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Abstract

The advancements in next-generation sequencing have made it possible to effectively

detect somatic mutations, which has led to the development of personalized neoantigen

cancer vaccines that are tailored to the unique variants found in a patient’s cancer. These

vaccines can provide significant clinical benefit by leveraging the patient’s immune response

to eliminate malignant cells. However, determining the optimal vaccine dose for each patient

is a challenge due to the heterogeneity of tumors. To address this challenge, we formulate a

mathematical dose optimization problem based on a previous mathematical model that

encompasses the immune response cascade produced by the vaccine in a patient. We pro-

pose an optimization approach to identify the optimal personalized vaccine doses, consider-

ing a fixed vaccination schedule, while simultaneously minimizing the overall number of

tumor and activated T cells. To validate our approach, we perform in silico experiments on

six real-world clinical trial patients with advanced melanoma. We compare the results of

applying an optimal vaccine dose to those of a suboptimal dose (the dose used in the clinical

trial and its deviations). Our simulations reveal that an optimal vaccine regimen of higher ini-

tial doses and lower final doses may lead to a reduction in tumor size for certain patients.

Our mathematical dose optimization offers a promising approach to determining an optimal

vaccine dose for each patient and improving clinical outcomes.

Author summary

The development of neoantigen cancer vaccines have rapidly increased over the past

decade with the advancement of next-generation sequencing technologies to determine

immunogenic peptides from patient’s somatic mutations. However, traditional methods

to determine the cancer vaccine dose often produce suboptimal clinical outcomes. This

work use our previous mathematical model to represent the immunological cascade at the

cellular and subcellular levels elicited by the vaccine dose, and focuses on developing a
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mathematical optimization approach to identify the optimal vaccine dose to minimize

two objective functionals, (i) minimize the amount of peptide dose and tumor size, and

(ii) minimize the number of activated T cells in addition to the objective functional i. The

optimization approach allows the identification of optimal vaccine doses among a set of

tested doses for a higher clinical benefit in tumor reduction. To demonstrate and validate

our optimization approach, we perform in silico experiments on six patients with mela-

noma from a clinical trial study. The results show that the predicted optimal vaccine doses

can provide higher clinical benefit in tumor reduction when compared to the clinical trial

doses for some patients.

Introduction

Cancer is the second-leading cause of death globally, accounting for approximately one in

every six deaths in 2018 [1, 2]. Current cancer treatments, including surgery, radiotherapy,

chemotherapy, and immunotherapy, can improve a patient’s clinical outcome, but long-term

survival is often impacted by the immunosuppressive environment that cancer patients experi-

ence [3]. Therapeutic cancer vaccines provide clinical benefits to cancer patients by eliciting

an anti-tumor immune response, increasing survival and long-term remission [4–6]. However,

selection of optimal dose and regimen for personalized cancer vaccines is one of the challenges

in the rapid emerging number of clinical trials due to several factors, including lack of system-

atic approaches to test different platforms to induce immune responses, small patient sample

size to efficiently characterize the shape of the immune response curve, tumor heterogeneity,

inadequate study population, and limited quantitative modeling methods that help understand

the most suitable dose-response relationships [4, 7, 8].

In recent years, mechanistic and quantitative systems pharmacology (QSP) models have

proved to be useful for understanding the complex interactions among the immune system,

tumors, and therapeutic interventions [9–13]. These mathematical tools allow for modeling

specific cell populations such as dendritic, memory T, helper T, cytotoxic T, or natural killer

cells, as well as the tumor microenvironment [14–20], and have been used to better understand

and improve multiple cancer treatments/vaccine regimens [21–26], as well as a tool to quanti-

tatively measure immunotherapy responses of certain human immune cell functions such as

tumor antigen-specific T cell responses that may lead to tumor reduction [4].

Classical methods for drug assessment during a phase I clinical trial in oncology are the

accelerated titration designs, the canonical 3+3 designs, or other similar derived designs

which, frequently, produce suboptimal results for patients [27–30]. These dose design methods

use a small group of people to determine the dose-limiting toxicity and maximum tolerated

dose. However, these methods are likely to provide inadequate estimates when developing per-

sonalized drugs [31, 32]. Understanding the patient’s history and the variability of drug

responses can potentially improve drug efficacy and mitigate the risk of adverse events.

Due to patient heterogeneity (e.g., rapidly progressive disease, immune suppression, non-

immunogenic cancers, and slow immune response) in clinical trials, dosing regimens for indi-

vidual patients are difficult to test. In general, a vaccination strategy with insufficient amounts

of antigen may not be effective, whereas excess doses could present practical constraints and

safety concerns, including cytokine syndrome. Thus, an optimal cancer vaccine dose needs to

be personalized for each patient [4]. An optimal cancer vaccine dose for each individual

patient may be explored using compartmental models involving differential equations; how-

ever, not much work has been done in this area.
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The goal of this study is to propose a novel approach to quantitatively determining the opti-

mal composition, including peptide and adjuvant, of a personalized cancer vaccine. To achieve

this goal, we propose two optimization problems using the immunological model we devel-

oped previously [33]. The first optimization problem focuses on minimizing the overall num-

ber of tumor cells and total vaccine exposure throughout the treatment. The second problem

seeks to identify the minimum number of activated CD4+ and CD8+ T cells required for

achieving the largest reduction in tumor cell count. While the first problem optimizes for effi-

cacy (reduction of tumor cell count), the second problem optimizes for both efficacy and safety

(an excessive immune response may pose a potential safety risk). It is essential to note that this

approach may not consistently yield an optimal dose with significantly better clinical outcomes

in overall tumor reduction compared to any of the tested doses. The optimal dose may, in

some cases, provide clinical outcomes similar to those of other tested doses. We apply both

optimization problems to six patients with advanced melanoma [34] to investigate whether

these patients could have benefited from an optimal personalized vaccine doses.

Methodology

The model

We use our compartmental model published previously [33], which captures the interactions

among the human immune system, tumor burden, and a personalized neoantigen peptide can-

cer vaccine. In this paper, we refer to this model as MRM.

