
 
 

 
 

 
Crystals 2024, 14, 311. https://doi.org/10.3390/cryst14040311 www.mdpi.com/journal/crystals 

Article 

Dual-Channel Underwater Acoustic Topological Rainbow 
Trapping Based on Synthetic Dimension 
Jialin Zhong 1, Li Luo 1, Jiebin Peng 1, Yingyi Huang 1, Quanquan Shi 1, Jiajun Lu 1, Haobin Zhang 1, Feiwan Xie 2, 
Fugen Wu 3, Xin Zhang 1,* and Degang Zhao 4,* 

1 School of Physics and Optoelectronic Engineering, Guangdong University of Technology,  
Guangzhou 510006, China; 3217007281@mail2.gdut.edu.cn (J.Z.); luoliphys@gdut.edu.cn (L.L.); 
jiebin.peng@gdut.edu.cn (J.P.); yyhuang@gdut.edu.cn (Y.H.); 1112315001@mail2.gdut.edu.cn (Q.S.); 
2112215097@mail2.gdut.edu.cn (J.L.); 2112215008@mail2.gdut.edu.cn (H.Z.) 

2 School of International Education, Guangdong University of Technology, Guangzhou 510006, China; 
3221009857@mail2.gdut.edu.cn 

3 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; 
wufg@gdut.edu.cn 

4 School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China 
* Correspondence: phxzhang@gdut.edu.cn (X.Z.); dgzhao@hust.edu.cn (D.Z.) 

Abstract: The concept of “rainbow trapping” has generated considerable interest in wave propaga-
tion and energy harvesting, offering new possibilities for diverse and efficient acoustic wave opera-
tions. In this work, we investigate a dual-channel topological rainbow trapping device implemented 
within an underwater two-dimensional phononic crystal based on synthetic dimension. The topo-
logical edge states with different frequencies are separated and trapped at different spatial locations. 
Acoustic waves propagate simultaneously along two boundaries due to the degeneracy of the edge 
states. In particular, the propagation of a dual-channel topological rainbow is also realized by using 
a bend design. This work contributes to the advancement of multi-channel devices in synthetic space 
and provides a reference for the design of highly efficient underwater acoustic devices. 
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1. Introduction 
In recent years, the topological design of materials has provided a new paradigm for 

developing next-generation devices as well as a platform for the discovery of new physics 
[1,2]. Numerous implementations in mechanical [3], microwave [4], acoustic [5,6], and op-
tical systems [7,8] have demonstrated the robustness of topological states against disor-
der, opening up new opportunities for developing devices with topologically protected 
functionality. Recently, topological properties in systems with additional degrees of free-
dom have also been explored, particularly within the setting of synthetic space, a higher-
dimensional space constructed by the combination of physical and geometric dimensions 
[9,10]. The realization of synthetic dimensions broadly falls into two categories: one is to 
form an artificial lattice by designing couplings between various modes and the other is 
to introduce system-dependent parameters to explore higher-dimensional physical phe-
nomena [11,12]. The synthetic dimension idea has expanded the realm of topological 
physics in various fields, such as photonics [13–15], acoustics [16], quantum systems 
[17,18], ultracold atoms [19], etc. This enables the observation of many novel high-dimen-
sional phenomena and brings new opportunities to manipulate the internal degrees of 
freedom of a system. 

Rainbow trapping, which separates and traps waves of different frequencies at dif-
ferent spatial positions, is advantageous for applications that require temporary energy 
storage [20,21], augmented energy–matter interaction [22,23], and efficient frequency 
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routing in classical systems [24–26]. Inspired by rainbow trapping, which originated from 
studies in electromagnetic waves [20,27–30], research has also been conducted on trapping 
acoustic waves. Zhu et al., achieved rainbow trapping of acoustic waves through spatial 
modulation of sound velocity in a new class of anisotropic metamaterials [31]. Guan et al., 
presented a method of controlling the propagation velocity of topological edge states 
through on-site potential and realized a prototype topological rainbow concentrator [32]. 
Wang et al., designed two different topological rainbow devices based on Valley Hall in-
sulators exploiting rotation operation and boundary truncation [33]. Rainbow trapping 
along the boundary or interface of a single channel has been extensively studied and has 
achieved impressive results [34–37]. Water is another important sound medium in addi-
tion to solids and air, making it important to realize the acoustic topological insulators in 
a water background. Despite the advances in controlling acoustic waves in the air, multi-
channel rainbow trapping in aqueous environments remains largely unexplored to the 
best knowledge of the authors. 

