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ABSTRACT 
 

Not only are horticultural crops necessary for human sustenance, but they also enhance the 
aesthetic appeal of our surroundings. They provide a wealth of essential nutrients in addition to 
visual attractiveness. However, abiotic factors such as heat, drought, nutrient deficits, and heavy 
metal stress pose several obstacles to these crops, severely impeding their development and 
output. Many approaches have been used to address these issues, such as genetic alterations to 
increase stress resistance. Several industry applications, including agricultural ones. 
Nanotechnology offers novel solutions in the field of agriculture, including the remediation of soil and 
water, plant protection at the nanoscale, and the application of nano-nutrition to crops. In order to 
ensure sustained success in horticulture crops that face a range of environmental problems, these 
applications are essential. Nevertheless, there is still much to learn about the specific ways in which 
nanoparticles interact with plants, even in spite of the fact that their use in a wide range of 
applications is growing. This offers agriculture a successful and sustainable future.    

Review Article 



 
 
 
 

Faisal et al.; Asian J. Res. Crop Sci., vol. 8, no. 4, pp. 483-489, 2023; Article no.AJRCS.108694 
 
 

 
484 

 

Keywords: Horticulture; visual attractiveness; and Nano nutrition. 
 

1. INTRODUCTION 
 

Abiotic stressors, which include salt, drought, 
heavy metals (HMs), and water logging, are the 
main factors that restrict plant development and 
agricultural yield globally. In response to these 
kinds of challenges, plants activate a number of 
complex systems that change the morpho-
physiological and biochemical processes. In 
recent decades, traditional breeding, genetic 
engineering, and marker-assisted breeding have 
all been used to address abiotic stressors in 
plants. As technology advances, effective 
solutions to the negative impacts of abiotic 
environmental restrictions are needed to create 
crop production systems that are sustainable in 
agriculture [1] By enhancing plant resilience to 
abiotic stress, NPs may boost crop yields in 
sustainable agriculture and solve both current 
and future production issues. Exogenously 
applied chemicals are one of several                   
effective and environmentally friendly methods 
that have been used to lessen the negative 
effects of abiotic stress on plants and improve 
their capacity to adapt to unfavourable 
circumstances [2].   
 

2. ABIOTIC STRESSES 
 

Plants encounter a wide range of challenges 
throughout their life cycles, broadly categorized 
as biotic stresses caused by living organisms like 
bacteria, viruses, and nematodes, and abiotic 
stresses resulting from environmental factors. 
Abiotic stress, particularly, is a major concern 
that has a significant impact on the productivity 
and quality of horticultural crops. These 
stressors, which encompass soil salinity, 
flooding, and extreme temperatures (both high 
and low), disrupt various stages of crop growth 
and development [3]. They divert their energy 
away from growth and reproduction to adapt to 
the stress, ultimately leading to reduced crop 
yields [4]. In fact, unfavorable conditions can 
slash crop yields by as much as 70% [5]. These 
ROS can inflict damage on lipids, proteins, and 
DNA, leading to cellular harm and even plant 
death [6]. To counteract the excessive production 
of ROS and the associated oxidative stress, 
plants have developed an effective antioxidative 
defense system. This system comprises both 
enzymatic and non-enzymatic components. 
Besides generating which serve as osmolytes to 
maintain cellular stability [7]. The combined 
impact of these stresses, including interactions 

between biotic and abiotic factors. This is a 
pressing concern for horticultural crops, which 
not only have higher market value but also 
require more resources and provide essential 
nutrients in our diets. A significant portion of the 
essential vitamins and minerals we need comes 
from vegetables and fruits, and a deficiency in 
these can lead to nutritional diseases and, in 
severe cases, even death [8]. Abiotic stresses 
don't just decrease crop yields; they also affect 
the quality of the produce, leading to changes in 
appearance and nutritional value [9]. Often 
involving changes in gene expression [10]. 
However, these adaptive strategies come at a 
cost, diverting energy and nutrients away from 
normal growth processes. These practices 
include selecting appropriate cultivars, timing 
planting, adjusting planting density, and 
optimizing water and fertilizer use [11]. 
Additionally, strategies such as protected 
cultivation, soilless farming, and grafting are 
used to protect plants from adverse conditions. 
Grafting, in particular, is a crucial method for 
maintaining the resistance of vegetable crops, 
especially high-yield varieties like cucurbits and 
solanaceous plants. It enhances their ability to 
withstand challenges like saline soil, nutrient or 
water deficiencies, and the harmful effects of 
heavy metals or pollutants [12]. Genetic 
improvement stands out as another pathway to 
bolster crop tolerance to abiotic stresses by 
transferring genes associated with stress 
responses. Scientists have placed particular 
emphasis on regulatory genes, such as 
transcription factors, which have the ability to 
govern multiple stress-related genes 
simultaneously. Nevertheless, genetic 
improvement encounters challenge due to the 
intricate nature of plant responses, genetic 
diversity, and the protracted breeding process 
[13]. In vitro selection emerges as a valuable tool 
for developing stress-tolerant plant lines, 
especially with regard to salt and drought 
tolerance. This method involves inducing genetic 
variation in plant cells, exposing them to 
stressors, and subsequently regenerating the 
entire plant from the surviving cells. While this 
approach is less time-consuming and costly than 
traditional genetic engineering, it does have its 
limitations concerning trait stability and potential 
epigenetic changes [14]. In summary, abiotic 
stresses represent a substantial threat to 
agriculture, especially for high-value horticultural 
crops. Dealing with these challenges requires a 
multifaceted approach, which includes a 
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combination of agronomic practices, genetic 
enhancement, in vitro selection, and the creative 
utilization of biostimulants and bioactive 
compounds to guarantee both crop yield and 
quality [15]. 
 

