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Abstract

We describe a novel single sample gene set testing method for cancer transcriptomics data

named tissue-adjusted pathway analysis of cancer (TPAC). The TPAC method leverages

information about the normal tissue-specificity of human genes to compute a robust multi-

variate distance score that quantifies gene set dysregulation in each profiled tumor.

Because the null distribution of the TPAC scores has an accurate gamma approximation,

both population and sample-level inference is supported. As we demonstrate through an

analysis of gene expression data for 21 solid human cancers from The Cancer Genome

Atlas (TCGA) and associated normal tissue expression data from the Human Protein Atlas

(HPA), TPAC gene set scores are more strongly associated with patient prognosis than the

scores generated by existing single sample gene set testing methods.

Author summary

Cancer biology is highly tissue-specific: most cancer-driving somatic alterations occur in

just a limited number of tissues and inherited mutations frequently have a tissue-specific

functional impact. To leverage the associations between gene activity in normal and

malignant tissue for gene set testing, we have developed a new single sample gene set test-

ing method for tumor-derived transcriptomics data named TPAC (tissue-adjusted path-

way analysis of cancer). The TPAC method uses normal tissue-specificity to quantifies

gene set dysregulation in each profiled tumor. Importantly, we found that TPAC gene set

scores are more strongly associated with patient prognosis than the scores generated by

existing single sample gene set testing methods.

Introduction

Cancer develops when somatic alterations disrupt pathways associated with genome mainte-

nance, cell proliferation, or cell survival to give a relative growth advantage to the impacted
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cell population [1]. Given the central role of pathway dysregulation in tumor initiation, growth

and metastatic spread, basic and translational cancer research is often focused on pathway-

related questions, e.g., How do somatic alterations cause dysregulation of specific pathways?

What is the impact of pathway dysregulation on patient prognosis? What types of therapeutic

agents can restore normal pathway function? One common approach for answering these

questions involves the analysis of tumor-derived genomic data using gene set testing, or path-

way analysis, methods. Gene set testing is a hypothesis aggregation technique that evaluates

statistics computed on functionally related groups of genes, e.g., the sets maintained in collec-

tions like the Molecular Signatures Database (MSigDB) [2]. By focusing on gene sets, rather

than individual genes, gene set testing can significantly improve power, interpretation and rep-

lication [3–6]. It should be noted that this paper uses the terms pathway and gene set inter-

changably to refer to an unordered group of genes, i.e., no knowledge is assumed regarding

the regulatory or other relationships between the genes in set/pathway. This usage is in con-

trast to a distinction that is often made between these terms with ‘gene set’ representing an

unordered groups of genes, e.g., Gene Ontology term [7], and ‘pathway’ a model that captures

the regulatory relationships among a set of genes, e.g, Reactome pathways [8].

Although the pathways most commonly impacted in cancer have been identified [1] and

progress has been made developing cancer-specific pathway analysis methods that can inte-

grate gene expression and somatic alteration data [9–13], current approaches leverage just

tumor-specific genomic data and do not take into account gene activity in the associated nor-

mal tissue. This is an important limitation given the strong association between gene activity

in normal tissues and the pathophysiology of cancers originating in those tissues. Cancer biol-

ogy is highly tissue and cell type-specific [14–18] with most driving somatic alterations either

occuring in only a small number of cancer types, e.g., KRAS mutations in pancreatic, lung and

colorectal cancers [19], or having a functional impact that varies between impacted tissues,

e.g., germline BRCA1/BRCA2 mutations that only drive cancer in estrogen-sensitive tissues

[20]. As we explored in a recent paper [21], this tissue-specificity means that the pattern of

gene activity (as quantified by mRNA expression) in normal tissues carries important informa-

tion regarding the biology of the associated cancer types. In that paper, we demonstrated

through an analysis of solid tumor data from The Cancer Genome Atlas (TCGA) [22] and nor-

mal tissue data from the Human Protein Atla (HPA) [23] that the association between tissue-

specific and cancer-specific expression values, i.e., the ratio of gene expression in a specific tis-

sue or cancer relative to the mean across multiple tissues or cancers, can be used to improve

survival analysis, the comparative analysis of distinct cancer types, and the analysis of cancer/

normal tissue pairs. Specifically, we found that normal tissue-specific genes (i.e., genes that are

highly-expressed in a given normal tissue relative to other tissue types) are typically down-reg-

ulated in the associated cancer (see the ρcancer/norm column in Table 1). We also found that ele-

vated expression of tissue-specific genes in a tumor is associated with improved cancer

prognosis (see the ρsurv column in Table 1). As detailed in that paper [21], these associations

can be leveraged via gene filtering/weighting approaches to improve the statistical power for

both cancer survivaland cancer vs. normal differential expression analyses, and to identify

transcriptomic differences between different cancers that are independent of the associated

normal tissues.

While a number of gene test testing approaches have been explored that account for tissue

or cell type-specificity [24–27], the primary goal of these techniques was the identification of

tissue-specific biological processes. None of these prior methods specifically focuses on cancer

or uses the association between normal tissue-specificity and gene activity within dysplastic tis-

sue. Given the lack of gene set testing methods that can leverage the association between nor-

mal tissue-specificity and cancer biology, we developed a new single sample gene set testing
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RNA-seq and phenotype data contained in the files

‘GDCPANCAN.htseq fpkm.tsv.gz’ and

‘GDCPANCAN.GDC phenotype.tsv’ was

downloaded from the GCD Data Portal (https://gdc.

cancer.gov/). Alternative cancer outcomes (e.g.,

progression-free interval) were accessed from the

TCGA Pan-Cancer Clinical Data Resource (https://

gdc.cancer.gov/about-data/publications/PanCan-

Clinical-2018). Note that an equivalent FPKM-

normalized version of the TCGA RNA-seq data can

be access from the HPA project at https://www.

proteinatlas.org/download/rna cancer sample.tsv.

zip. For HPA data, the HPA staff provided normal

tissue gene expression data in the file ‘HPA.normal.