In this work, we establish a topological acoustic underwater dual-channel rainbow 
trapping device utilizing rotation deformation as the synthetic dimension. Rectangular 
scatterers are used to achieve a topological phononic crystal and a trivial phononic crystal 
in a honeycomb structure that can be converted to each other by rotating. Unlike the pre-
vious works of single-channel devices that relied on an isolated edge state, the rainbow 
trapping device in this study supports the topologically protected edge modes with two-
fold degeneracy. In a certain angular range, the frequencies of the nontrivial edge states 
decrease monotonically with the increase of the rotation angle. Therefore, an angular-gra-
dient phononic crystal device can be constructed to realize topological rainbow trapping, 
enabling acoustic waves to propagate at different locations along the boundaries with 
changing frequencies. Moreover, the rainbow trapping device supports effective trans-
mission at curved boundaries and is immune to scattering due to topological protection. 
This work provides some insights into the design of topological acoustic devices based on 
the synthetic dimension and has potential applications for underwater research on spatial 
wave filtering, energy harvesting, and acoustofluidics. 

2. Structural Design and Band Inversion 
In this paper, we begin by presenting a two-dimensional (2D) phononic crystal, com-

posed of six rectangular pillars arranged in a honeycomb lattice. These pillars made of 
cork are immersed in water, as illustrated in Figure 1a, where the base vectors 

1 ( , 0, 0)a a=
  and 2

1 3( , ,0)
2 2

a a a=
  are represented by red dashed lines in real space. In 

Figure 1b, 1
4(0, ,0)
3

b
a
π

=


  and 2
2 2( , ,0)

3
b

a a
π π

= −


  are base vectors in reciprocal space. 

The mass density and the wave velocity of the rectangular scatterers are 250 kg/m3 and 
489.9 m/s, respectively [38–40]. For water, the mass density is 1000 kg/m³ and the sound 
velocity is 1490 m/s. Consider a rectangular pillar with a length and width of 0.25 0.1a a×
, where the lattice constant is 28mma = . The distance between the center of each rectan-
gular pillar and the centroid of the unit cell is r , which satisfies 3r a= . Here, the coun-
terclockwise (clockwise) rotation of the scatterer is defined as 0θ > ( 0θ < ), which pro-
vides a degree of freedom for topological band manipulation. With an arbitrary rotation 
angle θ , the unit cell of the two-dimensional phononic crystal always maintains the 6C  
symmetry.  
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Figure 1. (a) Schematic diagram of unit cell composed of rectangular pillars with 45θ = ° , where blue 
areas indicate water. (b) Schematic diagram of reciprocal space and basis vector. (c) Finite element 
model of the two-dimensional phononic crystal. (d) Convergence graph during simulation (y-axis 
logarithmic scale). 

Throughout this study, we employed the commercial finite-element software COM-
SOL Multiphysics to perform the calculations, including the band structures and field dis-
tributions. Using the pressure acoustic physics field, we selected the quadratic Lagrange 
element as the meshing element type in two-dimensional modeling. As shown in Figure 
1c, the number of finite elements is 4608. The average cell mass is 0.9069 (the closer to 1, 
the better the mesh quality). A convergence graph during simulation is shown in Figure 
1d. Each line segment in the convergence graph represents one iteration of the process. 
When all the computational errors are within the given range, the simulation proceeds to 
the next iteration. The relative tolerance we set for the system is 61.0 10−× . It can be seen 
that each computational error shows a decreasing trend, and the minimum values of the 
line segments are smaller than the relative tolerance (−6), indicating that the mesh is con-
verging. 

According to the literature [41–43], there are two 2D irreducible representations at 
the Γ  point of the Brillouin zone associated with the 6C  point group symmetry: E1 and 
E2, corresponding to the odd and even spatial parity, respectively. Figure 2a shows the 
band structures with 0θ = °   (left), 45θ = °   (middle), and 90θ = °   (right), where the 
gray area marks the complete band gap. It is worth noting that we only consider the cal-
culation of bands without fluid–solid interaction. There are two double-degeneracy points 
at the Γ  point, one of which is the dipole mode and the other is the quadrupole mode, 
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referred to as the p-states and d-states, respectively. From the distributions of the eigen-
fields shown in Figure 2c, it is easy to recognize that the band inversion between the p-
states and the d-states at the Γ  point and the E1 and E2 representations have the same 
symmetry [41,44] as the ( , )x yp p  and 2 2( , )xyx y

d d
−

  orbitals of electrons in quantum sys-

tems, respectively. The two degenerate p-states have opposite parity with respect to the 
mirroring operations on the x-axis and y-axis, while the two degenerate d-states have the 
same parity with respect to the mirroring operations on the x-axis and y-axis. In Figure 
2b, the distribution of the Dirac points indicated by red and green spheres in the synthetic 
space is depicted, with the z-axis representing the rotation angle ranging from 0 to 180 
degrees. The pink and pale green horizontal planes represent the planes of 45θ = ° and 