The MRM model is deterministic and consists of a set of nonlinear ordinary differential

equations (ODEs) with non-negative initial conditions. The model describes the key events

associated with an immune reaction to a cancer vaccine at the cellular and subcellular levels,

an adjuvanted peptide-based cancer vaccine (see Equations (1)-(2) in S1 Appendix), as well as

cell dynamics of the immune system at the molecular (see Equations (5)-(9) in S1 Appendix)

and cellular level (see Equations ((3)-(4)) and ((10)-(13) in S1 Appendix). These equations are

all interconnected to represent the immune response cascade elicited by a cancer vaccine. At

the molecular level, the MRM model focuses on the processing and presentation of neoantigen

molecules primarily by dendritic cells (DCs) and captures the subcellular dynamics of endoso-

mal peptides involving major histocompatibility complex (MHC) classes I and II in DCs. At

the cellular level, the model presents the evolution of immature and mature DCs, naïve and

activated T cells, and tumor cells throughout the course of the treatment with the cancer vac-

cine. The key immunological processes at the cellular level are activation of DCs by the adju-

vant, activation of naïve CD4+ and CD8+ T cells by mature DCs carrying peptide-bound (i.e.,

p-MHC) molecules, proliferation and differentiation of T cells, and elimination of tumor cells

by activated CD8+ T cells. A flow diagram of MRM model is shown in Fig 1. A summary of all

model variables with their corresponding definitions and units is shown in Table 1.

The MRM model [33] was calibrated using patient-specific data from six patients with mel-

anoma at different disease stages [34] to estimate key model parameters (see Table A and B in

S1 Appendix for a summary of model parameters and estimated values). In our previous study

[33], in silico experiments (virtual simulations) were performed to investigate the response of

each patient to cancer immunotherapy and assess changes in tumor sizes, and global sensitivity

analysis was performed to identify and study the behavior of parameters that majorly contrib-

ute to the uncertainty of outcomes of interest, such as immune response and tumor cell count.

Dosing optimization problem

In this study, we formulate two optimization problems associated with the MRM model [33].

We will refer to the MRM model as the state system for the purpose of the optimization setup.
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Fig 1. Multiscale flow diagram of immunogenicity to cancer vaccine. The immunological mechanism starts when a patient receives

a cancer vaccine, a combination of immunogenic peptides and adjuvant. Adjuvant helps enhance the maturation of immature DCs for

antigen presentation at the mature DC surface. Endocytosed peptides interact with MHC-I/II molecules at the subcellular level in

matured DCs through binding, dissociating or degradation. Subsequently, antigen-specific T cells are activated by peptides bound to

MHC-I/II. Only activated CD8+ T cells can kill tumor cells. Nonetheless, activated CD4+ T cells can help activate CD8+ by tumor

stimulation or secretion of IL-2. The solid (dashed) arrows indicate direct (indirect) interactions between the populations at the

cellular or subcellular level. The dotted arrows indicated interactions between populations at the subcellular and cellular levels. (APCs:

Antigen presenting cells, TCR: T cell receptors. j and k determine the number of specific MHC-I/II allelic molecules.

https://doi.org/10.1371/journal.pcbi.1011247.g001
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Our optimization problem is defined based on the settings and patient information from a

published clinical trial [34]. The trial consisted of six patients with stage III (Patients 1, 3, 4,

and 5) and stage IV (Patients 2 and 6) melanoma who completed a full series of immunogenic

personalized neoantigen cancer vaccines and were followed up for approximately six months.

Specifically, the treatment consisted of a series of five priming and two booster vaccinations.

Each vaccine dose was formulated with a set of immunizing peptides unique to each patient,

admixed with an adjuvant (Polyinosinic-polycytidylic acid, and poly-L-lysine (poly-ICLC)).

In order to formulate the dosing-optimization problem for the cancer vaccine model, we

use the optimal control theory of ODEs [35]. This theory has been extensively used in the liter-

ature to support informative decisions regarding different biological systems [10, 21, 23, 26,

36, 37]. We followed the three main steps to formulate an optimal control problem: (1) define

a biological system (e.g., a system of ODEs), (2) define a set of admissible controls, and (3)

define an objective functional or target that entails the purpose of the optimization. Once the

optimization problem is defined, we derive a set of necessary conditions that the optimal con-

trol as well as the corresponding states must satisfy using Pontryagin’s Maximum Principle

[35]. Lastly, we use the necessary conditions to numerically solve the optimization problem

using the Forward-Backward Sweep Method. Below we elaborate the process of dosing-opti-

mization formulation step by step.

The biological system

To formulate our optimal control problem, we use the MRM model [33] with some assump-

tions on the peptide and adjuvant compartments. The earlier published MRM model assumed

that a series of scheduled vaccine doses are administrated to a patient instantaneously at deter-

mined time points using a Dirac delta function and where each vaccine dose consisted of fixed

concentrations of peptide and adjuvant (see Equations (1)-(2) in S1 Appendix). However, in

this study, the goal is to find a set of peptide and adjuvant concentrations that is optimal for

the specified target. We assume the functions Dosep(t) and Dosea(t) respectively, representing

the vaccine concentration composed of peptides (pmol) and adjuvant (mg), are piecewise

Table 1. Description of model population (or state) variables including units [33].

Population Definition Units

Vaccine p Peptide Concentration pmol

Ad Adjuvant Concentration mg/L

Cellular DI Immature DCs cells

DM Mature DCs cells

NCD4 Naïve CD4+ T cells cells

NCD8 Naïve CD8+ T cells cells

ACD4 Activated CD4+ T cells cells

ACD8 Activated CD8+ T cells cells

T Tumor cells cells

Molecular pE Endosomal peptide fragments pmol

ME
s Free Endosomal MHC-I or MHC-II pmol

pME
s Endosomal p-MHC-I/II pmol

pMs p-MHC-I/II on mature DC membrane pmol

Ms Free MHC-I/II on mature DC membrane pmol

* Subscript s = j or s = k determines the MHC-I or MHC-II molecule, respectively.

https://doi.org/10.1371/journal.pcbi.1011247.t001

PLOS COMPUTATIONAL BIOLOGY Dose optimization of an adjuvanted peptide-based personalized neoantigen melanoma vaccine

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011247 March 1, 2024 5 / 24

https://doi.org/10.1371/journal.pcbi.1011247.t001
https://doi.org/10.1371/journal.pcbi.1011247


functions of time that take nonzero values during the time of vaccination ti; ti þ
1

r

� �
, and are

zero otherwise. Based on the vaccination schedule described in [34], we assume that the vac-

cine is given to patients at a fixed schedule τi = 0, 3, 7, 14, 21, 83, 139 days for i = 1, . . ., 7.

Moreover, ρ = 0.001 days−1 or 86.4 seconds, which is an approximation of the time it takes for

a subcutaneous vaccination process [38].

