects, path integral sim-
ulations were performed with a recently developed software interface [33,34] between
Amber [35] and i-PI [36]. PIMD simulations are roughly an order of magnitude more
computationally costly than the classical MD simulations and preclude the practical use
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of the ab initio QM/MM model. To address this barrier, we developed a QM/MM-∆MLP
model based on a fast, semiempirical QM/MM model that was more than 100 times faster
than the ab initio QM/MM model but with comparable accuracy.

The next section compares free energy profiles for tautomerization reactions from
classical MD using semiempirical and ab initio QM/MM models as well as the QM/MM-
∆MLP developed in this work. The following section then applies the QM/MM-∆MLP
model to ascertain the effect of inclusion of nuclear quantum effects on the reaction barriers.
The final section ties the results together and compares the various models with other
computational results reported in the literature as well as available experiments.

2.1. Free Energy Profiles of G-T Mispair from Classical Molecular Dynamics

Figure 2 compares the free energy profiles from classical MD simulations for the ab
initio QM/MM (PBE0/6-31G*), semiempirical QM/MM (AM1/d), and QM/MM-∆MLP
models. Table 1 lists the relative free energy values for key stationary points along the
various profiles. The reactions are broken down into competing wGT→GT* and wGT→G*T
pathways and, separately, the interconversion GT*→G*T. These reaction steps are shown
schematically in Figure 3, and representative structures for key stationary points along the
reaction paths are shown in Figure 4. The 1D profiles shown are the result of the minimum
free energy path derived from the finite temperature string method [37,38], followed by
additional production path refinement sampling (see Section 3).
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Figure 2. Classical free energy profiles for guanine–thymine mispair tautomerization reactions using
different ab initio and semiempirical QM/MM and QM/MM-∆MLP models described in the text:
(a) wGT→GT*; (b) wGT→G*T; (c) GT*→G*T. Here “wGT” indicates a G-T wobble pair, and G* and
T* are nonstandard (enol) tautomer states of G and T, respectively, as indicated in the figure and
described in the text.

The ab initio QM/MM profiles have a single transition state with the exception of
the wGT→G*T profile. The wGT→GT* profile passes through a single transition state
(TSa) that involves a partially ionized state with formal charges at G:O6 (protonated) and
T:O4 positions (Figure 3a) that then undergoes a conformational shearing of the base pair
concerted with proton transfer to form GT*. The wGT→GT* profile follows an initial
path (Figure 3b) to a partially ionized transition state (TSb1) similar to that of TSa, but
then follows a stepwise path that first involves conformational shearing of the ionized
nucleobases to form a metastable intermediate (Ib) that then undergoes a proton transfer
from G:N1→T:N3 passing through transition state (TSb2) to form the GT* product. The
GT*→G*T involves a concerted dual proton transfer (Figure 3b) that passes through a
low-barrier charge-separated transition state (TSc).
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Figure 3. Schematic of guanine–thymine mispair tautomerization reaction mechanisms using
QM/MM-∆MLP models described in the text: (a) wGT→GT*; (b) wGT→G*T ; (c) GT*→G*T. Here,
“wGT” indicates a G-T wobble pair, and G* and T* are nonstandard (enol) tautomer states of G and
T, respectively. Blue arrows represent electron transfer direction, and red motion arrows represent
shearing direction of the base pairs [39].

The AM1/d QM/MM method is a fast, semiempirical model that was first tested
to ascertain the degree to which it could reliably model tautomerization reactions such
that it might be applied with the more computationally intensive PIMD simulations. The
AM1/d method considerably overestimates the free energy barriers relative to the ab initio
QM/MM model (Figure 2). Additionally, the AM1/d model produces wGT→GT* and
wGT→G*T reaction profiles that are more endoergic. This is likely due in part to the known
problem that AM1 tends to underpredict the strength of hydrogen bonds. As the formation
of the high-energy enol tautomer states (G*T and GT*) is accompanied by an increase
in the number of hydrogen bonds, an underprediction of the strength of the hydrogen
bonds will lead to a higher-energy Watson–Crick-like hydrogen bonded state. Perhaps
more concerning is that the AM1/d profile produces multiple transition states for each
profile separated by, in some cases, artificial intermediates not observed in the ab initio
QM/MM profiles.