135θ = °  , respectively. Thus, the coordinates of two Dirac points are (0,0, 45°)   and 
(0,0,135°) . The angle for the topological transition occurs at 45θ = ° , where the intra- and 
intercluster couplings are equivalent and a double Dirac cone is formed [45,46]. Figure 2d 
illustrates the simulated eigenfrequencies of the p-states and d-states at the Γ  point as a 
function of θ . More specifically, the relative eigenfrequencies corresponding to d-states 
are higher than those of p-states in the gray area, but are lower in the pink area, indicating 
that a band inversion process occurs as the θ  of the rectangular pillars changes. For brev-
ity, all frequencies have been normalized throughout this work. 

 
Figure 2. (a) Band structure diagrams with different parameters, and band gaps are marked in gray. 
(b) Distributions of Dirac points in synthetic space. (c) Pressure field distributions at the Γ  point 
with 0θ = °  and 90θ = ° , respectively. (d) Eigenfrequencies of p-states (black) and d-states (red) 
at Γ  point. 

3. Effective Hamiltonian and Chern Number 
As mentioned before, the rotation angle has a period of π . The 6C point symmetry 

group allows for the occurrence of a double degenerate Dirac cone at the Γ  point, and a 
band inversion takes place upon rotating the rectangular pillars in the system [45,47]. The 
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band gap experiences processes of closing and reopening at the Dirac point. Through hy-
bridizing p-states and d-states, the two pseudospin states are given by ( ) 2x yp p ip± = ±  , 

2 2( ) 2xyx y
d d id± −

= ± . To understand the topological property of the band gaps, a Hamilto-

nian near the Dirac point can be obtained using the k p−  perturbation method [48–50]:  

, ( , 1, 2,3, 4)in njeff
ij ij

n i n

H H
H H i j

ε ε

′ ′
′= + =

−∑   (1) 

where ij i jH H′ ′= Γ Γ  is the overlapping integral between different eigenstates iΓ  and 

jΓ  . We assume that ( 1, 2,3, 4)n nΓ =   are the four eigenstates at the Γ   point: 1 xpΓ =  , 

2 ypΓ = , 2 23 x y
d

−
Γ = , 4 xydΓ = , and 1,2 pε ε= , 3,4 dε ε=  are the eigenfrequencies of the four 

pseudospin multipole modes at Γ . Rewriting the above Hamiltonian on the new base vec-
tor [ , , , ]p d p d+ + − − , the effective Hamiltonian in the vicinity of the Γ  point reduces to [51]:  

2

2

2

2

0 0
0 0

0 0
0 0

eff

M Bk Ak
A k M Bk

H
M Bk Ak

A k M Bk

+
∗

−

−
∗

+

 −
 

− + =  −
  − + 

  (2) 

where x yk k ik± = ±  , ( ) 2d pM ε ε= −   is the frequency difference between d-states and p-
states at Γ . The coefficients A  are determined by the non-diagonal elements in the first-
order perturbation term. The parameter B  is obtained from the diagonal elements of the 
second-order perturbation term in njH H′ ′ , which is usually negative, i.e., 0B < . As a coun-
terpart of the quantum spin Hall effect, the pseudospin Chen number of this acoustic system 
is denoted by sC , which can be expressed as [52,53]:  

[ ]1 sgn( ) sgn( )
2sC M B= ± +   (3) 

when 0BM < , 0sC =  corresponds to the trivial systems, while 0BM > , 1sC = ±  corre-
sponds to the nontrivial state. In fact, as we can see in Figure 2, for the case (θ < 45°  and 
θ >135° ), the frequency of the dipole modes is lower than the frequency of the quadrupole 
modes. We obtain 0C =  , which corresponds to a trivial phononic crystal. On the other 
hand, for the case ( )θ45° < <135° , we obtain 1C = ± , which corresponds to a topological 
nontrivial phononic crystal. It is further demonstrated that the system we designed under-
goes a topological phase transition at different rotation angles.  

