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Canada, 2 Program in Speech and Hearing Bioscience and Technology, Harvard University, Massachusetts,

United States of America, 3 Department of Brain and Cognitive Sciences, Massachusetts Institute of

Technology, Massachusetts, United States of America, 4 Inria, CEA, Université Paris-Saclay, Paris, France,
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Abstract

Reducing contributions from non-neuronal sources is a crucial step in functional magnetic

resonance imaging (fMRI) connectivity analyses. Many viable strategies for denoising fMRI

are used in the literature, and practitioners rely on denoising benchmarks for guidance in the

selection of an appropriate choice for their study. However, fMRI denoising software is an

ever-evolving field, and the benchmarks can quickly become obsolete as the techniques or

implementations change. In this work, we present a denoising benchmark featuring a range

of denoising strategies, datasets and evaluation metrics for connectivity analyses, based on

the popular fMRIprep software. The benchmark prototypes an implementation of a repro-

ducible framework, where the provided Jupyter Book enables readers to reproduce or mod-

ify the figures on the Neurolibre reproducible preprint server (https://neurolibre.org/). We

demonstrate how such a reproducible benchmark can be used for continuous evaluation of

research software, by comparing two versions of the fMRIprep. Most of the benchmark

results were consistent with prior literature. Scrubbing, a technique which excludes time

points with excessive motion, combined with global signal regression, is generally effective

at noise removal. Scrubbing was generally effective, but is incompatible with statistical anal-

yses requiring the continuous sampling of brain signal, for which a simpler strategy, using

motion parameters, average activity in select brain compartments, and global signal regres-

sion, is preferred. Importantly, we found that certain denoising strategies behave inconsis-

tently across datasets and/or versions of fMRIPrep, or had a different behavior than in

previously published benchmarks. This work will hopefully provide useful guidelines for the

fMRIprep users community, and highlight the importance of continuous evaluation of

research methods.
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Author summary

Many strategies exist to denoise fMRI signal. However, denoising software is ever-evolv-

ing, and benchmarks quickly become obsolete. Here, we present a denoising benchmark

featuring several strategies and datasets to evaluate functional connectivity analysis, based

on fMRIprep. The benchmark is implemented in a fully reproducible framework. The

provided Jupyter Book enables readers to reproduce core computations and figures from

the Neurolibre reproducible preprint server (https://neurolibre.org/). Most results were

consistent with prior literature. Scrubbing was generally effective, but is incompatible

with statistical analyses requiring the continuous sampling of brain signals, for which a

simpler strategy is preferred. Importantly, we found that certain denoising strategies

behaved inconsistently across datasets and/or fMRIPrep versions, or differently from the

literature. Our benchmark can enable the continuous evaluation of research software and

provide up-to-date denoising guidelines to fMRIprep users. This generic reproducible

infrastructure can facilitate the continuous evaluation of research tools across various

fields.

Introduction

Resting-state functional magnetic resonance imaging (fMRI) is a tool for studying human

brain connectivity [1,2] which comes with many analytical challenges [3,4]. One such key chal-

lenge is the effective correction of non-neuronal sources of fluctuations (called confounds),

known as denoising, which is important to reduce bias when studying the association between

connectomes and behavioral measures of interest [5]. A wide range of denoising strategies

have been proposed in the literature, with no approach emerging as a clear single best solution.

Denoising benchmarks on functional connectivity [6,7] have thus become an important

resource for the community to understand which denoising strategy is most appropriate in a

given study. Denoising benchmarks are however at a constant risk of becoming obsolete, with

new strategies being regularly developed or revised, as well as an ever-expanding scope of pop-

ulations being enrolled in research studies. The main objective of the present work is to

develop a fully reproducible denoising benchmark for fMRI functional connectivity, and dem-

onstrate how the proposed infrastructure enables the continuous evaluation of denoising strat-

egies across multiple software versions and datasets.

Reproducible and robust results have become a recurring interest in the neuroimaging

community [8,9]. The popular package fMRIPrep [10] is a prominent solution for fMRI pre-

processing designed with reproducibility in mind, and we decided to build upon that software

for our benchmark. However, fMRIPrep only performs minimal preprocessing while generat-

ing a broad list of potential confounds, intentionally leaving the selection of the exact denois-

ing strategy to end-users. The connectivity metrics are also not included as part of fMRIPrep

outputs, and users rely on additional software to apply denoising to time series and generate

connectivity measures. One popular open-source Python library for this purpose is Nilearn

[11]. Yet, until recently, there was no straightforward way to incorporate fMRIPrep outputs

into Nilearn in order to reproduce the most common denoising strategies. This lack of integra-

tion represented a major barrier to the exploration of denoising tools, both for cognitive neu-

roscientists who were required to develop custom code, and for computer scientists who had

to develop a detailed understanding of the inner workings of denoising strategies and

fMRIPrep.
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datasets on OpenNeuro (https://openneuro.org/

datasets/ds000228/versions/1.1.0, https://

openneuro.org/datasets/ds000030/versions/1.0.0).

All metadata and summary statistics are available

on Zenodo (https://doi.org/10.5281/zenodo.

6941757). Retrieval of the data mentioned above

are retrievable through the code repository and the

Neurolibre preprint service (https://doi.org/10.
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The main references for denoising benchmarks [6,7] did not use the then-novel fMRIPrep.

Whether the results of these benchmarks remain consistent with fMRIPrep outputs is an open

question. Different fMRI preprocessing softwares provide largely similar results, but noticeable

differences are still present [12,13]. Other computational factors can possibly impact the con-

clusion of a benchmark, such as the version of software and operating system [14]. Recent

research has also demonstrated that, given one fMRI dataset and similar research goals, differ-

ent researchers will select a wide variety of possible analytical paths [8]. The lack of standard

integration between fMRIPrep and Nilearn could lead to differences (and errors) in the imple-

mentation of the same denoising strategies by researchers, which can in turn lead to marked

differences in the impact of denoising methods.

In this work, we propose to address the issues of robustness of functional connectivity

denoising benchmarks by building a fully reproducible solution. This reproducible benchmark

will allow the fMRI research community to consolidate past knowledge on technical advances,

examine computation instability across different software versions, and provide guidance for

practitioners. For the broader scientific research community, we aim to highlight the impor-

tance of continuous method evaluation, and propose a widely applicable infrastructure to

implement such benchmarks. In order to create this benchmark, we implemented a series of

specific objectives:

• First, we developed a standardized application programming interface (API) to extract nui-

sance regressors from fMRIPrep. The robust API, which was added to Nilearn release 0.9.0,

can be used to flexibly retrieve a subset of fMRIPrep confounds for denoising and precisely

replicate nuisance regressors based on denoising strategies proposed in the literature.

• Our second objective was to implement a denoising benchmark to provide recommenda-

tions on the choice of functional connectivity denoising strategies for fMRIPrep users. We

used easily fetchable open access data, specifically two datasets on OpenNeuro [15] with

diverse participant profiles: ds000228 [16] and ds000030 [17]. ds000228 contains adult and

child samples, and ds000030 includes psychiatric conditions. The benchmark systematically

evaluates the impact of denoising choices using a series of metrics based on past research

[6,7].

• Our third objective was to turn this benchmark into a fully reproducible and interactive

research object. We combined a series of technologies, including software containers [18],

the Jupyter Book project [19], and the NeuroLibre preprint service [20] in order to create the

first fully reproducible benchmark of denoising strategies for fMRI resting-state

connectivity.

• Our fourth and last objective was to demonstrate that our approach can be used to evaluate

the robustness of the benchmark, by identifying possible differences across multiple versions

of fMRIPrep.