Based on the above assumptions, our proposed rates of changes of peptide and adjuvant

concentrations are described by Eqs (1) and (2)

dp
dt
¼ r � DosepðtÞ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Peptide Dose Administration

� app
|{z}

Endocytosis by DCs

ð1Þ

dAd

dt
¼ r � DoseaðDosepðtÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Adjuvant Dose Administration

� adAd|ffl{zffl}
Endocytosis by DCs

ð2Þ

where αp and αd are rates of DC uptake for the peptide and the adjuvant molecules, respec-

tively. Reflecting the synergy between these two vaccine components, the amount of adjuvant

is determined by a fixed adjuvant:peptide ratio and the amount of peptide in mg

DoseaðDosepðtÞÞ ¼ ra:p
|{z}

adjuvant:peptide ratio

� Dosemgp ðtÞ
|fflfflfflfflffl{zfflfflfflfflffl}

peptide dose in mg
ð3Þ

where

Dosemgp ðtÞ ¼ ðDosepðtÞ �molecular weightÞ=106
ð4Þ

converts the pmol concentration of peptides to units in mg. With the assumption that the adju-

vant amount depends on the amount of peptides, it is always guaranteed that both vaccine

components are present in each vaccine dose. The adjuvant, as an immunostimulatory agent,

activates the DCs and leads to their maturation. Peptides are trafficked to the endoplasmic

reticulum and endosome of mature DCs, interacting with MHC class I and II molecules.

Set of admissible controls

In this particular case, we assume a state system (MRM model) with the above assumptions

and a set of tested peptide concentrations per unit volume:

V ≔ fDosep 2 L1½0; tf � : Doselp � DosepðtÞ � Doseupg

where tf is the length of time for the treatment. The lower and upper bounds, Doselp and Doseup ,
refer to the allowed minimum and maximum concentrations of peptide. It is assumed that the

lower bound, Doselp, is positive because negative values are not practically meaningful. The

total number of vaccination doses administered to a patient throughout the whole therapy is τ;
where τ = 7 in our case study. The L1[0, tf] notation is the space of all bounded functions in

the interval [0, tf].

The objective functionals

We propose the following two objective functionals:

J1ðDosep;TÞ ¼ JT þ JV ð5Þ
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J2ðDosep;T;ACD4;ACD8Þ ¼ JT þ JV þ JT‒cells ð6Þ

where

JT ¼
Z tf

0

A1 � TðtÞ dt þ A1 � Tðtf Þ

includes two terms, the tumor cells over the course of the treatment,
R tf

0
TðtÞ dt, and tumor

cells at the final time, i.e., T(tf). The integral

JV ¼
Z tf

0

B � Dose2

pðtÞ dt

measures the total amount of peptide concentration and

JT‒cells ¼

Z tf

0

A2 � ACD4ðtÞ þ A2 � ACD8ðtÞ dt

represents the total number of activated T cells (ACD4 and ACD8) from the beginning to the end

of the therapy. Note that by optimizing the peptide concentration through JV, the vaccine dose

(including peptide and adjuvant) is implicitly optimized since we set a fixed ratio for adjuvant:

peptide.

Both objective functionals J1 and J2 share the terms JT and JV, but J2 has an additional term,

JT-cell. This means that both objective functionals target high tumor killing and low vaccine

concentrations, but J2 integral additionally targets minimizing the excess T cell response,

which may adversely affect the safety of the treatment. An excessive T cell response could

cause autoimmune reactions and tissue damage in patients [39, 40]. Note that the term JV has

a value of 0 except for a short period of time (τρ−1, assumed to be the average time among

patients used for all injections throughout the whole therapy).

Moreover, we establish the total immune and tumor responses by calculating the areas

under the curve (AUC) of the time series of activated T cell populations (ACD4 + ACD8), and

the tumor cell population (T), respectively, which is the same as the value of JT and JT-cells

when A1 and A2 are both 1.

The constants A1, A2 and B are weight parameters that have been normalized between 0

and 1. These weights measure the relative importance of each term in the objective functionals.

When these weights are closer to 0 or 1, it indicates a low or high level of importance associ-

ated with that specific term. For further details, please refer to the sections on weight parame-

ters and sensitivity analysis in S1 Appendix.

Optimal dosing problem formulation

We illustrate the optimal dosing problem setup using the objective functionals J1 and J2. The

optimal dosing problem consists of

min
Dosep2V

Jk for k ¼ 1; 2 ð7Þ

subject to the cancer vaccine immunotherapy model, i.e., the state system with the aforemen-

tioned assumptions and non-negative initial conditions. Therefore, our optimization problem

is a minimization problem.

The goal of the minimization problem when using J1 is to find an optimal peptide concen-

tration, Dose∗p (not necessarily unique), along the entire duration of the treatment so that the
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tumor cells are minimized. For J2, the goal is to minimize the activated T cell count in addition

to the tumor cells. We derive the necessary conditions of the minimization problem using

Pontryagin’s Maximum Principle, which are described in detail in S1 Appendix.

Forward Backward Sweep Method (FBSM)

We numerically solve the dose optimization problem using the Forward Backward Sweep

Method (FBSM). The FBSM is an iterative algorithm to solve optimal control problems. In

general terms, the numerical scheme consists of solving two sets of coupled differential equa-

tions and using the optimal control characterization to update the new solutions. The method

exits the loop once the desired convergence criteria for solutions are achieved. The FBSM has

been extensively used to solve optimal control problems involving biological, immunological,

and ecological systems (ODEs, Partial Differential Equations, Difference Equations, Delayed

Equations, Integro-differential Equations, etc.) [35]. For details on the numerical convergence

and stability of the method, see [41].

In particular, we implement the FBSM to numerically find the solution to the dosing-opti-

mization problem. The state system is solved forward in time, while the adjoint system is

solved backward in time using initial conditions for the state variables and transversality condi-
tion for the adjoints. Different ODE solvers, such as ode45 in Matlab or solve_ivp from

scipy.integrate library in Python, can be used to implement this routine. Additionally,

we use the optimal dosing characterization to update and find an optimal set of peptide and

adjuvant concentrations, and check for convergence using the convergence criteria in [41]

described in the code. The state and adjoint systems with the optimal dosing characterization

can be found in S1 Appendix.

The codes to reproduce the results shown in this paper are written in Python and available

in the following GitHub repository https://github.com/Wenvalegam/CanVaxDOpt_Model. A

flow chart summarizing key steps to apply the FBSM to solve our optimization problem is

shown in Fig 2. In the next section, we discuss the dose optimization approach.