The developed QM/MM-∆MLP model, on the other hand, is observed to closely
mimic the ab initio QM/MM profiles in Figure 2. The transition state barriers (∆A‡) are all
within approximately 1 kcal/mol of the PBE0/6-31G* QM/MM values (Table 1), and the
reaction free energy values (∆A) are less than 0.5 kcal/mol. This provides support for the
use of the QM/MM-∆MLP model in the PIMD simulations described in the Section 2.3.
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Figure 4. Representative nucleobase structures in guanine–thymine mispair tautomerization reactions
using QM/MM-∆MLP models described in the text and illustrated schematically in Figure 3. Here,
“wGT” indicates a G-T wobble pair, and G* and T* are nonstandard (enol) tautomer states of G and
T, respectively. TSa, TSb1, TSb2, and TSc are the transition states, and Ib is an intermediate state
presented in Figures 2 and 3. The structures were obtained by averaging the trajectory by Cpptraj [35],
and the unit of distances shown here is Å. Other parts of the system, including sugar and phosphate
groups, are not shown.

2.2. Sensitivity of Free Energy Profiles to Sampling

The quantitative determination of free energy surfaces and minimum free energy
paths for complex systems requires intensive sampling efforts. Oftentimes, even a minimal
level of sampling is precluded by the computational cost of ab initio QM/MM simulations,
particularly when the QM region becomes large. In this section, we illustrate the degree to
which sampling can affect predictions obtained from the free energy profiles examined in
this study.
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In the current work, we performed finite temperature string method optimization
using five generalized coordinates to determine the minimum free energy path for the
reaction. At the ab initio QM/MM level, we then refined the final path with four inde-
pendent trials, each of which were conducted for 10 ps for each of the 32 string images
(windows). The cumulative sampling from the string simulations and final path refinement
were used to construct the plots shown in Figure 2. For the more efficient QM/MM-∆MLP,
the refinement was conducted with four independent trials, and each of the 32 images was
sampled for 25 ps/image/trial. This is considerably more sampling than what is often
encountered in other studies. For example, a previous study of the same reaction used
approximately 2.5 ps/image of cumulative sampling to construct free energy profiles [23].

In order to make an estimate of the expected variance of the free energy profiles
derived from more modest sampling, we divided the 40 ps of sampling per string image
into 16 nonoverlapping 2.5 ps blocks. We then reanalyzed the free energy profiles using
only the 2.5 ps of sampling of a single block in order to come up with 16 profiles, which
are shown in Figure 5. While the overall shape of the profiles is qualitatively similar, the
range of values for the rate-controlling transition states is observed to vary between 2.0
and 3.4 kcal/mol, particularly for the GT*→GT tautomerization. One should bear in mind
that this demonstration is a best-case scenario in the sense that it examines the refinement
of a final converged path. It does not consider variations in the path that could result
from independent string simulations that also used less sampling to obtain the final path.
This demonstration highlights the need for sampling in order to obtain sufficiently precise
quantitative estimates of the free energy profiles and barriers. In turn, this stresses the
importance of developing accurate QM/MM-∆MLP models that are able to access time
scales well beyond that of conventional ab initio QM/MM methods. This becomes even
more critical when one considers more computationally intensive PIMD simulations in the
Section 2.3.

Figure 5. Classical free energy profiles for guanine–thymine mispair tautomerization reactions using
ab initio QM/MM plotted with independent trials and analyzed with different 2.5 ps time blocks:
(a) wGT→GT*; (b) wGT→G*T; (c) GT*→G*T. Here, “wGT” indicates a G-T wobble pair, and G* and
T* are nonstandard (enol) tautomer states of G and T, respectively, as indicated in the figure and
described in the text. Nonoverlapping 2.5 ps time blocks were constructed by uniformly dividing
the 4 independent trials of 10 ps final path refinement sampling (40 ps cumulatively) into 16 2.5-ps
blocks that were each analyzed independently. Different colors in the plots refer to different trials,
and different line styles refer to different blocks. The ranges of rate-controlling transition state (TS)
free energy barriers are given below the TS label.
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2.3. Free Energy Profiles of G-T Mispair from Path Integral Molecular Dynamics