Results

Software implementation

We designed two APIs for users to perform denoising of fMRI time series using Nilearn, based

on fMRIPrep outputs. The APIs are maintainable, i.e., composed of modular and well-tested

code, and user-friendly, i.e., the syntax is standard and robust to errors. The confounds are

loaded by the APIs in a format compatible with downstream Nilearn analysis functions. The

first, basic API retrieves different classes of confound regressors sorted in categories of noise,
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nilearn.interfaces.fmriprep.load_confounds (simplified as load_
confounds in the following sections). The second, higher level API implements common

strategies from the denoising literature, nilearn.interfaces.fmriprep.load_
confounds_strategy (simplified as load_confounds_strategy in the following

sections). The load_confounds and load_confounds_strategy APIs are available

from Nilearn version 0.9.0 onwards. The following section describes both APIs in greater

detail.

load_confounds: basic noise components. The following Python code snippet demon-

strates the basic usage of load_confounds.

from nilearn.interfaces.fmriprep import load_confounds
confounds_simple, sample_mask = load_confounds(
fmri_filenames,
strategy = ["high_pass", "motion", "wm_csf"],
motion = "basic", wm_csf = "basic"

)

• fmri_filenames: path to processed image files, optionally as a list of paths.

• strategy: A list defining the categories of confound variables to use. Amongst the three

in this example, motion and wm_csf are further tunable.

• motion and wm_csf: additional parameters with four options

� basic: original parameters

� power2: original parameters + quadratic terms

� derivatives: original parameters + 1st temporal derivatives

� full: original parameters + 1st temporal derivatives + quadratic terms + power2d

derivatives

The load_confounds API fetches specific categories of confound variables, such as

motion parameters. It is possible to fine-tune these categories through various options, such as

the order of expansion of motion parameters. The implementation only supports fMRIPrep

version 1.4 and above, and requires the fMRIPrep output directory in its original format.

Users specify the path of a preprocessed functional file (file ending with desc-preproc_
bold.nii.gz or desc-smoothAROMAnonaggr_bold.nii.gz in the case of

ICA-AROMA). Warnings and errors inform the user if files or confounds were missing, for

example if fMRIPrep was run without the option for ICA-AROMA yet users request ICA-AR-

OMA confounds, or try to load an preprocessed fMRI output not suited for combination with

ICA-AROMA regressors. The function returns the confound variables in a Pandas

DataFrame object [21,22] and a time sample mask. The sample mask indexes the time points

to be kept. The function can also be used with a list of input files, in which case it returns a list

of confounds DataFrames and a list of time sample masks. A parameter called strategy
can be used to pass a list of different categories of noise regressors to include in the confounds:

motion, wm_csf, global_signal, scrub, compcor, ica_aroma, high_
pass, non_steady_state. For each noise category, additional function parameters are

available to tune the corresponding noise variables (please refer to Nilearn documentation

[23] for more details). Please refer to the following summary for the parameters listed above.

See S1 Text Annex A for a literature review and discussion for each category of common noise

sources.
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• motion: head motion estimates. Associated parameter: motion

• wm_csf confounds derived from white matter and cerebrospinal fluid. Associated parame-

ter: wm_csf

• global_signal confounds derived from the global signal. Associated parameter:

global_signal

• compcor confounds derived from CompCor [1]. When using this noise component,

high_pass must also be applied. Associated parameter: compcor, n_compcor

• ica_aroma confounds derived from ICA-AROMA [2]. Associated parameter: ica_
aroma

• scrub regressors for [3] scrubbing approach. Associated parameter: scrub, fd_
threshold, std_dvars_threshold

load_confounds_strategy: pre-defined strategies. The following code snippet demon-

strates the basic usage of load_confounds_strategy. This snippet retrieves the same

confounds variables as described in the example for load_confounds.

from nilearn.interfaces.fmriprep import load_confounds_
strategy
confounds_simple, sample_mask = load_confounds_strategy(
fmri_filenames,
denoise_strategy = "simple")

• fmri_filenames: path to processed image files, optionally as a list of paths.

• denoise_strategy: The name of a predefined strategy (see Table 1).

load_confounds_strategy provides an interface to select a complete set of curated

confounds reproducing a common strategy used in the literature, with limited parameters for

Table 1. Correspondence of load_confounds parameters to predefined denoising strategies in load_confounds_strategy.

Strategy

Parameters simple scrubbing compcor ica_aroma

high_pass True True True True

motion full* full* full* N/A

wm_csf basic* full N/A basic*
global_signal None* None* None*✝ None*

scrub N/A 5* N/A N/A

fd_threshold N/A 0.2*^ N/A N/A

std_dvars_threshold N/A 3*^ N/A N/A

compcor N/A N/A anat_combined* N/A

n_compcor N/A N/A all* N/A

ica_aroma N/A N/A N/A full

demean True* True* True* True*

* Parameters with customisable parameters.

^ The default thresholds will be updated in nilearn version 0.13.0 to match fMRIPrep defaults (fd_threshold = 0.5, std_dvars_threshold = 1.5). A deprecation warning

has been added in version 0.10.3.
✝ In version 0.10.3, global_signal is an allowed parameter to reflect the documentation of fMRIPrep. The default remains as not applying global_signal.

https://doi.org/10.1371/journal.pcbi.1011942.t001
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user customisation. There are four possible strategies that can be implemented from fMRIPrep

confounds:

• simple [24]: motion parameters and tissue signal

• scrubbing [25]: volume censoring, motion parameters, and tissue signal

• compcor [26]: anatomical compcor and motion parameters

• ica_aroma [27]: ICA-AROMA based denoising and tissue signal

All strategies, except compcor, provide an option to add global signal to the confound

regressors. The predefined strategies and associated noise components are listed in Table 1.

Parameters that can be customized are indicated with a *. See the Nilearn documentation for

more details [28]. See S1 Text Annex B for a more in-depth review of common denoising strat-

egies in the literature and S1 Text Annex C for a summary of evaluation benchmarks using

these strategies.

Denoising workflow. The denoising workflow is implemented through Nilearn. Fig 1

presents the graphic summary of the workflow. An fMRI dataset in the Brain Imaging Data

Structure (BIDS) standard was first passed to fMRIPrep. Brain parcellation atlases were

retrieved through the TemplateFlow [29] Python client (see https://www.templateflow.org/

usage/client/). In cases where an atlas was absent from TemplateFlow, it was converted into

TemplateFlow naming convention to enable use of the Python client. Each atlas was passed to

the NiftiLabelsMasker or NiftiMapsMasker for time series extraction. fMRIPrep

outputs were input to a Nilearn-based connectome generating workflow using load_
confounds_strategy. The filtered confounds and the corresponding preprocessed

NIFTI images were then passed to the Nilearn masker generated with the atlas where the

Fig 1. Workflow for post-fMRIPrep time series extraction with Nilearn tools.

https://doi.org/10.1371/journal.pcbi.1011942.g001
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underlying function nilearn.signals.clean applied the regressors for denoising (see https://

nilearn.github.io/stable/modules/generated/nilearn.signal.clean.html). S1 Text Annex E con-

tains the mathematical operation implemented by the denoising procedure. The time series

and connectomes were saved as the main outputs for further analysis.

The Python-based workflow describes the basic procedure to generate functional connec-

tomes from fMRIPrep outputs with a Nilearn data loading routine (e.g., NiftiMapsMasker
or NiftiLabelsMasker), fMRIPrep confounds output retrieval function (e.g., load_
confounds_strategy), and connectome generation routine (ConnectivityMeasure).

Path to the preprocessed image data is passed to load_confounds_strategy and the

function fetches the associated confounds from the .tsv file. The path of an atlas and the path

of the preprocessed image file is then passed to the masker, along with the confounds, for time

series extraction. The time series are then passed to ConnectivityMeasure for generating

connectomes.

Benchmark workflow. OpenNeuro datasets were retrieved through DataLad [30] and

fMRIPrep images were pulled from DockerHub. SLURM job submission scripts to process the

fMRI data were generated with the Python tool fMRIPrep-SLURM (https://github.com/

SIMEXP/fmriprep-slurm). The fMRIPrep derivatives and atlas retrieved from the Template-

Flow archive were passed to the connectome workflow described in Fig 1. We extracted the

signals using a range of atlases at various resolutions (see Materials and Methods for details).