4. Dispersion Analysis and Synthetic Virtual Space 
Acoustic topological insulators exhibit unconventional edge states with topological 

protection [54], backward scattering suppression [55], and defect immunity [56]. As shown 
in Figure 3a, we designed a supercell composed of 12 nontrivial unit cells (θ = 80° ), circled 
by the red dashed line. Compared with the supercell of previous research, our proposed 
supercell is not formed by piecing trivial and nontrivial phononic crystals together. When 
θ = 80° , the projected band diagram of lattices is given in Figure 3b. Two edge states appear 
in the band gap, which are represented by a solid blue line and a cyan dotted line corre-
sponding to the upper and lower edge states, respectively. It is noteworthy that the edge 
states are always degenerate, which is related to the boundary truncation of the supercell. 
Due to the fact that the supercell is not spliced by trivial and topological regions, the disper-
sion curve lies close to the vicinity of one of the bulk bands instead of connecting the upper 
bulk band at one end and the lower bulk band at the other.  
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Figure 3. (a) Schematic of the supercell configuration θ = 80° . (b) The edge states of the supercell 
are demonstrated by the red dashed frame in (a). (c) The projected surface dispersion of the synthetic 
space ( , )xk θ . The surface mixed with blue and cyan represents the edge states, while the gray sur-
faces indicate the bulk states, in which the red and green spheres label the Dirac points. 

The structure parameter θ  is an important factor leading to different dispersion re-
lations in two-dimensional phononic crystals. We investigate the dispersion of a series of 
supercells by changing the rotation angle. Figure 3c shows the projected band structure 
in synthetic space ( , )xk θ , with the surfaces blended with blue and cyan denoting the de-
generate edge states that connect two Dirac points. The edge states evolve with different 
parameters, and the rotation angle θ  is able to change the dispersion relations of the hon-
eycomb lattice phononic crystals, which can be regarded as an additional degree of free-
dom.  

Most previous discussions on rainbow trapping have paid less attention to edge 
states with two-fold degeneracy [33,57–60]. In this work, the edge states are degenerate, 
which is determined by the boundary truncation of the supercell. As a general rule, the 
dispersion relations are symmetric with respect to the line 0xk = . Hence, we only focus 
on one half of the dispersion relations, either the left or the right. An enlargement of the 
dispersion relation within [0.2,1]( )aπ  is depicted in Figure 4a, where the rotation angles 
θ  are selected as 50° , 55° , 60° , 65° , 70° , and 80° , respectively. At 1( )xk aπ= , it can 
be observed that the frequencies of the degenerate edge states decrease monotonically as 
the rotation angles increase. The group velocities (near to zero) of the edge states are plot-
ted as a function of frequency and rotation angle, as shown in Figure 4b. For each fre-
quency, there are two extreme values of θ  beyond which the system no longer supports 
any edge state. The unoccupied regions on the left and right correspond to frequencies 
where no edge states exist, while the edge states reside within the central colored region. 
Two blue dashed lines delineate the boundaries of these three regions, corresponding to 
the minima or maxima of the dispersion bands for a given rotation angle. Low group ve-
locities allow the energy of the wave to converge, providing a stronger constraint on the 
propagation of sound waves [61]. The propagating sound can stop when the group veloc-
ity decreases to zero. This dispersion property enables separating topological edge states 
of different frequencies and trapping acoustic waves at a particular location along the di-
rection of propagation to achieve a topological acoustic rainbow. 



Crystals 2024, 14, 311 7 of 8 
 

 

 
Figure 4. (a) The dispersion relations of the edge states at different rotation angles. (b) The group 
velocity distribution in synthetic space. The blue dashed lines denote the boundary between regions 
where the edge states exist and do not exist5. Topological Rainbow Device. 

To investigate acoustic rainbow trapping, we designed a rainbow device composed 
of phononic crystals with different rotation angles. The rotation angle is spatially linearly 
modulated. Here, we define the parameter θ  of the n-th column (in the x direction) as 

( )nθ
 
: 

1
( ) 1

( )( 1)
,1

1
N

n
n

n N
N

θ θ
θ θ

− −
= + < <

−   (4) 

where N is the total number of columns of the device, and 1θ  
and nθ  

are the rotation 
angles of the phononic crystals in the first and n-th columns, respectively. Spatial modu-
lation leads to a specific angular arrangement of the phononic crystals within each col-
umn. The operating frequency range of a topological rainbow relies on the frequency 
range of edge states. As shown in Figure 5a, the gradient phononic crystal device we de-
signed has 19N =  columns. The hard boundary conditions are imposed on the upper 
and lower boundaries. We set the parameters for the first and last columns to 1 45θ = °  
and 90Nθ = ° , respectively. The rotation interval is 1( ) ( 1) 2.5N Nθ θ θ∆ = − − = ° .  