3. INTRODUCTION TO NANOPARTICLES 
 

Nanotechnology is a field that focuses on the 
manipulation of matter, whether it's living or non-
living, at incredibly small scales, involving 
individual atoms and molecules [16]. Its 
applications have gained significant recognition, 
to the extent [17]. Within the field of 
nanotechnology, structures and devices 
measuring less than 100 nanometers are 
modified in at least one dimension to produce 
nanomaterials with distinctive characteristics. 
These nanomaterials are tailored for use across 
various industries [18]. Nanotechnology 
encompasses the processing, synthesis, 
manipulation, and utilization of nanomaterials, 
typically measuring 100 nanometers or less in 
size. These materials exhibit remarkable optical 
characteristics, size-dependent properties, and a 
significant surface area, making them highly 
valuable for applications in areas like nutrition 
and plant protection [19]. In agriculture, the 
incorporation of nanoparticles into crops has 
demonstrated its effectiveness. This practice 
bolsters plant growth, development, quality, and 
yield, while also enhancing the plants' ability to 
withstand unfavorable environmental conditions. 
Furthermore, it's worth noting that, in certain 
conditions, plants themselves can naturally 
produce nanomaterials. The field of 
nanotechnology holds the promise of offering 
farmers and consumers environmentally friendly 
and health-conscious options, ultimately driving 
economic growth without adverse impacts on the 
environment and human well-being [20]. 
 

4. TRANSLOCATION AND UPTAKE OF 
NANOPARTICLES IN PLANTS 

 

Various techniques are commonly employed to 
introduce nanoparticles (NPs) into plants, 
including methods like seed coating, soil 
saturation, and foliar spray applications. Given 
the pivotal role of plants in the soil ecosystem, 
they serve as a potential pathway for NPs to be 
taken up, transported, and integrated into the 
food chain [21]. It's crucial to comprehend how 
plants absorb NPs. A previous study conducted 
by Zhu, Han, Xiao, & Jin in 2008 demonstrated 
that FeO NPs could be absorbed, transported, 
and accumulated in pumpkin plants without 

causing harm. A noteworthy finding was that a 
substantial portion of the accumulated iron 
content, specifically 67.4%, was detected within 
the root tissues, with 45.4% distributed both 
internally and externally across the root surface. 
In contrast, only a minute fraction, just 0.6%, was 
identified within the leaf tissue. Moreover, copper 
oxide nanoparticles were found to exhibit mobility 
within maize plants through the xylem and 
phloem conduits, as reported by Wang in 2012. 
Additionally, research conducted by Lin et al. in 
2009 revealed the capability of Fullerene (C70) 
nanoparticles to traverse the vascular system of 
rice plants, potentially being passed on to 
subsequent generations. 
 

The apoplastic and symplastic routes are the two 
different paths by which nanoparticles (NPs) 
enter plant roots and leaves and then migrate 
throughout the plant [22]. In 2020, Cui et al. 
conducted a different investigation in which they 
discovered SiO2 NPs in rice cells contaminated 
with arsenic. After first passing through the cell 
walls, these NPs disseminate throughout the 
interstitial spaces between cell walls and plasma 
membranes, according to advanced imaging 
methods. Their continued movement may be 
influenced by capillary forces and osmotic 
pressure [23]. Although there are a number of 
possible methods for NPs to enter plant cells, 
including ion channels, carrier proteins, and 
aquaporins, the specific processes are still 
unclear [24].  

 

5. IMPACTS OF NANOPARTICLES ON 
PLANTS EXPERIENCING HEAVY 
METAL STRESS 

 

Including atmospheric deposition, 
industrialization, waste disposal, and industrial 
processes [25]. The persistent presence of heavy 
metals (HMs) in polluted soils gives rise to 
significant environmental concerns. This situation 
has far-reaching consequences, affecting not 
only plants but also posing threats to humans 
and animals through exposure to harmful 
compounds [26]. The accumulation of these 
substances in plants can result in oxidative 
damage, disrupt photosynthesis, disturb ion 
regulation, and hinder nutrient absorption, 
ultimately impeding plant growth [27]. 
 