For each parcellation scheme and each fMRI dataset, 10 sets of time series were generated,

including one baseline and 9 different denoising strategies (see Table 2). We report the quality

metrics and break down the effect on each dataset, preprocessed with fMRIPrep 20.2.1 long-

term support branch (LTS). Motion characteristics were also generated per dataset and used to

exclude fMRI runs with excessive motion from entering the benchmark. Trends in each atlas

were similar, so we combined all atlases for the following report. The detailed breakdown by

parcellation scheme can be found in the associated Jupyter Book [31]. Fig 2 presents a graphi-

cal summary of the benchmark workflow.

Benchmark results from fMRIPrep 20.2.1 LTS

We reported the demographic information and the gross mean framewise displacement before

and after excluding subjects with high motion. We then aimed to assess the overall similarity

between connectomes generated from each denoising strategy, and evaluated the denoising

strategies using four metrics from Ciric and colleagues’ benchmark [6]:

1. Loss of degrees of freedom: sum of number of regressors used and number of volumes

censored.

2. Quality control / functional connectivity [QC-FC; 34]: partial correlation between motion

and connectivity with age and sex as covariates.

3. Distance-dependent effects of motion on connectivity [DM-FC; 25]: correlation between

node-wise Euclidean distance and QC-FC.

4. Network modularity [4]: graph community detection based on Louvain method, imple-

mented in the Brain Connectome Toolbox.

Significant differences in motion levels existed both between datasets, and within-data-

set, across clinical and demographic subgroups. We applied a motion threshold to exclude

subjects with marked motion in the two OpenNeuro datasets: dataset ds000228 (N = 155) [16]

and dataset ds000030 (N = 212) [17]. Table 3 shows the demographic information of subjects
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in each dataset before and after the automatic motion quality control. Following this, we

checked the difference in the mean framewise displacement of each sample and the sub-groups

(Fig 3). In ds000228, there was still a significant difference (t(73) = -2.17, p = 0.033) in motion

during the scan captured by mean framewise displacement between the child (M = 0.17,

SD = 0.05, n = 51) and adult samples (M = 0.15, SD = 0.04, n = 24). In ds000030, the only

patient group that showed a difference compared to control subjects (M = 0.12, SD = 0.04,

n = 88) was the schizophrenia group (M = 0.16, SD = 0.05, n = 19; t(105) = -3.49, p = 0.033).

There was no difference between the control and ADHD group (M = 0.12, SD = 0.05, n = 32; t

(118) = 0.04, p = 0.966), or the bipolar group (M = 0.13, SD = 0.05, n = 29; t(115) = -1.24,

p = 0.216). In summary, children moved more than adults, and subjects with schizophrenia

moved more than controls.

Fig 2. Denoising benchmark workflow. The denoising benchmark workflow expands on the workflow in Fig 1

(represented by the purple box). We retrieved the datasets from OpenNeuro through DataLad and all steps indicated

with the arrows are implemented with bash scripts written for the SLURM scheduler. Atlases were either retrieved

from the TemplateFlow archive or reformatted to fit the TemplateFlow format. The extracted time series, denoising

metrics, and all metadata for generating the report are available on Zenodo [33].

https://doi.org/10.1371/journal.pcbi.1011942.g002
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We also examined the differences between male and female in the control groups of the two

datasets: the adult sample for ds000228 and healthy control for ds000030. In ds000228, we

found no significant differences (male: M = 0.16, SD = 0.04; female: M = 0.14, SD = 0.05; t(22)

= 1.19, p = 0.249). In ds000030 we found the male sample (M = 0.13, SD = 0.04) showed higher

mean framewise displacement than the female sample (M = 0.11, SD = 0.04; t(86) = 2.17,

p = 0.033).

Due to the imbalanced samples per group and low number of subjects in certain groups

after the automatic motion quality control, we collapsed all groups within each dataset to

avoid speculation on underpowered samples in the results. For a breakdown of each metric by

atlas, please see the supplemental Jupyter Book [31].

Most denoising strategies converged on a consistent average connectome structure.

With the benchmark workflow in place, we first aimed to assess the overall similarity between

connectomes generated from each denoising strategy. We calculated Pearson’s correlations

between connectomes generated from all strategies presented in the benchmark (Fig 4). The

connectome correlation pattern across denoising strategies was similar in both datasets. Over-

all, the strategies displayed at least moderate similarity with each other, with Pearson’s correla-

tions above 0.6. There were two large clusters of highly-related strategies, driven by the

presence (or lack) of global signal regression. Within each cluster of strategies, the correlations

amongst the strategies were strong, with values above 0.9. baseline and aroma did not fit well

in either of the two clusters, indicating that denoising generally impacts the connectome struc-

ture, and that the ICA-AROMA might be sensitive to different sources of noise, compared to

those captured by other strategies in the benchmark.

Loss in temporal degrees of freedom varied markedly across strategies and datasets. In

previous research, the loss of temporal degrees of freedom has shown an impact on the subse-

quent data analysis. Higher loss in temporal degrees of freedom can spuriously increase func-

tional connectivity [35]. Volume censoring-based and data-driven strategies (ICA-AROMA

and some variations of CompCor) introduce variability to degrees of freedom and can bias

group level comparisons [6].

Table 3. Sample demographic information before and after removing subjects with high motion.

ds000228 ds000030
full

sample

adult child full

sample

control ADHD bipolar schizophrenia

Before removal of

high motion

subjects

N

(female)

155

(84)

33

(20)

122

(64)

212

(98)

106

(54)

35

(17)

41

(19)

30

(8)

Mean Age

(SD)

10.6

(81)

24.8

(5.3)

6.7

(2.3)

33.2

(9.3)

31.8

(8.9)

32.5

(10.2)

34.7

(8.9)

37.2

(9.2)

Age

Range

3.5–39.0 18–39 3.5–

12.3

21–50 21–50 21–50 21–50 22–49

After removal of

high motion

subjects

N

(female)

75

(38)

24

(14)

51

(24)

168

(79)

88

(46)

32

(14)

29

(15)

19

(4)

Mean Age

(SD)

12.2

(8.4)

23.6

(4.1)

6.9

(2.4)

31.7

(8.9)

30.5

(8.2)

32.3

(10.3)

32.5

(8.3)

35.2

(10.0)

Age

Range

3.6–31.0 18–31 3.6–

11.5

21–50 21–50 21–50 21–48 22–49

Number of subjects excluded

(female)

80

(46)

9

(6)

71

(40)

44

(19)

18

(8)

3

(3)

12

(4)

11

(4)

% of subjects excluded within

groups

52% 27% 58% 21% 17% 9% 29% 37%

https://doi.org/10.1371/journal.pcbi.1011942.t003
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Fig 3. Mean framewise displacement of each dataset. To evaluate the metrics in a practical analytic scenario, we excluded subjects with high motion while

preserving 1 minute of data for functional connectivity calculation: gross mean framewise displacement> 0.25 mm, above 80.0% of volumes removed while
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The loss of temporal degrees of freedom is the sum of the number of regressors used and

censored volume lost. Depending on the length of the scan, the number of discrete cosine-

basis regressors can differ given the same repetition time (TR). The two datasets we analyzed

contain different numbers of discrete cosine-basis regressors (ds000228: 4; ds000030: 3) due to

difference in time series length (ds000228: 168; ds000030: 152). The simple and simple
+gsr strategies include the same amount of head motion and tissue signal regressors between

the two datasets (simple: 26, simple+gsr: 27). For volume censoring strategies, we

observed a higher loss in volumes in ds000228, compared to ds000030. (number of excised vol-

umes at 0.5 mm: ds000030: 2.5(4.4) range = [0 21], ds000228: 9.3(8.8) range = [0 30]; number

of excised volumes at 0.2 mm: ds000030: 29.4(30.1) range = [0 110], ds000228: 53.0(34.1) range

= [1 130]. compcor also showed variability in numbers of regressors when using all compo-

nents that explain 50% of signal variance (number of CompCor regressors: ds000030: 47.9(3.9)

range = [35 54], ds000228: 42.5(8.9) range = [5 58]). ICA-AROMA regressors in strategy

aroma showed variability in numbers of regressors (number of ICA-AROMA regressors:

ds000030: 16.0(4.6) range = [6 29], ds000228: 20.9(6.3); range = [7 38]). The average loss in

temporal degrees of freedom is summarized in Fig 5.