Figure 6 compares the classical and PIMD free energy profiles using the QM/MM-
∆MLP model. The differences in free energy values between classical MD and PIMD, as
well as approximate changes in rates and populations, are summarized in the supporting
information (Table S1). For the wGT→GT* and wGT→G*T reactions, the profiles and
barriers are similar. This is due to the nature of the rate-controlling transition state that
involves a conformational event (base shearing, as illustrated in Figures 3 and 4, TSa and
TSb1), as opposed to a proton transfer event. Alternatively, in the case of the GT*→G*T, it
is the proton transfer itself (TSc in Figures 3 and 4) that characterizes the rate-controlling
transition state, and the barrier is predicted to be significantly lower with PIMD.

Figure 6. Classical and path integral molecular dynamics free energy profiles for guanine–thymine mi-
spair tautomerization reactions using QM/MM-∆MLP models described in the text: (a) wGT→GT*;
(b) wGT→G*T; (c) GT*→G*T. Here, “wGT” indicates a G-T wobble pair, and G* and T* are nonstan-
dard (enol) tautomer states of G and T, respectively. Profiles from classical and PIMD are shown as
black and red lines, respectively.

Generally, the inclusion of nuclear quantum effects does not significantly alter the
reaction free energies for the systems examined here. This implies that the populations of
the tautomer states are predicted by classical and PIMD simulations to be very similar. The
most change in populations is for GT*→G*T, where the ∆A value for the reaction changes
from −0.43 to 0.26 kcal/mol. The concerted proton transfer involved in the equilibrium
between GT* and G*T is predicted to be more rapid when nuclear quantum effects are
included. A rough estimate based only on the ∆∆A‡ values suggests that PIMD would
increase the forward rate by a factor of 123 and the reverse rate by a factor of 395.

The evolution of the key distances as a function of the reaction path progress variable
[0, 1], as well as the proton ring polymer degree of expansion (∆|rH|, Equation (1)) that
is a measure of the delocalization of the proton wave packet [40], is shown in Figure 7.
In each case, pronounced delocalization of the proton wave packet occurs at the crossing
point of covalent bond formation and cleavage distances involved in the proton transfer.
In the wGT→GT* and wGT→G*T reactions, the proton transfers are distinctly separated,
whereas in the GT*→G*T reaction, they are concerted and appear in close proximity in
terms of the path progress variable. Similar behavior has been observed for proton transfer
reactions elsewhere [40].
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Figure 7. The atom distances and the proton ring polymer degree of expansion (∆|rH|, Equation (1))
for guanine–thymine mispair tautomerization reactions using QM/MM-∆MLP models described
in the text: (a) wGT→GT* (a,d); (b) wGT→G*T (b,e); (c) GT*→G*T (c,f). Here, “wGT” indicates
a G-T wobble pair, and G* and T* are nonstandard tautomer states of G and T, respectively. The
proton ring polymer degree of expansion and the atom distances are shown as top and bottom panels,
respectively. The notations of atoms are the same as in Figure 3.

2.4. Comparison of Various Models with Experiment

Table 1 compares the free energy values for each of the models with values reported
by Li et al. [23] and from the experiment. Differences in free energies with respect to the
experiment are listed as ∆ values. Overall, the free energy differences ∆A between the GT
wobble pair and the GT* and G*T states are predicted from calculations to be too endoergic.
The AM1/d model performs the worst, with ∆A values exceeding 8 kcal/mol, whereas the
PBE0/6-31G* QM/MM and QM/MM-∆MLP models have errors below 4 kcal/mol. For
the wGT→GT* reaction, Li et al. [23] reported a value of 6.00 kcal/mol, which is in good
agreement with the experimentally derived value of 4.43 kcal/mol (estimated from the
measured rate using classical transition state theory with a unit transmission coefficient).
The free energy barriers for the wGT→GT* reaction are overestimated using PBE0/6-31G*
QM/MM and QM/MM-∆MLP, while they appear underestimated for GT*→G*T.