Researchers have been actively investigating the 
potential of nanoparticles (NPs) in addressing the 
challenges posed by heavy metal (HM)-
contaminated soil, with recent studies 
demonstrating promising outcomes [28]. For 
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example, FeO NPs have shown their ability to 
mitigate the harmful effects of cadmium (Cd) 
toxicity in wheat plants, leading to enhanced 
plant growth, increased chlorophyll levels, and 
improved antioxidant enzyme activity. NPs have 
proven effective in curbing the accumulation of 
toxic ions within plant cells, thereby shielding 
them from the stress resulting from excessive 
ions. Furthermore, the beneficial effects of silicon 
(Si) NPs in counteracting phytotoxicity induced 
by HMs have been observed [29]. These findings 
underscore the significance of further research in 
the development of innovative nano-remediation 
strategies, effectively combatting the detrimental 
effects of HMs on plant growth and development. 
 

6. THE IMPACT OF NANOPARTICLES ON 
PLANTS EXPERIENCING DROUGHT 
STRESS 

 

Drought stands as a prominent environmental 
challenge that has garnered considerable 
attention from both environmental and 
agricultural experts. It presents a substantial 
threat to global agriculture, significantly impeding 
plant growth and diminishing crop yields. Drought 
stress impacts various facets of plant 
development, ultimately jeopardizing the 
economic viability of the agricultural sector [30]. 
Drought stress is marked by the scarcity of 
moisture, leading to reduced cell size, cell 
membrane damage, the initiation of oxidative 
stress, and premature leaf aging. All these 
factors contribute to a decline in crop yield [31]. 
 
For example, hawthorn plants exhibited 
increased resilience to drought when treated with 
Si NPs [32]. Similarly, Si NPs have played a 
significant role in aiding the recovery of barley 
plants following drought stress, exerting their 
influence on a range of morphophysiological 
traits [33]. Chitosan NPs have also proven 
advantageous by enhancing relative water 
content, the rate of photosynthesis, and the 
activities of catalase (CAT) and superoxide 
dismutase (SOD) [34].  
 

7. THE INFLUENCE OF 
NANOPARTICLES ON PLANTS 
FACING SALT STRESS 

 

Soil salinity represents a prominent global issue 
that exerts a substantial impact on crop yields. It 
introduces ionic toxicity and disrupts the ionic 
balance within plants [35]. Consequently, sodium 
(Na+) and chloride (Cl-) ions accumulate within 
plant cells, causing toxicity that severely impairs 

plant health [36]. Salt stress leads to a significant 
depletion of potassium ions (K+) in leaf 
mesophyll cells, while the concentration of 
sodium ions (Na+) within the cell's cytosols rises. 
This disrupts the plant's ability to assimilate 
carbon dioxide (CO2) in saline environments. 
The reduction in CO2 assimilation directly 
impacts crop growth rates and overall production 
[37]. Manganese NPs, employed for seed 
priming, have proven effective in managing 
salinity stress by influencing molecular 
responses in pepper crops [38].  
 

8. CONCLUSION 
 

The study emphasises how essential horticulture 
crops are to satisfying our aesthetic and 
nutritional needs. However, a variety of abiotic 
stresses pose significant difficulties to these 
crops, calling for creative solutions to improve 
their production and resilience. The rapidly 
developing science of nanotechnology offers 
prospective agricultural solutions in areas like as 
nutrition, protection of nanoscale plants, and 
cleanup of soil and water. Although regulations 
have been put in place to guarantee the 
appropriate use of nanoparticles, there is still a 
lack of information on how these particles 
interact with plants. It is clear from the future that 
nanomaterials have a great deal of promise for 
horticulture crops to reduce abiotic stress. It is 
crucial to conduct ongoing study on the precise 
functions and effects of nanoparticles in plant 
interactions. This study might improve our 
knowledge of how to use nanotechnology to 
support crops in an efficient manner. The 
research highlights how crucial horticultural crops 
are to meeting our dietary and aesthetic 
requirements. But a range of abiotic stressors 
provide serious challenges for these crops, 
necessitating innovative approaches to boost 
resilience and productivity. Potential agricultural 
solutions in areas like nutrition, protecting 
nanoscale plants, and cleaning up land and 
water are provided by the rapidly advancing 
science of nanotechnology. Despite the 
implementation of rules aimed at ensuring the 
proper use of nanoparticles, little is known about 
the interactions that these particles have with 
plants. Future research makes it abundantly 
evident that nanomaterials have enormous 
potential for horticultural crops in terms of 
lowering abiotic stress. Research on the specific 
roles and impacts of nanoparticles in plant 
interactions must continue. This research might 
have a major impact on agriculture's 
sustainability by expanding our understanding of 
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the ways in which nanotechnology can be used 
to increase crop resistance to environmental 
stresses. resistance in the face of environmental 
difficulties, significantly improving agriculture's 
sustainability. 
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