The loss of degrees of freedom per strategy varied across the two datasets shown in the

benchmark. The two datasets showed different loss of degrees of freedom in scrubbing-based

strategies, while using the same gross motion-based exclusion criteria. This was expected, as

the amount of motion between time points was higher in ds000228. The loss in degrees of free-

dom was most prominent in the group of children in this dataset (see S1 Fig). compcor did

scrubbing with a 0.2 mm threshold. In ds000228, the child group still had higher motion compared to the adult groups. In ds000030, where all subjects were

adults, the control group only showed significant differences in motion with the schizophrenia group. In both datasets, the sample sizes from each group were

highly imbalanced (see Table 3), hence no between group differences were assessed in quality metrics analysis.

https://doi.org/10.1371/journal.pcbi.1011942.g003

Fig 4. Similarity of denoised connectomes. For each parcellation scheme, we computed a correlation matrix across connectomes generated with the ten

strategies. These correlation matrices were then averaged across the parcellation schemes within each dataset. Two large clusters of strategies emerged: with

versus without global signal regression, with fairly high similarity in connectomes within each cluster.

https://doi.org/10.1371/journal.pcbi.1011942.g004
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not always have a lower loss of degrees of freedom in ds000030, and was actually higher in the

bipolar subgroup (see S1 Fig). aroma had the lowest loss of temporal degrees of freedom in

ds000030. Best practices for denoising will thus potentially differ depending on the characteris-

tics of the subgroups included in a study, although the overall behavior of the different meth-

ods were consistent across datasets and subgroups.

Quality control / functional connectivity (QC-FC) showed a heterogeneous impact of

denoising strategies based on data profile. The denoising methods should aim to reduce

the impact of motion on the data. To quantify the remaining impact of motion in connec-

tomes, we adopted a metric proposed by Power and colleagues [34] named quality control /

functional connectivity (QC-FC). QC-FC is a partial correlation between mean framewise dis-

placement and functional connectivity, with age and sex as covariates. Significance tests associ-

ated with the partial correlations were performed. P-values below the threshold of α = 0.05

were deemed significant.

Scrubbing-based strategies consistently performed better than the baseline in both datasets.

In ds000228, the most effective method according to QC-FC was scrubbing.5 (scrubbing

at a liberal threshold), followed by scrubbing.2 and simple. All the GSR counterparts of

the methods had slightly higher residual motion. Amongst all the data-driven methods,

compcor performed the best. compcor6 and aroma performed close to baseline. In

ds000030, the best performing method was compcor, followed by scrubbing.2 (aggres-

sive scrubbing). The simple and scrubbing.5 methods performed similarly as very few

volumes were censored with a liberal threshold, and the GSR variations (simple+gsr and

scrubbing.5+gsr) performed better than baseline (see Fig 6). simple performed close

to the baseline in terms of the number of edges correlated with motion. The aroma and

compcor6 strategies were better than baseline. The average percentage of significant QC-FC

Fig 5. Percentage of loss in temporal degrees of freedom according to strategy and dataset. Bars show the average percentage of the number of regressors to

the length of the scan amongst all subjects. Error bars indicate 95% confidence interval. The two datasets contain different numbers of discrete cosine-basis

regressors (ds000228: 4; ds000030: 3). compcor (anatomical CompCor extracted from a WM/CSF combined map, cut off at 50% variance) and

ICA-AROMA-based strategies (aroma) show variability depending on the number of noise components detected. The same figure with each dataset broken

down by subgroup is in S1 Fig. The loss of degrees of freedom of the full dataset before filtered by movement is in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1011942.g005
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and the average median of absolute value of QC-FC are presented in Figs 6 and 7. In summary,

based on a QC-FC evaluation, diverse strategies performed quite differently based on the data-

set used for evaluation.

Scrubbing-based strategies decreased distance-dependent effects of motion. The

impact of motion on functional connectivity has been reported to be higher for brain parcels

closer to each other in space [25]. To determine the residual distance-dependent effects of sub-

ject motion on functional connectivity (DM-FC), we calculated a correlation between the

Euclidean distance between the centers of mass of each pair of parcels [25] and the corre-

sponding QC-FC correlations. We reported the absolute DM-FC correlation values and

expected to see a general trend toward zero correlation after denoising.

All strategies performed better than the baseline in both datasets (Fig 8). We observed a

trend consistent across both datasets, whereby strategies scrubbing.2 and scrubbing.
2+gsr were the most effective in reducing the correlation. aroma also performed consis-

tently well in both datasets, ranked after scrubbing.2. In ds000228, simple was the least

effective strategy for reducing distance dependency. Data-driven methods showed similar

results to each other. scrubbing.5 and simple greatly benefited from adding GSR in the

Fig 6. Significant QC-FC in connectomes. Average percentage of edges significantly correlated with mean framewise displacement are

summarized across all atlases as bar plots. Error bars represent the 95% confidence intervals of the average. The horizontal line represents the

baseline. A lower percentage indicates less residual effect of motion after denoising on connectome edges. Significant QC-FC associations were

detected with p<0.05, uncorrected for multiple comparisons. A version of the figure using false-discovery-rate correction for multiple

comparisons can be found in supplemental Jupyter Book.

https://doi.org/10.1371/journal.pcbi.1011942.g006

PLOS COMPUTATIONAL BIOLOGY Continuous evaluation of denoising strategies using fMRIPrep and Nilearn

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011942 March 18, 2024 14 / 32

https://doi.org/10.1371/journal.pcbi.1011942.g006
https://doi.org/10.1371/journal.pcbi.1011942


regressors. In ds000030, the difference between scrubbing.2 and other strategies was big-

ger than in ds000228, with the remainder performed similarly with each other. The impact of

GSR was small with the exception of scrubbing.2+gsr. In summary, we observed similar

trends across strategies between the two datasets, yet with differences in the magnitude of cor-

relations. All strategies reduced the correlation lower than the baseline. Consistent with the lit-

erature, scrubbing strategies were the best at reducing distance dependency.

Global signal regression increases network modularity. Confound regressors have the

harmful potential to remove real signals of interest as well as motion-related noise. To evaluate

this possibility, we examined the impact of denoising strategies on a common graph feature,

network modularity, generally regarded as a key feature of biological network organization

[4]. Network modularity was quantified using the Louvain method for graph community

detection [36]. We computed the partial correlation between subjects’ modularity values and

mean framewise displacement, using age and sex as covariates, following the implementation

of Power and colleagues [34].

The inclusion of global signal regressors increased average Louvain network modularity in

both datasets (Fig 9, top panel). The remaining strategies performed as follows in both datasets,

from best to worst: compcor, scrubbing.2, scrubbing.5, simple,

Fig 7. Medians of absolute values of QC-FC. Median of absolute value of QC-FC, averaged across all atlases of choice. Error bars represent the

confidence intervals of the average at 95%. Low absolute median values indicate less residual effect of motion after denoising. The horizontal

line represents the baseline. Results observed with absolute QC-FC values are consistent with the percentage of edges with significant QC-FC

associations, as reported in Fig 6.

https://doi.org/10.1371/journal.pcbi.1011942.g007
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compcor6, and aroma. In both datasets, aroma performed almost at the similar level as the

baseline. We found fixed results in the ability of denoising in reducing the impact of

motion on modularity (Fig 9 lower panels). In ds000228, we see simple and scrubbing.5
reducing the impact of motion. In ds000030, only scrubbing.2 performed better than

baseline. In both datasets, the data-driven strategies and strategies with GSR performed consis-

tently worse than baseline. The overall trend across strategies is similar to QC-FC with the

exception of the baseline strategy (see Fig 6 and 7). The reason behind this observation

could be a reduction of variance in the Louvain network modularity metric for GSR-based

denoising strategies. We plotted the correlations of baseline, scrubbing.2,
scrubbing.2+gsr from one parcellation scheme (DiFuMo 64 components) from

ds000030 to demonstrate this lack of variance (see Fig 10).