Fig 2. Flow chart of the FBSM. Patient-specific initial conditions are the values of all population variables in Table 1 at

the start of the treatment. Patient-specific parameters are T cell recruitment and tumor killing rates, while neoantigen-

specific parameters refer to unique immunogenic peptide sequences and binding affinities tailored to each patient. All

these values can be found in Tables A and B in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1011247.g002
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Measuring the performance of an optimal dose

Evaluating the performance of a predicted optimal dose, Dose∗p 2 V, in comparison to any

other tested vaccine dose, Dosep 2 V, requires their corresponding objective functional

“scores”. To determine if an optimal vaccine dose is more efficient or not than other tested

vaccine doses related to the set V, we use the J-ratio

JkðDose∗pÞ
JkðDosepÞ

for k ¼ 1 or 2: ð8Þ

This J-ratio essentially compares the score of an optimal vaccine dose, JkðDose∗pÞ, predicted

by solving the optimization problem, against any other tested vaccine dose (e.g., the vaccine

dose given to patients during the clinical trial and other selected multipliers). Moreover, when

the following inequality holds at an optimal vaccine dose

JkðDose
∗
pÞ � JkðDosepÞ for k ¼ 1 or 2;

or the J-ratio

0 �
JkðDose∗pÞ
JkðDosepÞ

� 1 for k ¼ 1 or 2;

the predicted optimal dose is determined to be efficient at achieving the desired goal, which is

minimizing either of the objective functionals. Additionally, if the J-ratio is close to 1 we can

assert the other tested doses perform as well as predicted optimal dose. It is worth noticing

that a J-ratio close to 1 does not necessarily imply that the predicted optimal dose offers equiv-

alent clinical benefits as any other tested doses. In the next section, we discuss the clinical ben-

efits of a vaccine dose.

However, since there is no guarantee that JkðDose∗pðtÞÞ for k = 1 or 2 is a global minimum

[42], we can also have that for some Dosep 2 V

JkðDosepÞ < JkðDose
∗
pÞ for k ¼ 1 or 2:

In this case, the J-ratio

1 <
JkðDose∗pÞ
JkðDosepÞ

for k ¼ 1 or 2;

determines the inefficacy of a predicted Dose∗p to minimize an objective functional. When this

occurs, Dose∗p is not optimal. In the next part, we explain how to overcome this situation.

Refinement of dose optimization approach

The main issue with a predicted optimal dose, Dose∗p 2 V, is that it could potentially be a local

minimizer. To overcome this issue, we propose the following heuristic approach. Let’s assume

the J-ratio between Dose∗p and ^Dosep 2 V is greater than 1. We define a sequence of n-subsets,

decreasing in size, of the set V, fV1;V2 . . .Vng with

Vn � Vn� 1 � � � � � V1 � V0 ¼ V;

where the refined set Vi
is defined as

V i ≔ fDosep 2 L1½0; tf � : Doselp � DosepðtÞ � ð1 � �iÞ � Doseupg � V;
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with �i 2 0; 1 �
Doselp
Doseup

h �
and �i−1� �i. The parameter �i indicates the level of refinement of the

set V. We determine a new predicted optimal dose for each refined subset of V, Dose∗;ip 2 V
i
for

i = 1, 2, . . ., n. Hence, a predicted approximation of the optimal peptide dose (global mini-

mizer) is given by

Dose∗p ¼ arg min
Dosep2V

JkðDosepÞ � arg min
i2f0;1;...;ng JkðDose

∗;i
p Þ for k ¼ 1 or 2: ð9Þ

This nested optimization approach would guarantee that the J-ratio between the predicted

optimal Dose∗p and ^Dosep , is always less than or equal to one if the n-subsets are systematically

selected. To ensure a systematic exploration of the V space, one way to select the n-subsets is

by iteratively reducing the upper bounds by a fixed amount, as we did in this work. Note that

all model and weight parameters are kept the same as initially selected throughout the itera-

tion process.

While our heuristic global optimization approach has the potential to approximate the

global minimum, it is important to note that it is not the only approach. Other global optimiza-

tion techniques, such as those discussed in [42–45], could also be applied within this context.

Clinical benefits of an optimal vaccine dose

In this section, we illustrate the clinical implications of optimizing the vaccine dose using our

framework. We aim to establish a meaningful connection between the abstract weight parame-

ters (A1, A2, and B) and their clinical interpretations in the context of tumor reduction,

immune response enhancement, and vaccine impact.

As previously defined, the weight parameters (A1, A2 and B) measure the relative impor-

tance of each term (JT, JT-cell and JV) in our objective functionals. However, this definition of

the weights is very abstract if we want to obtain a clinical interpretation of our optimization

results. To make these weights clinically relevant, we say that these weights represent the rela-

tive importance of minimizing either the tumor, immune, or vaccine terms in our objective

functionals at the patient level. Specifically, values ranging from 0 to 1 indicate the low-to-high

priority assigned by the patient to each term in the objective functional for the individual

patient.

Once optimization returns an optimal vaccine dose, the next question arises: how do we

determine whether the predicted optimal vaccine dose offers a clinical benefit to a particular

patient? Only checking that the J-ratio is less than 1 is not enough to show that there is an

actual clinical benefit. For this reason, in addition to finding the J-ratio, we introduce the indi-

vidual ratios from JT and JT-cell in the objective functionals. Thus, we define the following clini-

cal benefit criteria for the optimal vaccine dose.

1. The predicted optimal vaccine dose has a greater clinical benefit in reducing the total num-

ber of tumor cells over the course of the treatment than any other tested vaccine dose

according to the level of preference selected by the patient if the JT-ratio satisfies the follow-

ing condition

JTðDose∗pÞ
JTðDosepÞ

� 1: ð10Þ

2. The predicted optimal vaccine dose has a greater clinical benefit in reducing the total num-

ber of activated T cells along the duration of the therapy than any other vaccine dose

according to the selected level of preference chosen by the patient if the JT-cell-ratio satisfies
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the following condition

JT‒cellðDose∗pÞ
JT‒cellðDosepÞ

� 1: ð11Þ

For both JT and JT-cell ratios, the further these ratios deviate from unity, the more or less

clinical benefit an optimal vaccine dose offers when compared to other tested vaccine dose.

We do not associate clinical relevance to a JV-ratio since this quantity reflects the impact of a

total vaccine dose in a multiplicative manner. Hence, a ratio for JV that is greater than 1 does

not necessarily imply that the total dose of an optimal vaccine is necessarily higher than any

other tested vaccine dose.