The general picture that emerges from the current work together with previous com-
putational [23,34] and experimental [20–22] work is that for the B-DNA system, there is a
relatively high barrier for the tautomerization of the wGT wobble pair to form either GT* or
G*T tautomer states. The barrier for interconversion between GT*→G*T is much lower, and
this barrier is predicted to be considerably influenced by nuclear quantum effects. Likely,
this implies that there is a rapid equilibrium between GT* and G*T states that occurs on a
time scale much faster than the rate of transition from wGT.

In a broader context, as alternative tautomeric forms of DNA bases have been impli-
cated in DNA replication, it is of interest to consider how tautomerization is affected by the
environment of a DNA polymerase. In the study of Li et al. [23], the GT*→G*T tautomer-
ization was studied in B-DNA and also in a DNA polymerase λ variant. The study found
that the environment of the polymerase had a significant influence on the thermodynamics,
kinetics, and mechanism. Further, Slocombe et al. examined quantum tunneling effects
for tautomerization in GT wobble pairs by coupling first-principles quantum chemistry
calculations with an open quantum system master equation [26]. Results predicted the
existence of a transient “tunneling-ready” state in the polymerase active site that led to
a 100-fold increase in rate. In the present work, simulations were not performed in the
polymerase environment. Nonetheless, given that the environment alters the population
of G-T mispairs and the transition state ensemble for tautomerization [23], together with
evidence for a “tunneling-ready” state in the polymerase [26], it is likely that polymerase
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binding would impact the nuclear quantum effects. The degree to which nuclear quantum
effects are influenced by different environments is a subject of continued interest and
future work.

2.5. Benefits and Pitfalls of the QM/MM+∆MLP Approach

The approach taken in the current work is to train a QM/MM+∆MLP model to closely
reproduce ab initio QM/MM simulation data at the PBE0/6-31G* level in order to accelerate
path sampling convergence and enable more practical PIMD simulations. The advantage
of such an approach is that once developed, the QM/MM+∆MLP model affords a factor of
roughly 300-fold speedup relative to (PBE0/6-31G*)/MM simulations with an accuracy
of free energy values within 1 kcal/mol (Table 1). The disadvantage of this approach is
that one must train the QM/MM+∆MLP model itself, and this will depend on the training
data. In the present case, we train against (PBE0/6-31G*)/MM energy and force data. The
reliability of these data will depend not only on the level of quantum theory (e.g., the
chosen exchange–correlation functional and basis set) but also on the QM/MM interaction
parameters (i.e., the MM charges and Lennard–Jones parameters). Recently, the ωB97M-
D3BJ/def2-TZVPPD level of theory has been demonstrated to be highly reliable and has
been used to create databases for intermolecular interactions [41] that in turn have been used
to create machine learning potentials [42] for drug discovery. Such an approach, however,
becomes more difficult when transferred to the study of complex chemical reactions that
occur in heterogeneous condensed-phase environments such as those considered in the
current work. An additional concern when applying a QM/MM+∆MLP model is that it
may not reliably represent the target ab initio QM/MM model outside the scope of the
training data ensemble. One possible mechanism to perform a consistency check is to
use a weighted thermodynamic perturbation approach [43] or generalized multireference
variant [44]. These methods potentially can correct the approximate QM/MM+∆MLP free
energy surface to the target ab initio QM/MM level, provided that there is sufficient phase
space overlap as indicated by an analysis of the reweighting entropies.

Table 1. Free energy values along the reaction path for tautomerization reactions using different QM
models and methods a.

Reaction Method ∆A(σerr) ∆ ∆A‡
f (σerr) ∆ ∆A‡

r (σerr) ∆

wGT→GT*

Expt. [21] 4.43 16.88 12.45
PBE0/6-31G* 3.97 (0.04) −0.46 20.41 (0.05) 3.53 16.45 (0.04) 4.00
AM1/d 9.54 (0.04) 5.11 23.51 (0.06) 6.63 13.98 (0.05) 1.53
QM/MM-∆MLP 3.6 7(0.07) −0.76 21.01 (0.07) 4.13 17.34 (0.07) 4.89
PIMD 3.48 (0.03) −0.95 20.65 (0.04) 3.77 17.16 (0.03) 4.71
Li et al. [23] 6.00 1.57 15.70 −1.18 9.70 −2.75