Fig 8. Residual distance-dependent effects of subject motion on functional connectivity. Average of absolute value of Pearson’s correlation

between the Euclidean distance between node pairs and QC-FC, indicating distance-dependent of motion after denoising. A value closer to zero

indicates less residual effect of motion after denoising. Error bars represent the standard deviation. The horizontal line represents the baseline.

Strategies scrubbing.2 and scrubbing.2+gsr were the most effective in reducing the correlation in both datasets.

https://doi.org/10.1371/journal.pcbi.1011942.g008
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Fig 9. Network modularity measures. Top: Average Louvain network modularity of all connectomes after denoising.

Error bars represent the standard deviation. The horizontal line represents the baseline. In both datasets, strategies

including the global signal regressor(s) have higher modularity values. Bottom: Average Pearson’s correlation between

mean framewise displacement and Louvain network modularity after denoising. A value closer to zero indicates less

residual effect of motion after denoising.

https://doi.org/10.1371/journal.pcbi.1011942.g009
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Data-driven denoising strategies showed inconsistent evaluation outcomes

between two fMRIPrep versions

Different versions of the same software could produce differences in the outcomes of our denois-

ing evaluation. To gain insight into the stability of fMRIPrep, we examined whether a few key

observations from fMRIPrep 20.2.1 LTS remained salient in fMRIPrep 20.2.5 LTS, specifically:

1. High loss of temporal degrees of freedom for scrubbing.2 in ds000228 and compcor
for ds000030.

2. aroma performed close to baseline in QC-FC for ds000228.

3. simple performed close to baseline in QC-FC for ds000030.

Fig 10. Correlation between mean framewise displacement and Louvain network modularity after denoising. We observed a

lack of variance in Louvain network modularity, and shrinkage of the distribution with the inclusion of GSR. Due to the lack of

variability, assessing residual motion in network modularity might not be a good metric to evaluate the quality of connectivity

data.

https://doi.org/10.1371/journal.pcbi.1011942.g010
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4. scrubbing.2 and scrubbing.2+gsr were the best strategies to reduce DM-FC.

5. GSR-enabled strategies showed higher network modularity.

Observations 1, 4, and 5 from 20.2.5 LTS were consistent with results from 20.2.1 LTS. The

results of QC-FC demonstrated similar overall trends in 20.2.5 LTS, but with aroma perform-

ing worse than baseline for ds000228 (observation 2) and simple performing better than

baseline for ds000030 (observation 3) (see Fig 11). Inconsistency in outcomes across the two

fMRIPrep versions were found in strategies with data-driven noise components. In version

20.2.5 LTS, and unlike 20.2.1 LTS, comcpor6 performed worse than the baseline in

Fig 11. Significant QC-FC in connectomes compiled from 20.2.5 LTS. Average percentage of edges significantly correlated with mean

framewise displacement are summarized across all atlases as bar plots. Error bars represent the 95% confidence intervals of the average. The

horizontal line represents the baseline. Lower values indicate less residual effect of motion after denoising. Data-driven denoising strategies

showed inconsistent patterns compared to the same metric generated from 20.2.1 LTS outputs (Fig 6).

https://doi.org/10.1371/journal.pcbi.1011942.g011

Table 4. Key observations compared between datasets and fMRIPrep versions.

ds000228 ds000030

20.2.1 20.2.5 20.2.1 20.2.5

Highest loss of temporal degrees of freedom scrubbing.2 scrubbing.2 compcor compcor

Worst performing in QC-FC aroma aroma and

compcor6

simple compcor

6

GSR-enabled strategies showed higher network

modularity

yes yes yes yes

https://doi.org/10.1371/journal.pcbi.1011942.t004
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metric QC-FC for both datasets. In ds000228, aroma was the second worst performing strat-

egy. For ds000030, the strategies with no data-driven noise components showed better perfor-

mance in 20.2.5 LTS (Fig 11) than 20.2.1 LTS (see Fig 6). The key observations and the

comparisons are summarized in Table 4.

Discussion

We aimed to create a re-executable benchmark to provide guidelines and accessible tools for

denoising resting state functional connectivity data. The re-executable benchmark showed

most denoising strategies, such as scrubbing-based strategies, simple, and strategies with

GSR, performed in line with the literature. aroma showed an advantage in low degrees of free-

dom lost, while only performing relatively well in DM-FC amongst all quality metrics. The

metrics performed consistently across the software versions with a marked exception in the

data-driven denoising strategies (compcor6, aroma). This result demonstrates the neces-

sity of distributing an executable research object for methods development and software test-

ing, and providing accurate guidelines to users over time.

The load_confounds and load_confounds_strategy APIs

The standardized APIs load_confounds and load_confounds_strategy are the

core elements of the re-executable denoising benchmark. The APIs provide an easy way to

implement classic denoising strategies from the literature, and can reduce the effort required,

as well as errors, when using these strategies. Having clear and concise code also facilitates re-

use and sharing of the denoising strategy used in a particular study, which improves reproduc-

ibility of science.

The new APIs developed for this project have been integrated in an established, popular

software library, Nilearn [11]. The implementation of these APIs required other contributions

to Nilearn and introduced new modules, in order to streamline the compatibility between the

APIs and other data processing utilities. Specifically, we introduced a new module nilearn.
interfaces dedicated to interacting with other neuroimaging software libraries and BIDS.

We refactored the parameter sample_mask in all masker modules to allow volume censor-

ing in the signal.clean function (move sample_mask to transform method in

maskers, handle sample_mask in signal.clean: https://github.com/nilearn/nilearn/

pull/2858). The masker modules implement a series of methods to convert 3D or 4D neuroim-

aging data into numerical arrays, for example extracting average time series from a brain par-

cellation. As a result, the outputs from load_confounds and load_confounds_
strategy, as well as volume censoring information, can be directly ingested into all Nilearn

masker objects. Thanks to these contributions, it is now possible to construct a complete

Python-based fMRIPrep post-processing workflow with very concise code. Documentation

for this workflow can be found in the Nilearn User Guide library [37], and users can adapt

code from the Nilearn tutorial to implement denoising strategies with ease.

Similar functionality provided by the load_confounds and load_confounds_
strategy APIs are included in other fMRIPrep-compatible fMRI processing software, such

as C-PAC [13], XCP-D [38], and ENIGMA HALFpipe [39]. Unlike our APIs, which focus on

retrieving denoising regressors only, these softwares provide denoising utilities bundled in a

full preprocessing workflow. The denoising regressor retrieval steps amongst those softwares

are therefore not reusable and more difficult to reproduce. Our APIs provide the advantage

that users can easily reuse the denoising strategies. In fact, XCP-D has adopted our APIs in

their code base. A limitation of our APIs is that the implemented denoising strategies are lim-

ited to those covered by the regressors included in fMRIPrep. With the constant development
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of denoising strategies, what the APIs provide will always lag behind the advancement of the

field. However, as a trade-off, we can ensure the quality and robustness of the implementation.

Denoising strategy

In order to summarize our results, we created a table ranking strategies from best to worst,

based on four benchmark metrics, across datasets and fMRIPrep versions (see Fig 12).

The ranking of the loss of temporal degrees of freedom is an important consideration

accompanying the remaining metrics, as any denoising strategy aims at a particular trade-off

between the amount of noise removed and the preservation of degrees of freedom for signals.