In particular, to determine the vaccine dose that a patient should receive on a vaccination

day, we compute the following integral

Peptide dose ≔
Z tiþ

1
r

ti

r � DosepðtÞ dt

where ρ−1 is the average time of injection and τi for i = 1, 2, . . ., 7 corresponding to a vaccina-

tion day, and thus, the number of doses a patient will receive. The total dose of peptide admin-

istered over the whole treatment is computed with the following integral

DðDosepÞ ≔
Z tf

0

r � DosepðtÞ dt ¼
X7

i¼1

Z tiþ
1
r

ti

r � DosepðtÞ dt ð12Þ

which constitutes the contribution of peptides from each vaccination day. As noted earlier, we

assume Dosep(t) is 0 outside the vaccine administration periods, ti; ti þ
1

r

h i
for i = 1, 2, . . ., 7,

to derive the formula in Eq (12). We say that cumulatively the optimal vaccine dose was lower

than any other vaccine dose if the D-ratio is less than one.

Later in our case study, we will report the J, JT, JT-cell and D ratios to illustrate the clinical

benefits of using an optimal vaccine dose.

Selecting the most clinically effective peptide dose

Our focus now shifts to explaining why the predicted optimal dose in Eq (9) may not always

offer sufficient clinical benefits when compared to other tested doses and how to address this

challenge.

The numerical approach outlined in Refinement of dose optimization approach has the

potential to identify a set of optimal peptide doses. From this set, we select a global minimizer,

Dose∗p, for the objective functionals. However, it is possible that when computing the J-ratio of

the global minimizer and other tested dose, ^Dosep , the overall reduction of tumor cells is not

minimized, that is, the JT ratio is strictly greater than 1. We illustrate this situation in Fig 3.

In this case, the other tested dose has the potential to have more clinical benefit in overall

tumor reduction than the predicted optimal dose. Consequently, we should consider switching

our predicted optimal dose in Eq (9) such that it gives us a greater possible tumor reduction

when compared to other tested doses.

A predicted optimal peptide vaccine dose should be one that, when compared to any other

vaccine dose, provides us with a smaller number of tumor cells over the treatment period.

Within our set of predicted optimal peptide doses, fDose∗;ip g for i = 1, 2, . . ., n, we identify,

Dose∗p, as optimal and with more overall tumor reduction with respect to other tested vaccine
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dose, ^Dosep , if Dose∗p satisfies the following two conditions

Dose∗p ¼ arg min
i2f0;1;...;ng

JTðDose∗;ip Þ

JTð ^DosepÞ
ð13Þ

and

min
Dose∗p

JkðDose∗pÞ

Jkð ^DosepÞ
� 1 for k ¼ 1 or 2: ð14Þ

In Fig 3, we depict an illustrative example of the selection process for a Dose∗p with the lowest

JT ratio. This selection process allows us to choose a Dose∗p that offers greater clinical benefit in

tumor reduction than the other tested vaccine dose.

Results

Dosing optimization for six patients with melanoma

In practice, it is very difficult to optimize the dose of a cancer vaccine for individual patients. A

dose is typically determined and given to all patients, but some questions remain. For instance:

Is the dose provided to an individual patient optimal? Is a fixed dose for all vaccinations war-

ranted, or should the doses for vaccinations over the course of the treatment vary? Our dosing

optimization problem is designed to understand the effects produced by a personalized neoan-

tigen cancer vaccine in six patients with melanoma when the concentrations of peptide and

adjuvant are varied.

First, we formulate a minimization problem to quantify the impact of the components of

the cancer vaccine, namely, peptide and adjuvant (in a fixed ratio), on the total number of

tumor cells (T) of each patient. With this optimization exercise, we can understand how

Doselp Dose¤p(t)

global min

Dose¤p(t)

lowest JT

Doseup

JT ( ^Dosep)

J( ^Dosep)

lower J and JT

lower J , higher JT

lower JT

higher J and JT

V

Scores
J(Dose¤p)
JT (Dose

¤
p)

Fig 3. Optimal peptide dose selection. Selecting the predicted optimal peptide dose with higher clinical benefit in

overall tumor reduction than the tested vaccine dose. Blue and Red curves correspond to J and JT scores as a function

of the predicted optimal doses, fDose∗;ip g. Horizontal lines indicate the J and JT scores of tested dose, ^Dosep . Red region

includes suboptimal doses. Blue region offers doses with potential clinical benefit. Doses below the blue dashed line are

optimal with uncertain clinical benefit. Doses between dashed lines are optimal with lower clinical benefit. Doses in the

green region are optimal, with a higher benefit in tumor reduction.

https://doi.org/10.1371/journal.pcbi.1011247.g003
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effective the vaccine is on each patient by predicting tumor size reductions through model sim-

ulation. A second optimization problem evaluates the effect of vaccine dose on the total num-

ber of tumor cells and on activated T cells (ACD4 + ACD8). In this case, the vaccine dose is

optimized by achieving the minimum number of tumor cells (effectiveness) and activated T

cells (safety), identifying a vaccine dose that elicits an immune response strong enough to min-

imize the tumor size, but elicits the minimal number of T cells to do so. The latter allays safety

concerns. Such a vaccine dose would have the optimal benefit-risk profile.

To solve the optimization problem, we initialize the MRM model (or state system) using

the set of parameters described previously [33] and are summarized in Tables A and B in S1

Appendix. The model’s non-specific patient parameters are taken from Table S1 in [33] and

shown in Table A in S1 Appendix. Note that the maximum activated T cell recruitment rates

(for ACD4 and ACD8), c4 and c; maximum lysis rate by activated T cells, d; the dependence of

lysis rate between T cells and tumor, λ; and the initial tumor size, T(0), are all patient-specific

parameters. The values for these parameters are obtained from Table 1 in [33] and shown in

Table B in S1 Appendix, where authors used a global optimization tool to find parameters’ best

fit to individual patient’s data (with adjusted R2 between 0.75 and 0.95). Moreover, the off rate

of peptide-MHC type I/II with allele s, koff,s for s = j, k, are neoantigen-specific parameters,

which can be accessed in the following GitHub repository https://github.com/Wenvalegam/

CanVaxDOpt_Model.

The concentrations of neoantigen peptides used in the clinical trial for each patient are pre-

sented in Table 2. For more details on how these values are derived, see the supplemental

information in [33]. In the clinical trial, each peptide pool (four pools per vaccine) was

admixed with 0.5 mg of Poly-ICLC adjuvant in a volume of 1 ml of aqueous solution. The

adjuvant is added to the vaccine formulation to enhance immunogenicity [46]. For instance,

on each vaccination day, Patient 1, received a cancer vaccine dose including 3.9 mg of peptides

and 2 mg of adjuvant (poly-ICLC) in a volume of 4 ml aqueous solution [34]. The adjuvant:

peptide ratio, ra:p, used for each patient in the clinical trial can be found in Table 2, which is

also used as a fixed ratio in our model simulations for each patient.