In practice, 3D printing technology facilitates precise control over sample accuracy 
and minimizes parametric errors [62,63]. Printed phononic crystal mounting plates allow 
for pre-tuning by designing the rotation angle of the phononic crystals before operation. 
Actually, there are some inevitable errors in the angular control, which could influence 
the integrity of the gradient phononic crystal configuration. We consider two scenarios 
involving such errors. In one scenario, the errors are substantial enough to disrupt the 6C  
symmetry or the gradient arrangement of the phononic crystal. In such cases, the relation-
ship between the rotational angle and dispersion of the edge states is not satisfied as dis-
cussed above, leading to the disruption of the rainbow effect. In the second scenario, the 
errors are within acceptable limits, 2.5θ∆ < ° . Under this condition, the gradient phono-
nic crystal structure still maintains a monotonic arrangement, meaning that the rainbow 
effect persists even if there is no significant change in the propagation distance. In addi-
tion, due to topological protection, the acoustic rainbow effect is immune to external per-
turbations, as will be discussed later. 
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Figure 5. (a) Schematic of the dual-channel topological rainbow device. Solid blue lines indicate the 
imposition of hard boundary conditions and red pentagrams denote the positions of sound sources. 
(b) Normalized energy distributions along the boundaries. (c) Total pressure field distributions of 
edge states along x-axis that correlate with the frequencies labeled in Roman numerals in (b). 

From Equation (4), the rotation angle of the acoustic dual-channel topological rain-
bow device monotonically increases from 45°   to 90°   along the θ  -axis, as shown in 
Figure 5a. The normalized intensity distribution along the boundary is depicted in Figure 
5b, where the x-axis denotes the propagation distances along the boundaries while the z-
axis represents the normalized acoustic intensity. The total pressure field distributions for 
five frequencies are depicted in Figure 5c, with these frequencies labeled in Roman nu-
merals in Figure 5b. The presence of the degenerate edge states results in equal excitation 
of both the upper and lower boundaries at the same frequency. We observe that the acous-
tic wave propagates along the upper and lower boundaries of the device and the propa-
gation distances along the boundaries become longer and longer with the decrease in fre-
quency. The property of edge states with a monotonic frequency shift within the bulk gap 
plays a key role in devising topological rainbow trapping. These results indicate that our 
acoustic gradient device achieves underwater topological rainbow trapping with dual 
boundary channels. For clarity, we varied the frequencies of the sound sources from 
higher to lower. 

Energy losses play an important role in the wave propagation properties of phononic 
crystals. In a real three-dimensional space, due to the radiation losses, acoustic waves will 
be progressively dissipated in the direction perpendicular to a two-dimensional plane, 
that is, along the z-axis. The two-component phononic crystals are periodically arranged 
to form systems with spatially non-uniform material parameter distributions, where 
transverse and longitudinal modes and a mixture of these modes exist at the interfaces of 
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the fluid–solid interactions [64]. In addition, the interaction between water and cork pillars 
gives rise to more modes at the Γ  point, which differ from those illustrated in Figure 2c. 
The thermal viscous losses of acoustic energy also contribute to the attenuation of the 
acoustic wave propagation as a result of interactions at the liquid–solid interfaces [65–67]. 
These effects can be conceptualized as energy loss within the two-dimensional plane. To 
identify this energy loss, we introduce the imaginary part of the sound velocity into water, 
and its impact on the rainbow effect in gradient phononic crystals is depicted in Figure 
6a. Losses in rectangular pillars are neglected compared to those in water. There are com-
plex coupling effects between liquid and solid systems, which reduce the eigenfrequency 
of solid–liquid structures to a certain extent. Further, as acoustic waves propagate farther 
and farther, radiation losses attenuate the transmission of acoustic waves in the process, 
which is clearly shown in Figure 6b.  

The propagation length of acoustic energy within gradient phononic crystals funda-
mentally correlates with the operating frequency, a key aspect in the rainbow trapping 
phenomenon. The effectiveness of this phenomenon is critically constrained by inherent 
energy loss mechanisms, notably acoustic–thermal viscous damping and complex fluid–
solid interactions [68–70]. As any material inherently exhibits energy loss properties,, it is 
worthwhile to consider the energy loss when analyzing the actual experimental results. 
These challenges impede the practical utilization of the rainbow effect within underwater 
acoustic contexts, prompting the need for comprehensive, detailed assessments in future 
research. 