wGT→G*T

Expt. [21] 3.82
PBE0/6-31G* 3.06 (0.04) −0.76 20.08 (0.05) 17.02 (0.05)
AM1/d 8.19 (0.04) 4.37 23.55 (0.04) 15.36 (0.04)
QM/MM-∆MLP 3.24 (0.07) −0.58 21.02 (0.07) 17.78(0.07)
PIMD 3.75 (0.04) −0.07 20.63 (0.04) 16.88 (0.04)
Li et al. [23] N/A N/A N/A

GT*→G*T

Expt. [21] −0.62 9.21 9.83
PBE0/6-31G* −0.91 (0.03) −0.29 6.72 (0.05) −2.49 7.63 (0.05) −2.20
AM1/d −1.36 (0.03) −0.74 10.26 (0.03) 1.05 11.62 (0.04) 1.79
QM/MM-∆MLP −0.43 (0.07) 0.19 7.06 (0.07) −2.15 7.49 (0.07) −2.34
PIMD 0.26 (0.03) 0.88 4.21 (0.03) −5.00 3.95 (0.04) −5.88
Li et al. [23] −0.20 0.42 5.70 −3.51 5.90 −3.93

a σerr refers to the standard error of the mean for 4 trial runs; ∆ refers to the difference between the current method
and experimental results. Experimental results are obtained from Ref. [21]; Li et al. results were obtained in
Ref. [23], which were calculated with ωB97X-D3/6-311G** and 13 reaction coordinates for a B-DNA system built
by NAB program in AmberTools [45].
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3. Materials and Methods
3.1. Background

There have been a number of quantum mechanical studies that have investigated the
tautomerization of nucleobases in DNA and RNA [2,6,25,46–51] as well as extended syn-
thetic genetic alphabets [2] that have great promise in the development of new technology.
There have been fewer computational studies that utilize QM/MM simulations [23,52] to
characterize the tautomerization reaction free energy path in complex condensed-phase
environments. Further, there have been relatively few studies that have explored the contri-
bution of nuclear quantum effects on the proton transfers involved in the tautomerization
of nucleic acids [26,52–54].

One strategy that has been used to study nuclear quantum effects (within the Born–
Oppenheimer approximation) in condensed-phase simulations of biological systems has
been to use path integral molecular dynamics (PIMD) simulation methods [55–59]. Ko-
sugi et al. [40] calculated among the first multidimensional quantum free energy sur-
faces using PIMD and a DFTB QM/MM model of a proton transfer reaction in a 2,4-
dichlorophenol-trimethylamine complex. The QM/MM model’s empirical repulsive poten-
tial was parametrized to reproduce high-level QM reference data. The calculations used
the multidimensional blue moon ensemble method to achieve a converged free energy
surface in a tour de force benchmark demonstration. Sauceda et al. [60] more recently
provided evidence that nuclear quantum effects enhance electronic interactions, leading to
strengthening of covalent and noncovalent molecular interactions at finite temperature. The
study used the symmetric gradient-domain machine learning (sGDML) framework [61–63]
trained against high-level data sets [64,65]. The inclusion of nuclear quantum effects
with PIMD can become cost-prohibitive at the ab initio QM/MM level when the quantum
region becomes too large and/or has too intensive sampling requirements [66,67]. An
alternative strategy is to use a fast, approximate, semiempirical [68] or density-functional
tight-binding [69] QM model within a QM/MM or so-called quantum mechanical force
field [66,67,70] framework. These models can be parameterized to improve their accuracy,
for example, using force matching to higher levels [71–73]. Machine learning potentials
(MLPs) have shown particular promise in enhancing the accuracy and performance of
condensed-phase simulations of chemical reactions [33,74–78]. Of particular relevance
to the current work is the development of QM/MM-∆MLP models, whereby the ener-
gies and forces of a fast, approximate QM model are corrected with a machine learning
potential [76,79–85]. These are described in more detail in the supporting information.