We assume that the average duration of the clinical trial, including post-vaccination follow-

up, is 200 days. The set of tested peptide concentrations per 4 ml of aqueous solution is deter-

mined by

V ≔ fDosep 2 L1½0; 200� : 0:1� DosePt
p � DosepðtÞ � 3� DosePt

p g:

We also assume that the nested subsets Vi
for i = 1, 2, . . .10 of V are

Vi ≔ fDosep 2 L1½0; 200� : 0:1� DosePt
p � DosepðtÞ � ð3 � 0:25 � iÞ � DosePt

p g:

Table 2. Neoantigen Vaccine dose. Peptide dose and adjuvant:peptide ratio converted from clinical trial data for patients with melanoma [33].

Patient No. of peptides Weight (mg) Dosept
p (pmol) Adj:Pep (ra:p)

1 13 3.9 119,340 2

3:9

2 17 5.1 120,030 2

5:1

3 14 4.2 109,570 2

4:2

4 14 4.2 116,570 2

4:2

5 20 6 110,860 2

6

6 20 6 111,820 2

6

https://doi.org/10.1371/journal.pcbi.1011247.t002
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The DosePt
p is the peptide dose used in the clinical trial for each patient and is presented in

the 4th column of Table 2. We vary the peptide concentrations from 0.1-fold to up to 3-fold of

the DosePt
p in our model simulations. These upper and lower bounds of peptide concentrations

were chosen to cover the dose range with tumor reduction as demonstrated by the green areas

on Fig 4. We also assume that the vaccine dose is safe for each patient within the set V and that

there are no significant toxicities. Note that there is no need to select the same lower and upper

fold-bounds of peptide concentrations for all the patients, but here we adopt this approach for

numerical simplicity. The exact value for the adjuvant dose can be found using Eq (3) with the

last column in Table 2 and the corresponding Dosep(t) in mg.

Moreover, we choose weights for J1 to indicate a relative higher level of preference to mini-

mize the total number of tumor cells, but a lower level in minimizing the total vaccine dose,

that is, A1 = 1 and B = 1/3. In the case of J2, we select weights to indicate an equal preference

for minimizing the overall tumor, immune responses and the total vaccine dose, that is, A1 =

1, A2 = 1 and B = 1. The normalization values for the weight parameters can be found in

Table C in S1 Appendix.

We apply the dosing-optimization problem to each of the six patients within their set of

tested peptide doses (V) to predict outcomes of using an optimal vaccine dose and other

Fig 4. Tumor diameter on day 200 as function of constant peptide concentration on each vaccination day. Vertical lines correspond to the lower and upper

bounds set for this dose optimization study for the amount of peptides as the log-folds of the clinical trial dose. The red and green areas indicate tumor growth and

reduction from the initial tumor size, respectively.

https://doi.org/10.1371/journal.pcbi.1011247.g004
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suboptimal doses, including the dose used in the clinical trial and their 0.1–3 folds deviations.

The solutions to the vaccine dosing minimization problem provide us with a set of optimal

concentrations of peptides denoted by fDose∗;ip ðtÞg for i = 0, 1, 2, . . ., 10 to minimize either J1
or J2 objectives according to our weight choices. We select the optimal peptide dose, Dose∗p,
that offers the same or higher clinical benefit in overall tumor reduction compared to the vac-

cine dose using the two conditions in (13) and (14).

Vaccine doses

The optimal dose concentrations of peptide for each vaccination of six patients identified

through our simulations are shown in Fig 5 (for J1 and J2). These concentrations were used to

obtain the optimal immune responses as depicted in Fig 6 and the optimal tumor responses

depicted in Fig 7 (blue and green curves for J1 and J2, respectively). The exact values for these

doses can be found on Tables E-P in S1 Appendix.

The optimal concentrations of peptides when considering minimizing the tumor response

only (J1) are shown as blue bars in Fig 5. For patients 1, 3, and 6 the optimal doses of peptide

were 3-times the clinical trial dose (the upper bound of the prespecified range). For Patient 2,

low doses for the first four and last vaccinations, and high doses for the other vaccinations are

optimal. This result for Patient 2 implies that there may be differences among patients

Fig 5. Optimal peptide concentrations. Bar plots correspond to optimal peptide doses as the number of folds of the clinical trial dose for each vaccination using J1
(blue) and J2 (green). The horizontal dashed line represents the dose used in the clinical trial (baseline) given in Table 2 for each patient. The total number of

immunizing peptides is also reported at the top of each panel. The weights for J1 are A1 = 1 and B = 1/3, while for J2 the weights are A1 = 1, A2 = 1 and B = 1.

https://doi.org/10.1371/journal.pcbi.1011247.g005
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regarding the timing of the higher vaccine doses during the vaccine schedule. With the optimal

dose obtained for J1, all patients achieve tumor size reduction greater or similar to those

reported in the clinical trial [34] and are consistent with model predictions [33].

The optimal concentrations of peptides when considering minimizing the T cell and tumor

responses (J2) for each patient are shown as green bars in Fig 5. Interestingly, our optimal pep-

tide dose for Patients 1, 3, 4 and 5 almost exactly matches their clinical trial dose. Patients 2

and 6 require higher doses for the initial vaccinations, but lower doses subsequently. This

observation suggests that when trying to minimize the immune response in addition to the

tumor response (J2), for patients (2 and 6) with stage IV melanoma, the initial vaccination

dose should be higher and then lowered.

Immune response

Using the MRM model [33] with our optimization problem, we show the predictions of the

number of activated T cells (ACD4 + ACD8) over a 200-day period for six patients with the pre-

dicted optimal vaccine doses (for J1 and J2), clinical trial dose, and 0.1x and 3x the dose used in

the clinical trial.

In Fig 6, we can see that, for all patients, the optimal vaccine dose from J1 produced a stron-

ger immune response (higher cell count of ACD4 + ACD8 shown by the blue curve) than any

Fig 6. Number of activated T cells. Activated T-cells (ACD4 + ACD8) when optimal (blue and green solid curves, respectively) and suboptimal (dashed, solid and dotted

orange are 3, 1, 0.1 folds of clinical trial dose, respectively) vaccine doses are applied to each patient using J1 and J2. Red dots represent patients’ measurements at

specific times in the clinical trial with 15% standard error. The vertical green dashed lines correspond to the days of vaccination.

https://doi.org/10.1371/journal.pcbi.1011247.g006
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other tested vaccine dose. On the other hand, we observe that the immune response with an

optimal vaccine dose from J2, was significantly lower (lower cell count of ACD4 + ACD8 shown

by the green curves) than their immune response to clinical trial dose for Patients 2 and 6.

These observations demonstrate the importance of establishing objective functionals, which

are used to select an optimal vaccine dose for an individual patient.