Aside from the loss of temporal degrees of freedom, the baseline strategy consistently per-

forms the worst, as expected, with the notable exception of aroma performing worst on

QC-FC.

The simple+gsr strategy is not the best for any particular individual evaluation metric,

but it performed consistently well across metrics, datasets and software versions. The loss in

degrees of freedom simple (26 + number of cosine terms) and simple+gsr (27+number

of cosine terms) used slightly more regressors than aroma, and had markedly lesser loss than

scrubbing methods. simple+gsr is consistently better than other data-driven strategies,

which makes it the best choice for analysis that requires low loss of degrees of freedom and

also preserve continuous sampling time series (which is broken by scrubbing).

Scrubbing based strategies are the best when it comes to minimizing the impact of motion,

with a cost of higher loss in degrees of freedom. We found that scrubbing with an aggressive

0.2 mm threshold (scrubbing.2) mitigates distance dependency well consistently,

Fig 12. Ranking of all denoising strategies across multiple performance metrics. We ranked strategies across four metrics from best to worst. Larger circles

with brighter color represent higher ranking. Metric “correlation between network modularity and motion” has been excluded from the summary as it is

potentially a poor measure. Loss of temporal degrees of freedom is a crucial measure that should be taken into account alongside the metric rankings. A clear

trade-off is apparent between loss in degrees of freedom and the quality of denoising, so no overall ranking of methods is derived from this analysis—see text

for a summary of key takeaways.

https://doi.org/10.1371/journal.pcbi.1011942.g012
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regardless of the group of subjects. Despite excluding data with the same standard on both

datasets, the child-dominant sample (ds000228) showed more volumes censored with the

scrubbing strategy, and a liberal framewise displacement threshold showed sufficient ability to

reduce the distance dependency of motion as observed in the original study of the strategy

[25]. In a sample with higher motion, such as ds000228, a liberal scrubbing threshold reduced

the impact of motion and performed similarly with a higher threshold. Taking the loss of

degrees of freedom into consideration, we recommend a liberal scrubbing threshold rather

than scrubbing with a stringent threshold for datasets with marked motion.

For the two anatomical CompCor strategies, compcor performs better than compcor6.

The performance of compcor6 is also not consistent across software versions in both data-

sets. However, compcor introduces large variability into the loss of degrees of freedom. In

ds000228, the loss in temporal degrees of freedom is even higher than scrubbing with a strin-

gent threshold. This result is consistent with the observation of Parkes and colleagues [7] that

anatomical CompCor is not sufficient for high motion data. Moreover, this observation puts

one of the rationales in the original study, i.e., to reduce the loss in degrees of freedom, in ques-

tion [26]. In the absence of physiological recordings, our benchmark is not suitable to examine

another property of CompCor, that is the ability to remove unwanted physiology signals [26].

The datasets do not include physiology measures to perform alternative strategies such as

RETROICOR to mitigate physiology signals explicitly.

In our results, aroma shows similar performance with the simple strategy across most

metrics, with the exception of DM-FC (where it performs well). This strategy also featured a

very low loss of degrees of freedom, making it a “gentle” denoising approach. Previous litera-

ture has recommended adding GSR as part of the ICA-AROMA regressors [6,7]. An early ver-

sion of this work did include an ICA-AROMA+GSR strategy, which performed very poorly

(see Fig 4–9, 11, and 12 from https://www.biorxiv.org/content/10.1101/2023.04.18.537240v1.

full). This is a known consequence of implementation choices made in fMRIprep, which

departs from the original recommended implementation of ICA-AROMA+GSR [27; seeS1

Text Annex D for detailed explanation]. We strongly recommend fMRIPrep users to avoid

fMRIPrep-generated GSR when using the ICA-AROMA strategy. It is also worth noting that

fMRIPrep will drop the support for ICA-AROMA from version 23.1.0 (https://github.com/

nipreps/fmriprep/issues/2936).

Strategies including GSR produced connectomes with higher network modularity com-

pared to their counterparts without GSR. There is no systematic trend of whether GSR

improves the denoising strategies based on the remaining impact of motion. The result is con-

sistent with the fact that global signal regression increases the number of negative connections

in a functional connectome (see Nilearn examples visualizing connectomes with and without

global signal regression [37]) by shifting the distribution of correlation coefficients to be

approximately zero-centered [40]. A clear benefit of GSR is thus to emphasize the network

structure, but its benefits for denoising can vary. Some strategies, such as simple, seem to

benefit greatly from the addition of GSR.

Finally, we would like to address a few limitations of the evaluation on denoising strategies.

1. Loss of statistical power for downstream analysis with stringent motion-based exclusion

criteria: The current evaluation was performed on datasets after excluding subjects with

gross in-scanner motion, as per existing literature [6,7]. The aim of the exclusion allowed

evaluation of denoising strategies on the mitigation of artifacts due to micro-movements.

However, the exclusion criteria would result in loss of power in downstream analysis in cer-

tain demographics, and was particularly apparent here for the “child” group in ds0000228

and the “schizophrenia” group in ds000030. We encourage researchers to take this potential
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loss in sample size into account for selecting an appropriate denoising strategy for their

study. Our Neurolibre companion offers comparisons of mean framewise displacement

and loss of temporal degrees of freedom at two different motion exclusion thresholds or

without exclusions, for reference.

2. Unclear implication for datasets with lower TR or multiband scanning sequence: The

current benchmark used two datasets with TR of 2 to 2.5 seconds, thus the conclusions are

limited to fMRI datasets with a similar scanning sequence. For multi-band fMRI sequences

with shorter TR, there may be different motion concerns such as respiratory motion

[41,42]. It would be of the community’s interest to explore the current workflow on multi-

band fMRI datasets, and including physiology related denoising strategies and different

quality control metrics [43] to address the current limitations.

3. Heterogeneity of the datasets included in the benchmark: The current observations were

drawn from two datasets with 6 different subgroups. This is not comprehensive of all the

possible demographic groups. We did not make the workflow a packaged software that can

be executed on any generic data sets and the constraints will be discussed below. Instead,

we provide instructions documenting the workflow in our Neurolibre companion material

for interested researchers to implement on their own data.

Re-executable research object

We created a re-executable denoising benchmark with two main outcomes. Firstly, we created

a reusable code base that will ensure the robustness of the procedure. The current benchmark

includes several parameters, from the choices of atlases, denoising strategies, fMRIPrep ver-

sions, to datasets. The code for connectome generation and denoising metric calculation is

written as an installable Python library (https://github.com/SIMEXP/fmriprep-denoise-

benchmark). Customized scripts to deploy the process for each combination of the parameters

are also generated by reusable Python functions. The full workflow can be executed on the two

benchmark datasets preprocessed by any release from the fMRIPrep LTS series. Secondly, we

created an interactive Jupyter Book [19] hosted on NeuroLibre [20] for users to freely browse

the results with finer details. All figures in this report can be rebuilt with the provided Makefile,

handling data download and the report generation. Taken together, it is possible to reproduce

the results of this manuscript, starting from raw data down to final figures, and update the

entire manuscript on future releases of fMRIPrep, turning this research object into a living

publication rather than a snapshot of current software destined for quick deprecation.

The current workflow is presented as a research object rather than a software due to the

lack of generalizability on other datasets. For the analysis after fMRIPrep, there are two practi-

cal reasons for this choice. Firstly, compared to a piece of well packaged software, research

objects allow more flexibility for changes for development. Secondly and most importantly,

creating a clean, generalizable solution will require the data to be standardized. Although

fMRIPrep outputs are standardized, the demographic information is coded differently across

datasets. Currently the BIDS specifications do not impose restrictions on the label for pheno-

typic data, thus we had to manually harmonize the label for age, gender, and group informa-

tion. As an alternative, full documentation to re-execute the workflow, from fetching datasets

to running the analysis, is available as part of the research object.