3.2. Free Energy Profiles of Tautomer Reactions from Classical Molecular Dynamics

The model system was prepared from the crystal structure of B-DNA with G-T wob-
ble pair mismatches (PDB ID:113D) [27]. Experimental NMR data for the G-T mispair
dynamics were previously reported for this system [20–22]. The model contains 762 solute
atoms (including hydrogen atoms). We solvated the system with 5151 water molecules in a
truncated octahedron with 59.3 Å real-space lattice vector lengths. A total of 13 Cl− and
35 Na+ ions were added to neutralize the charge and produce a 0.14 M ion concentration.
The system was equilibrated with an MM potential following the procedure described
in Ref. [86]. The procedure includes geometry optimization, heating, solvent annealing,
and equilibration of the system density while restraining solute heavy atoms. The solute
restraints are gradually reduced over the course of the equilibration procedure. This proce-
dure involved 6.2 ns and 2.6 ns of simulation in the NVT and NPT ensembles, respectively,
using a 1 fs time step. The system was then equilibrated for an additional 100 ns in the
NPT ensemble. A Langevin thermostat [87] was used at a 5.0 ps−1 collision frequency
to maintain the temperature at 298 K, and the density was equilibrated at 1 atm using a
Berendsen isotropic barostat.

The DNA was modeled with the OL15 force field [88]. The SPC/Fw water model [89]
and the Li et al. ion parameters [90] were used to represent the solvent environment. The
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particle mesh Ewald method [91,92] was used to calculate electrostatic interactions with a
10 Å real-space cutoff, a 1 Å reciprocal space grid spacing, and tinfoil boundary conditions.

The tautomeric reactions were decomposed 3 steps. Each step was a path that con-
nected 2 tautomeric forms. The free energy profiles of each step were calculated from
QM/MM umbrella sampling. The “wGT” state corresponded to the G-T wobble base pair
in which the T21:N3 position was protonated. The “GT*” state was a tautomer in which the
T21:H3 proton was covalent-bonded to the T21:O4 position. Similarly, the “G*T” state was
a tautomer in which the H3 proton was bound to the G4:O6. The 3 steps involved proton
displacement between these states: wGT→GT*, wGT→G*T, GT*→G*T.

The free energy profiles were calculated with several QM/MM potentials. The
QM/MM methods compared in this work are as follows: PBE0/6-31G*, AM1/d [93–95],
and the QM/MM-∆MLP method described above. All QM/MM simulations were per-
formed with rigorous long-range electrostatic interactions under periodic boundary condi-
tions using linear-scaling QM/MM Ewald methods [32,96]. The QM region consisted of
51 atoms (the nucleobase and sugar of G4 and T21), and it had a net neutral charge. The
minimum free energy path of each step was optimized in the space of 5 reaction coordinates
with the finite temperature string method [38] for every QM/MM model. The 5 reaction
coordinates were distance differences meant to represent the transfer of H3 and H1 protons
and the relative displacement of the hydrogen bond pattern: ξ1 = RN3−H3 − RO6−H3,
ξ2 = RO6−H3 − RO4−H3, ξ3 = RN1−H1 − RN3−H1, ξ4 = RN1−O2 − RN2−O2, ξ5 = RN2−O2 −
RN1−N3. The umbrella biasing potentials used 200 kcal mol−1 Å−2 force constants. The
string method began from a linear interpolation of the reaction coordinates between the
step’s reactant and product states. Each string was sampled with 32 umbrella windows, and
the initial configurations were prepared in sequence starting from the reactant state. The
QM/MM structure of each window was geometry-optimized for 1000 steps using the con-
jugate gradient method. The temperature was raised from 0 K to 298 K over the course of
40 ps, and 10 ps of QM/MM equilibration was performed in the NVT ensemble. The string
method was performed for 50 iterations, and sampling occurred at 4 ps/window/iteration
using 1 fs time step. Four sets of production simulations were performed along the opti-
mized path using different thermostat random number seeds. Each production simulation
included 25 ps/window of sampling, and the reaction coordinate values were recorded ev-
ery 10 fs. The aggregate sampling from all 3 reaction steps was analyzed with the multistate
Bennett’s acceptance ratio (MBAR) method [97], as implemented in the ndfes module in
FE-ToolKit software [98,99], distributed within AmberTools [100], to produce 5-dimensional
free energy surfaces. The profiles presented in this manuscript are the free energy values
within the 5-dimensional surface evaluated along the minimum free energy path. PBE0/6-
31G* simulations are very expensive; for this particular case, only 10 iterations of the string
method were performed, starting from the optimized AM1/d path. The PBE0/6-31G*
sampling was limited to 2 ps/window/iteration, and 4 sets of production simulations were
run for 10 ps/window/trial with a 1 fs time step. The PBE0/6-31G* QM/MM electrostatics
were calculated with the ambient-potential composite Ewald method [32] using a 10 Å
real-space cutoff, 1 Å reciprocal space grid spacing, and tinfoil boundary conditions.