Tumor response

In Fig 7, we depict the evolution of the tumor size in mm over 200 days for each patient under

optimal and suboptimal vaccine dosing. Note that we first obtained the number of tumor cells

and then converted the cell number into mm by using the diameter formula derived in [33]

dðtÞ ¼ 2 �
3 � TðtÞ

ð4p � 0:7405 � 105Þ

� �1=3

:

In general, we observe that the optimal vaccine dose (blue and green curves) performed

slightly better than suboptimal vaccines within the vaccination period (day 0 and 139) of the

immunotherapy for all patients, except for Patient 2. However, at the late stage (after day 139),

all tested vaccine doses show similar effectiveness in reducing the tumor size for all the

Fig 7. Tumor response. Tumor diameter when optimizing J1 and J2, and optimal (blue and green curves), suboptimal (dotted, solid, and dashed orange are 3, 1, and

0.1 folds of clinical trial dose, respectively) and no (red) vaccinations are applied. Numbers with an arrow are pointing at the blue curve when t = 200 days, represent

the tumor diameter at the end of the treatment (from J1). The vertical green dashed lines correspond to the days of vaccination.

https://doi.org/10.1371/journal.pcbi.1011247.g007
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patients, with the optimal vaccine doses performing noticeably better for Patient 6. Moreover,

when optimizing J2, Patients 2 and 6 have a larger tumor size on day 200 (16.8 mm and 6.39

mm, respectively).

Clinical benefits of the optimal vaccine dose

In this section, we summarize the results of optimizing the cancer vaccine dose with respect to

J1 and J2, and illustrate the clinical benefits (higher tumor reduction or lower T cell activation)

they offer when compared to the clinical trial dose. Although the J1 and J2 ratios are valuable

tools for our optimization approach, they are not enough to offer a clinical interpretation

obtained by an optimal vaccine dose. As a result, we must additionally compute the individual

JT and JT-cell ratios. These individualized ratios quantify the clinical benefits offered by our pre-

dicted cancer vaccine dose when compared to other vaccine doses over the treatment period as

we discussed earlier in Clinical benefits of an optimal vaccine dose.

The following tables provide a detailed analysis of the clinical benefits offered by the pre-

dicted optimal vaccine doses using the overall and individual ratios for J1, J2 and D. These

tables present a comparative view of the overall tumor reduction, immune response, and vac-

cine doses.

In the case of J1 from Table 3, we notice that our predicted optimal dose offers a higher

tumor reduction among almost all the patients when compared to the clinical trial dose. How-

ever, the total optimal peptide dose was over twice the total clinical trial dose for Patients 1, 3,

5 and 6. It is important to note that the overall optimal vaccine dose is assumed to be safe for

Patients 1, 3, 5 and 6.

From Table 4 with respect to J2, our predicted optimal vaccine dose offers slightly better

overall tumor reductions and immune responses than the clinical trial dose for Patients 1, 3, 4,

Table 3. Clinical response using J1. Optimal vaccine dose performance using overall and individual ratios for J1
together with total vaccine dose ratio when compared to clinical trial dose. Green cells indicate more clinical benefit or

a lower total vaccine dose. Red cells indicate less clinical benefit or a higher total vaccine dose.

Pt ID JT ðDose∗pÞ

JT ðDosePt
p Þ

DðDose∗pÞ

DðDosePt
p Þ

J1ðDose∗pÞ

J1ðDosePt
p Þ

1 0.85 2.18 1

2 1 0.8 1

3 0.84 2.32 1

4 0.93 1.98 1

5 0.92 2.02 1

6 0.88 2.04 1

https://doi.org/10.1371/journal.pcbi.1011247.t003

Table 4. Clinical response using J2. Optimal vaccine dose performance using overall and individual ratios for J2 together with total vaccine dose ratio when compared to

clinical trial dose. Green cells indicate more clinical benefit or a lower total vaccine dose. Red cells indicate less clinical benefit or a higher total vaccine dose.

Pt ID JT ðDose∗pÞ

JT ðDosePt
p Þ

JT‒cellðDose∗pÞ

JT‒cellðDosePt
p Þ

DðDose∗pÞ

DðDosePt
p Þ

J2ðDose∗pÞ

J2ðDosePt
p Þ

1 0.94 1.11 1.18 1

2 0.95 0.82 1.62 1

3 0.97 1.05 1.09 1

4 0.98 1.1 1.25 1

5 0.98 1.07 1.2 1

6 0.94 0.89 1.2 1

https://doi.org/10.1371/journal.pcbi.1011247.t004
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and 5. Although for Patients 2 and 6, the optimal vaccine dose can offer more clinical benefits

in terms of overall tumor reduction and reducing the total immune response.

In general, each of our optimal peptide vaccine doses was tailored accordingly to our level

of preference. In the case of J1, we selected weight parameters to prioritize the overall tumor

cell reduction (A1 = 1) over minimizing the vaccine dose (B = 1/3). Although we observe that

for certain patients the overall optimal vaccine dose is almost double the clinical trial dose, the

optimal vaccine dose does not pose any risk of toxicity since it is within the assumed safety

range. The findings in Table 3 reflected this situation. On the other hand, for J2 our level of

preference was the same among the overall tumor and immune responses as well as the total

vaccine dose (A1 = 1, A2 = 1, B = 1), consistent with the observations in Table 4.

Discussion

The optimization approach that we present here can help us identify an optimal peptide dose

with the highest clinical benefit in overall tumor reduction and without excessive total vaccine

dose when compared to another vaccine dose (e.g., the clinical trial dose). Our optimization

approach starts by providing us with a set of optimal peptide doses to approximate a global

minimizer for the objective functionals (J1 and J2). However, this global minimizer in Eq (9)

may not provide the highest overall tumor reduction when compared to another vaccine dose,

as illustrated in Fig 3. To overcome this challenge, we select an optimal vaccine dose from our

set of optimal peptide doses with the highest tumor reduction when compared to the other

vaccine dose. The selection process to identify this optimal dose is described by the two condi-

tions in Eqs (13) and (14).

The vaccine dose optimization problem was applied to the set of six patients from an

advanced melanoma cancer clinical trial [34]. We started by exploring the effect of changing a

constant peptide dose on the initial and final tumor sizes to appropriately select the range for

tested peptide doses in Fig 4. We selected a safe dose range (0.1x to 3x of the clinical trial dose)

for the optimization, which reached a plateau at maximum tumor reduction for almost all

patients. The weight parameters offer the context of the minimization. In the case of J1, the

weights were chosen to prioritize tumor reduction (A1 = 1) over the vaccine dose (B = 1/3). In

the case of J2, the focus was to have an equal weight on reduction in tumor size, number of acti-

vated T cells, and vaccine dose (A1 = 1, A2 = 1 and B = 1). We used the clinical trial dose of

each patient to identify the optimal peptide dose with the highest clinical benefit in overall

tumor reduction to illustrate our optimization approach.