There are additional benefits to creating a re-executable denoising benchmark. Although

the code is not readily designed to process new datasets, it contains good prototypes for what

could become different BIDS-apps for post processing [18]: a connectome generation BIDS-

app and a denoising metric generation BIDS-app. BIDS-app is easier for user adoption under
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the BIDS convention and can expand the scope of the benchmark from the two datasets

shown here to any BIDS-compliant dataset. The process of creating this benchmark also pro-

vides valuable first hand information about runtime, and the impact of atlas choice on compu-

tational costs, which we did not cover here but has big practical implications. High

dimensional probabilistic atlases require four times more RAM than discrete segment atlases.

For metric generation, high dimensional atlases can have a runtime up to 24 hours compared

to 1 hour for low dimensional atlases. There is thus a very concrete “reproducibility” cost

which comes with high-resolution and probabilistic atlases. The issue is rarely mentioned

regarding the reproducibility of science, yet can be a real obstacle to actual reproduction.

Future editions of the workflow will be built with runtime optimization in mind and poten-

tially improve the code base for upstream projects, such as fMRIPrep.

Continual evaluation of software versions

Our benchmark results on two versions of the long-term support (LTS) release of fMRIPrep

reveals similar trends in the metrics, but some inconsistency. Between the two datasets,

ds000228 showed more consistent results than ds000030 across two LTS releases (see Fig 12).

The marked difference in ds000030 was likely the result of a bug fix implemented in 20.2.2LTS

(See: https://github.com/nipreps/fmriprep/issues/2307, and #2444 in change log https://

fmriprep.org/en/stable/changes.html#july-16-2021) and that ds000030 had been reported as

an affected dataset. The results from the data-driven strategies in both datasets demonstrated

inconsistent relative difference when comparing to the baseline strategy. This piece of

work is a new addition to the existing literature on the heterogeneity of results found through

research software testing [12,14]. Beyond mere numerical instabilities, we show that the quali-

tative conclusions of an evaluation benchmark do not necessarily generalize to different soft-

ware packages or even versions of the same package. Our results thus highlight the importance

of continuous evaluation of research software at each major step of its life cycle.

Rebuilding this paper on future fMRIPrep releases can be used to perform such continuous

evaluation for future releases of fMRIprep. This benchmark is thus a hybrid contribution,

being as much research paper as it is a software development tool. We still recommend several

aspects of improvements to better achieve this goal for future similar efforts. Firstly the API

will need to be kept up to date with fMRIPrep releases. The current code will be applicable for

20.2.x series up to September 2024. For fMRIPrep release beyond the LTS version, as long as

the API in Nilearn is maintained, the code used to generate all current reports can be applied

to the same two datasets. With the high number of tunable parameters (denoise strategies,

atlases, software versions), a framework allowing parameter configuration, such as Hydra

(https://github.com/facebookresearch/hydra), would help better manage and expand the

benchmark. The current benchmark generates jobs through metadata stored in python dictio-

naries. By adapting a framework like Hydra, one can deploy the benchmark analysis with a

simplified interface.

Finally, we note that all of the components necessary to implement our reproducible bench-

marks are generic, i.e. software containers, data versioning, open source code with standard

APIs, Jupyter Books and the Neurolibre preprint server. Beyond the particularities of fMRI

denoising and the fMRIprep implementation, we thus believe that this work proposes an

approach to implement reproducible benchmarks that is widely applicable, and would likely

be beneficial in all scientific fields with heavy reliance on computational tools.
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Conclusions

This work showcases the benefit of systematic evaluation on the impact of denoising strategies

on resting state functional connectivity across datasets, and versions of the fMRIPrep prepro-

cessing pipeline. With a standardized function to specify denoising strategy, we implemented

a fully reproducible benchmark of denoising strategies for two datasets with varied characteris-

tics, including age, motion level and the presence of clinical diagnoses. We would like to pro-

vide two strategy recommendations based on this benchmark, depending on a key

consideration: whether preserving continuous sampling time series is needed (e.g. to train

auto-regressive models) or not (e.g. to generate correlation coefficients across brain parcels).

To preserve the continuous sampling property of time series, simple+gsr is the recom-

mended strategy, especially for datasets with low motion, and appears to be robust across soft-

ware versions. If continuous temporal sampling is not a priority, scrubbing.5 is

recommended for datasets with marked motion where denoising quality can be favored over

loss of temporal degrees of freedom. The performance of aroma departed from the conclusions

of previous denoising benchmark works and only performed well in one metric. The denoising

benchmark also demonstrated differences in the performance of specific denoising strategies

across multiple fMRIPrep versions. We hope that our benchmark provides useful insights on

denoising strategies for the community and demonstrates the importance of continuous evalu-

ation of denoising methods. Our benchmark also works as a proof of concept for re-executable

quality assessments and a foundation for potential software for time series extraction and

denoising strategy evaluation when a community solution for harmonizing demographic

information emerges. Some elements and concepts of this project, such as Neurolibre, Jupyter

Book and workflows are broadly applicable research computing practices and may be benefi-

cial to implement reproducible benchmarks across different tools and research fields.

Materials and methods

Datasets

Dataset ds000228 (N = 155) contains fMRI scans of participants watching a silent version of a

Pixar animated movie “Partly Cloudy”. The dataset includes 33 adult subjects (Age Mean(s.d.)

= 24.8(5.3), range = 18–39; 20 female) and 122 child subjects (Age Mean(s.d.) = 6.7(2.3),

range = 3.5–12.3; 64 female). T1w images were collected with the following parameters:

TR = 2530 ms, TE = 1.64 ms, Flip Angle = 7˚, 1 mm isotropic voxels. BOLD images were col-

lected with the following parameters: TR = 2000 ms, TE = 30 ms, Flip Angle = 90˚, 3 x 3 x 3.3

mm voxels. All images were acquired on a 3T Siemens Trio Tim Scanner. For more informa-

tion on the dataset please refer to [16].

Dataset ds000030 includes multiple tasks collected from subjects with a variety of neuropsy-

chiatric diagnosis, including ADHD, bipolar disorder, schizophrenia, and healthy controls.

The current analysis focused on the resting-state scans only. Scans with an instrumental arti-

fact (flagged under column ghost_NoGhost in participants.tsv) were excluded from the analy-

sis pipeline. Of 272 subjects, 212 entered the preprocessing stage. Demographic information

per condition can be found in Table 3 in the main text. T1w images were collected with the fol-

lowing parameters: TR = 2530 ms, TE = 3.31 ms, Flip Angle = 7˚, 1 mm isotropic voxels.

BOLD images were collected with the following parameters: TR = 2000 ms, TE = 30 ms, Flip

Angle = 90˚, 3 x 3 x 4 mm voxels. All images were acquired on a 3T Siemens Trio Tim

Scanner.
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fMRI data preprocessing

We preprocessed fMRI data using fMRIPrep 20.2.1LTS and 20.2.5LTS through fMRIPrep-

slurm (https://github.com/SIMEXP/fmriprep-slurm) with the following options:

–use-aroma \
–omp-nthreads 1 \
–nprocs 1 \
–random-seed 0 \
–output-spaces MNI152NLin2009cAsym MNI152NLin6Asym
–output-layout bids \
–notrack \
–skip_bids_validation \
–write-graph
–resource-monitor

For the full description generated by fMRIPrep, please see Neurolibre preprint [31]. We

reported the primary outcomes using outputs from fMRIPrep 20.2.1LTS, and then investigated

if the same conclusions can be observed in 20.2.5LTS.

Choice of atlases

We extracted time series with regions of interest (ROI) defined by the following atlases: Gor-

don atlas [44], Schaefer 7 network atlas [45], Multiresolution Intrinsic Segmentation Template

(MIST) [46] and Dictionary of Functional Modes (DiFuMo) [47]. All atlases were resampled

to the resolution of the preprocessed functional data.