3.3. Free Energy Profiles of Tautomer Reactions from PIMD

We performed PIMD simulations using i-PI 2.0 software [36] to treat nuclear quantum
effects. i-PI software [36] is a standalone molecular dynamics program that supports state-
of-the-art path integral sampling [101], including the PIGLET thermostat, which has been
shown to reduce the expense of computing quantum kinetic energy [102,103]. The path
integral dynamics was performed with a ring polymer Hamiltonian consisting of several
replicas (beads) that were harmonically restrained in series. At each time step, the potential
energy of each bead must be computed; however, these calculations are independent
and can be performed in parallel. We modified the Sander program to act as a driver
program [34], whereby multiple instances of Sander can be launched, and communication
between i-Pi and the pool of driver programs occurred through a network socket interface.
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We recalculated the free energy profiles from PIMD umbrella sampling. The profiles
generated from classical and path integral dynamics were compared to explore how nuclear
quantum effects change the free energy predictions. The PIMD dynamics was propagated
with 6 beads (replicas) and a 0.25 fs time step, and the temperature was maintained at
298 K using the PIGLET quantum thermostat [102,104], whose parameters were taken from
the GLE4MD website [105,106]. The parameters were chosen to reproduce the quantum
fluctuations at 298 K and span a range of frequencies up to 4142 cm−1. The PIMD umbrella
sampling was performed with 32 windows using 200 kcal mol−1 Å−2 force constants.
The windows uniformly discretized the optimized path obtained from classical dynamics.
The PIMD restraint potentials were applied to the centroid positions by making use of
the i-PI interface with PLUMED [107,108]. Each window was sampled for 2.5 ps, and
the sampling was repeated 4 times with different thermostat random number seeds. The
reaction coordinate values were calculated from the centroid positions, and the free energy
surface was generated from MBAR analysis of the aggregate sampling obtained from the
4 trials of the 3 reaction steps.

Following Ref. [40], the interpretation of the PIMD results was aided by tracking the
“degree of expansion” of the transferring proton ring polymer, ∆|rH|.

∆|rH| =
1
P

P

∑
n=1

|rH,n − uH,c| (1)

where rH,n is the position vector of bead n, uH,c is the centroid position vector, and P is the
number of beads. The degree of expansion is simply the average bead–centroid distance
for the proton involved in the tautomeric reaction.

4. Conclusions

This work presents free energy simulation results of GT mispair tautomerization
reactions in B-DNA using semiempirical QM/MM, ab initio QM/MM, and a new QM/MM-
∆MLP model that was specifically trained for this application. We demonstrate that short
(2.5 ps) sampling of the reaction path discretized into 32 string images/umbrella windows
leads to large deviations (up to 3.4 kcal/mol) in the calculated transition state barriers. The
QM/MM-∆MLP model enables greater sampling, which in turn leads to higher-precision
free energy estimates, as well as offering the capability to include nuclear quantum effects
through path integral molecular dynamics simulation. PIMD simulations produced barriers
for the GT*→G*T interconversion that were significantly lower than those calculated from
classical MD. Collectively, the results suggest that there is a rapid equilibrium for GT*⇌G*T
but a relatively large barrier for the tautomerization of the wGT wobble pair to form either
GT* or G*T tautomer states.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29112703/s1, References [33,34,67,74–80,100,109–113] are
cited in Supplementary Materials file.
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