 
Figure 6. (a) Total pressure field distributions of edge states along x-axis with loss. (b) Normalized 
energy distributions along boundaries with energy loss. 
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Based on the above analysis, we demonstrate that the acoustic wave can be consist-
ently transmitted on dual channels. It is important to note that the liquid and solid systems 
do not interact with each other in the ideal two-dimensional phononic crystal structure. 
In Figure 7a, we constructed a topological rainbow structure with a polygonal shape, 
where phononic crystals at the same θ  were tilted in the direction indicated by the pink 
dashed line, forming two distinct curved channels and two corners A  and B . As shown 
in Figure 7b, the sound waves propagate along two curved channels simultaneously. The 
incident acoustic wave at the frequency of 0.369c/a passes by corner A . Moreover, at a 
frequency of 0.367c/a, the acoustic wave passes by the corner B  while the acoustic wave 
continues to propagate farther along another boundary. It can be noticed that the acoustic 
wave passes by the corners smoothly and the energy in the bulk is suppressed well. This 
finding enables us to design an expected curved boundary to realize flexible transporta-
tion of sound. 

 
Figure 7. (a) Schematic diagram of a curved rainbow structure with the red pentagrams indicating 
the position of the acoustic sources. (b) The total pressure field distributions correspond to different 
frequencies. 

5. The Robustness of the Topological Rainbow 
In order to demonstrate the robustness of the topologically protected defect mode, 

some external perturbations are introduced in the proposed structure. As shown in Figure 
8a, the rectangles near the boundaries were perturbed by rotational dislocation 45α = ° . 
Unlike the rotation angle θ  for each column of the phononic crystal, α  determines only 
the rotation angle of the perturbed rectangles here. Figure 8b shows that the incident wave 
at a frequency of 0.367c/a can pass through the defect position, which is circled by the yel-
lowish dashed line. Clearly, the external rotation perturbations have little effect on the prop-
agation of rainbow trapping. 
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Figure 8. (a) Schematic of the topological structure with disorders in a close-up view. The red dashed 
lines represent the original locations of the rectangles, while the orange regions indicate their posi-
tions after perturbation. (b) Simulated acoustic pressure field with the disorders, which are encircled 
by the yellowish dashed line. (c) Schematic of a topological structure with randomly distributed 
disorders, labeled by numbers 1–8. (d) The evolution of propagation distances at a frequency of 
0.367c/a with randomly located defects. 

In addition to random rotational perturbations, the random locations of defects are in-
troduced as well. Eight different defects are randomly introduced at positions marked by 
the labels in Figure 8c, each with a rotation perturbation of 45α = ° . Figure 8d illustrates 
the propagation distance of the topological rainbow appearing at a frequency of 0.367c/a 
with different locations of defects. The red line indicates that the acoustic wave propagates 
without any perturbation up to a distance of 0.3mx =  at a frequency of 0.367c/a. We per-
formed the simulation with the disorder at position 3 to obtain the acoustic pressure field 
distribution, as shown in the inset of Figure 8d. It is found that the propagation of the rain-
bow trapping is nearly unaffected by introducing a defect at any of these locations, and the 
propagation distances in the x direction are almost the same for all cases. Due to topological 
protection, the acoustic waves propagate along the boundaries even though the structure is 
destroyed by defects, demonstrating the robustness and advantage of our topological rain-
bow device for sound propagation. 

6. Conclusions 
In summary, we construct a phononic crystal device utilizing the rotation degree of 

freedom on the basis of rectangular pillars satisfying 6C
 
rotational symmetry. The syn-

thesized Dirac points are realized in the synthesized space ( , , )x yk k θ , and a topological 
phase transition can be observed by using the band inversion mechanism. By modulating 
the rotation angle θ , the frequencies of the edge states can be shifted monotonically, and 
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we implement different propagation distances of acoustic waves for different frequencies 
in the gradient device. Simultaneous propagation of acoustic waves is observed along the 
upper and lower boundaries due to the degenerate dispersion curve of edge states. On the 
basis of our simulation test, we also verify the dual-channel propagation along the bend-
ing boundaries and the immunity to disorder. The topological rainbow trapping can be 
realized in a water background and provides a reference for further work on underwater 
acoustic devices in terms of safety and efficiency. 
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