Since DiFuMo and MIST atlases can include networks with disjointed regions under the

same label, we carried out further ROI extraction. Labels are presented with the original num-

ber of parcels. and we denote the number of extracted ROI in brackets. Gordon and Schaefer

atlas parcels use isolated ROI, hence no further extraction was done. The Schaefer 1000 parcels

atlas was excluded; regions were small enough that not all could be consistently resolved after

resampling the atlas to the shape of the processed fMRI data.

• Gordon atlas: 333

• Schaefer atlas: 100, 200, 300, 400, 500, 600, 800

• MIST: 7, 12, 20, 36, 64, 122, 197, 325, 444, “ROI” (210 parcels, 122 split by the midline)

• DiFuMo atlas: 64 (114), 128 (200), 256 (372), 512 (637), 1024 (1158)

Processes involved here are implemented through Nilearn [11]. Time series were extracted

using nilearn.maskers.NiftiLabelsMasker and nilearn.maskers.
NiftiMapsMasker. Connectomes were calculated using Pearson’s Correlation, imple-

mented through nilearn.connectome.ConnectivityMeasure.

Participant exclusion based on motion

We performed data quality control to exclude subjects with excessive motion leading to unus-

able data. In the current report, we use framewise displacement as the metric to quantify

motion. Framewise displacement indexes the movement of the head from one volume to the

next. The movement includes the transitions on the three axes (x, y, z) and the respective rota-

tion (α, β, γ). Rotational displacements are calculated as the displacement on the surface of a

sphere of radius 50 mm [25]. fMRIPrep generates the framewise displacement based on the

formula proposed in [25]. The framewise displacement, denoted as FDt, at each time point t is
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expressed as:

FDt ¼ jDdxtj þ jDdytj þ jDdztj þ jDdatj þ jDdbtj þ jDdgtj:

To ensure the analysis is performed in a realistic scenario we exclude subjects with high

motion [7] while retaining at least 1 minute of scan for functional connectome construction,

defined by the following exclusion criteria: mean framewise displacement > 0.25 mm, above

80.0% of volumes removed while scrubbing with a 0.2 mm threshold.

Confound regression strategies

Confound variables were retrieved using (i) a basic API that retrieves different classes of con-

found regressors, nilearn.interfaces.fmriprep.load_confounds (simplified

as load_confounds); and (ii) a higher level wrapper to implement common strategies

from the denoising literature, nilearn.interfaces.fmriprep.load_
confounds_strategy (simplified as load_confounds_strategy). For documen-

tation of the actual function, please see the latest version of Nilearn documentation (https://

nilearn.github.io/stable/). The connectome generated from high-pass filtered time series

served as a baseline comparison. The detailed 10 strategies and a full breakdown of parameters

used in these strategies is presented in Table 3.

We evaluated common confound regression strategies that are possible through fMRIPrep-

generated confound regressors and accessible through load_confounds_strategy.

However, not all possible strategies from the literature are included. For example, ICA-AR-

OMA + global signal regressor was not included, as the implementation in fMRIPrep is not in

line with the original implementation(See ICA-AROMA related warning in https://fmriprep.

org/en/20.2.1/outputs.html#confounds). Another excluded approach was commonly used by

CONN combining scrubbing and aCompCor [48] because we want to focus on strategies cor-

responding to load_confounds_strategy and past benchmark literature. It can be implemented

with load_confounds:

from nilearn.interfaces.fmriprep import load_confounds
confounds_simple, sample_mask = load_confounds(
fmri_filenames,
strategy = ["high_pass", "motion", "compcor", "scrub"],
motion = "derivatives", scrub = 0, fd_threshold = 0.5,
std_dvars_threshold = None,
compcor = "anat_separated", n_compcor = 5)

Signal denoising through linear regression

The filtered confounds and the corresponding preprocessed NIFTI images were then passed to

the Nilearn masker generated with the atlas where the underlying function nilearn.
signals.clean applied the regressors for denoising (see https://nilearn.github.io/stable/

modules/generated/nilearn.signal.clean.html). S1 Text Annex E contains the mathematical

operation implemented by the denoising procedure. The time series are then passed to

nilearn.connectome.ConnectivityMeasure for generating connectomes

For scrubbing based strategies, the nilearn.signals.clean function censors the

high motion time points before denoising with linear regression, known as the censoring

approach. We did not use another common approach which is entering the high motion time

points as one-hot encoders in the same linear regression with other confound regressors,

known as the regression approach. The regression approach is equivalent to imputing the high

motion time points with the average of the remaining time series. The benchmark assessed
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fMRI functional connectivity metrics. The two approaches will produce numerically equiva-

lent results. It’s important to note that scrubbing strategy performed with either approach is a

form of interruption of continuous time series, and will disrupt many operations such as, e.g.,

calculating a power spectrum.

Evaluation of the outcome of denoising strategies

We first performed Pearson’s correlations to understand the overall numerical similarities of

the denoised connectomes across different strategies. For each parcellation scheme, we com-

puted a correlation matrix across the thirteen strategies. These correlation matrices were then

averaged across the parcellation schemes within each dataset. The averaged correlation matri-

ces were reordered into blocks of clusters with the function scipy.cluster.
hierarchy.linkage. The aim was to provide an overview of the similarity of connec-

tomes generated with the strategies.

We then used selected metrics described in the previous literature to evaluate the denoising

results [6,7]. After investigating the metrics with fMRIPrep version 20.2.1 LTS, we assessed

whether the conclusions were consistent in 20.2.5 LTS.

Loss in temporal degrees of freedom. The common analysis and denoising methods are

based on linear regression. Using more nuisance regressors can capture additional sources of

noise-related variance in the data and thus improve denoising. However, this comes at the

expense of a loss of temporal degrees of freedom for statistical inference in further analysis.

This may be an important point to consider alongside the denoising performance for research-

ers who wish to perform general linear model based analysis. Higher loss in temporal degrees

of freedom can spuriously increase functional connectivity [35]. Volume censoring-based and

data-driven strategies (ICA-AROMA and some variations of CompCor) introduce variability

to degrees of freedom and can bias group level comparisons [6]. We calculate the number

of regressors used and number of censored volume loss. Depending on the length of the scan,

the number of discrete cosine-basis regressors can differ. The number of discrete cosine-

basis regressors will be denoted as c in the report (cds000228 = 4, cds000030 = 3). Simple,

simple+gsr, compcor6 are the strategies with a fixed number of degrees of freedom loss.

Scrubbing, compcor, aroma, and aroma+gsr strategies show variability depending on

the number of noise components detected.

Quality control / functional connectivity (QC-FC). QC-FC [34] quantifies the correla-

tion between mean framewise displacement and functional connectivity. This is calculated by a

partial correlation between mean framewise displacement and connectivity, with age and sex as

covariates. The denoising methods should aim to reduce the QC-FC value. Significance tests

associated with the partial correlations were performed, and correlations with P-values below

the threshold of α = 0.05 deemed significant. A version of this analysis corrected for multiple

comparisons using the false discovery rate [49] is available in the Neurolibre preprint [31].

Distance-dependent effects of motion on functional connectivity (DM-FC). To deter-

mine the residual distance-dependence of subject movement, we first calculated the Euclidean

distance between the centers of mass of each pair of parcels [25]. Closer parcels generally

exhibit greater impact of motion on connectivity. We then correlated the distance separating

each pair of parcels and the associated QC-FC correlation of the edge connecting those parcels.

We report the absolute correlation values and expect to see a general trend toward zero corre-

lation after confound regression.

Network modularity. Confound regressors have the potential to remove real signals in

addition to motion-related noise. In order to evaluate this possibility, we computed modularity

quality, an explicit quantification of the degree to which there are structured subnetworks in a
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given network - in this case the denoised connectome [4]. Modularity quality is quantified by

graph community detection based on the Louvain method [36], implemented in the Brain

Connectivity Toolbox [36]. If confound regression and censoring were removing real signals

in addition to motion-related noise, we would expect modularity to decline. To understand

the extent of correlation between modularity and motion, we computed the partial correlation

between subjects’ modularity values and mean framewise displacement, with age and sex as

covariates.
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