The score of the optimal vaccine doses (for J1 and J2) were similar when compared to the

score of the clinical trial dose (as shown in the last column of Tables 3 and 4). Despite this sim-

ilarity in their scores, the optimal vaccine doses offered a higher clinical benefit in overall

tumor reduction for almost every patient (as shown in the first column of Tables 3 and 4). Spe-

cifically, the total optimal vaccine dose for each patient was significantly lower when the objec-

tive functional J2 was used instead of J1. However, the overall tumor reduction was

significantly higher (more clinical benefit) when the J1 optimal vaccine dose was used rather

than J2. The additional minimization of the total number of activated T cells in J2 illustrated

that the optimally predicted vaccine dose produced similar effects in reducing the total tumor

size with less excessive immune response.

In contrast to the typical trend of decreasing doses during later vaccinations (booster

phase) in Fig 5, an unexpected pattern emerged in the case of Patient 2. According to the J1-

optimal analysis, it is optimal for Patient 2 to receive roughly 0.5 times the clinical trial dose

for the first four and last vaccinations, while approximately 2.5 times the clinical trial dose is

optimal for the vaccinations in between. This deviation from the expected pattern seen in
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other patients introduces an additional layer of complexity to our findings. The unique situa-

tion observed in Patient 2 suggests the possibility that the optimal starting time for administer-

ing the cancer vaccine might vary among patients. Additionally, when considering the J2-

optimal approach, our findings indicate that Patients 2 and 6 with stage IV cancer, require

higher doses for the initial prime vaccinations, followed by lower doses for subsequent admin-

istrations. This observation implies that when the goal is to minimize both the immune

response and the tumor response, a “one size fits all” approach is not desirable and some

patients benefit from higher initial vaccination dose that is subsequently decreased while oth-

ers require low initial doses which are escalated.

We observe from in silico results in Tables 3 and 4 that with the help of an optimal vaccine

(either from J1 or J2) in comparison to the clinical trial dose, there could have been higher

overall tumor reductions among all patients. For Patients 2 and 6, cancer immunotherapy may

reduce the final size of the tumor; however, the immunotherapy alone may not be sufficient to

move these patients to a less advanced cancer stage as the model predicted a large tumor size at

the end of the treatment period for all tested vaccine doses (including the optimal ones). In

such patients, additional or alternative treatment options may be required to improve out-

comes [8, 47].

In practice, it would be more realistic to minimize J1 than J2 since, to our knowledge, per-

sonalized cancer vaccines have not shown potential risks for safety or toxicity due to high T

cell activation [34, 48, 49]. However, with J2, we explored the case when minimizing tumor

and immune responses simultaneously can lead us to find vaccine doses that fit these two out-

comes (with even lesser total vaccine dose). In this hypothetical scenario, the excessive T cell

response from the cancer treatment could have negative consequences in the context of auto-

immune diseases and tissue damage [39, 40]. Therefore, regulating and balancing T cell

responses during treatment is essential for preventing and managing the adverse effects associ-

ated with excessive T cell activation.

Limitations

Our study has several limitations. First, there are some limitations inherited from the MRM

model [33]. The model did not consider the potential elimination of tumor cells by activated

CD4+, the functions of memory and regulatory T cells, or tumor eradication by antigen-spe-

cific antibodies. Thus, these limitations are carried over to our work. Moreover, our optimiza-

tion framework does not allow for optimization of the vaccination schedule. However, we

observed that an optimal vaccine dose is usually a combination of higher and lower vaccine

doses at some of the scheduled vaccination days. This could open a window of opportunity to

explore different schedules where vaccination days requiring low doses (e.g., 0.1 of clinical

trial dose) may be removed. Another limitation of our optimization problem is that it does not

account for other combined treatments received by the patients. Patients 2 and 6 achieved a

positive clinical outcome after receiving anti-programmed cell death protein 1 (anti-PD-1)

antibody treatment post-vaccination [50]. In the future, it will be important to expand the

model so that it accounts for combination therapy and longer outcome including pre/post

immunotherapy treatment [48, 51, 52]. Furthermore, the model and optimization framework

could be refined to incorporate other immunological mechanisms such as cancer relapse, resis-

tance to immunotherapies, and immune escape that can offer a more comprehensive under-

standing of their dynamics. A significant limitation to applying our model in the clinical

setting is that the optimization problem relies on the patient longitudinal data over the course

of the treatment. Thus, it does not have a predictive value to help determine the vaccine dose

prior to the treatment.
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Determining the optimal personalized dose of a cancer vaccine is not a straightforward

task. There are several logistical complexities involved in vaccine development that may render

it impractical for manufacturers to implement the optimal dose. For instance, it may not be

feasible to produce the exact optimal number of peptide molecules suggested by the model.

The model’s fitting may be inaccurate due to insufficient data to estimate parameters and over-

fitting, resulting in unreliable and biased outcomes. However, our results offer a promising

solution. One can target a cancer vaccine dose to be as effective as the optimal vaccine dose. In

addition, our work has the potential to be integrated with a clinical trial, where the optimiza-

tion framework presented here can be used to“learn” from the outcomes after the initial vac-

cine doses, and model parameters can be updated continuously over time to make predictions

more accurate, like a feedback loop in the digital twin paradigm [53, 54].

Conclusion

In this paper, we developed a dose optimization approach to find the optimal vaccine composi-

tions, amount of peptides and adjuvant, that a patient’s vaccine requires to minimize two

objective functionals (one intended for efficacy while another one for safety and efficacy)

given a fixed peptide:adjuvant ratio and vaccination schedule. This study provides a potential

pathway for investigating various dosing regimens in personalized immunotherapy and

underscores the significance of comprehending the impacts of alternative doses in accomplish-

ing the primary objectives of immunotherapy, namely, triggering a potent immune response

to reduce or eliminate tumors.

The findings of our approach suggest that determining the optimal vaccine dose based on

safety and efficacy could assist clinicians in developing and utilizing cancer vaccine therapies

more effectively for each patient. The targeting of optimal vaccine doses, as outlined in this

paper, could serve as a valuable tool for personalized cancer vaccine treatment in a clinical trial

setting.

Disclaimer

This article reflects the views of the authors and should not be construed to represent FDA’s

views or policies.
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