FPKM.GDCpipeline.csv’; this data was especially

normalized by the HPA group as FPKM using a

pipeline similar to that employed by GDC for the

TCGA data (this data was generated for the ‘Human

Pathology Atlas’ paper and can be accessed at

https://hrfrost.host.dartmouth.edu/TPAC). The

Hallmark collection gene sets were downloaded

from version 7.2 of the Molecular Signatures

Database (MSigDB) (as downloaded from http://

software.broadinstitute.org/gsea/downloads.jsp).

The TPAC R package and imported TPACData

package are available on CRAN at https://cran.r-

project.org/web/packages/TPAC and https://cran.r-

project.org/web/packages/TPACData.
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method for tumor-derived transcriptomics data named TPAC (tissue-adjusted pathway analy-

sis of cancer). The TPAC method uses information about the normal tissue-specificity of

human genes to compute a robust multivariate distance score that quantifies pathway dysregu-

lation in each profiled tumor. TPAC currently supports the 21 solid tumor types listed in

Table 1. As we demonstrate through an analysis of TCGA gene expression data, TPAC gene

set scores are more strongly associated with both patient prognosis and tumor stage than the

scores generated by existing single sample gene set testing methods. In the remainder of this

paper, we detail the TPAC method in and evaluate the performance of TPAC relative to exist-

ing single sample methods.

Materials and methods

Data sources

The findings detailed in this paper are based on bulk RNA-seq and clinical data from The Can-

cer Genome Atlas (TCGA) [22] for 21 human solid cancers and bulk RNA-seq data from the

Human Protein Atlas (HPA) [28] for the associated 18 normal human tissues. These cancer

types and normal tissues are listed in Table 1. Alternative cancer outcomes (e.g., progression-

free interval) were accessed from the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR)

[29]. The Hallmark gene set definitions were accessed from version 7.2 of the Molecular Signa-

tures Database (MSigDB) [2]. As mentioned above regarding the distinction between gene sets

and pathways, it is worth noting that MSigDB only includes unordered gene sets and, for some

Table 1. The 21 TCGA cancer types and corresponding HPA normal tissues supported by TPAC. The ρcancer/norm column holds the Spearman rank correlation between

normal tissue-specific gene weights (the log fold-change of the mean expression in the normal tissue to the mean in all normal tissues) and the log fold-change of the mean

expression in the cancer type to mean expression in the normal tissue. The ρsurv column holds the Spearman rank correlation between normal tissue-specific gene weights

and the signed log of the p-value from a Kaplan-Meir test of the association between gene expression and cancer survival as computed by Uhlen et al. [23]), which is com-

puted as -log(p-value) for favorable genes and log(p-value) for unfavorable genes. The contents of this table are a synthesis of information from tables 2 and 3 in Frost [21].

TCGA disease code Cancer type HPA tissue ρcancer/norm ρsurv
BLCA Bladder Urothelial Carcinoma urinary bladder -0.299 -0.0229

BRCA Breast Invasive Carcinoma breast -0.437 -0.0993

CESC Cervical Squamous Cell Carcinoma cervix, uterine -0.432 -0.105

COAD Colon Adenocarcinoma colon -0.057 0.304

GBM Glioblastoma Multiforme cerebral cortex -0.446 0.0764

HNSC Head and Neck Squamous Cell Carcinoma tonsil -0.48 0.11

KICH Kidney Chromophobe kidney -0.232 0.454

KIRC Kidney Renal Clear Cell Carcinoma kidney -0.436 0.454

KIRP Kidney Renal Papillary Cell Carcinoma kidney -0.311 0.454

LIHC Liver Hepatocellular Carcinoma liver -0.358 0.35

LUAD Lung Adenocarcinoma lung -0.363 0.073

LUSC Lung Squamous Cell Carcinoma lung -0.406 0.073

OV Ovarian Serous Cystadenocarcinoma ovary -0.546 -0.0348

PAAD Pancreatic Adenocarcinoma pancreas -0.643 0.148

PRAD Prostate Adenocarcinoma prostate -0.179 -0.0397

READ Rectum Adenocarcinoma rectum -0.208 0.349

SKCM Skin Cutaneous Melanoma skin -0.444 -0.0707

STAD Stomach Adenocarcinoma stomach -0.258 0.344

TGCT Testicular Germ Cell Tumors testis -0.636 0.256

THCA Thyroid Carcinoma thyroid gland -0.441 -0.0851

UCEC Uterine Corpus Endometrial Carcinoma endometrium -0.45 0.0276

https://doi.org/10.1371/journal.pcbi.1011717.t001
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collections, e.g., Gene Ontology [30] and KEGG [31], significant filtering is performed.

Researchers interested in leveraging the TPAC method should therefore explore not only

MSigDB collections in addition to the Hallmark sets but the unmodified versions of collections

such as the Gene Ontology, KEGG and Reactome [8]. Additional details on the data sources

used in this paper can be found in the data availability section and the Methods section in S1

Text.

TPAC method

The TPAC method generates single sample gene set scores from tumor gene expression data

using a modified version of the classic Mahalanobis multivariate distance measure [32]. TPAC

takes four inputs:

• X: n × pmatrix that holds the normalized expression measurements for p genes in n tumors

all of the same type (e.g., normalized RNA-seq data from TCGA). For the current implemen-

tation of TPAC, the tumor type is limited to one of the 21 solid cancers listed in Table 1.

Genes with 0 variance are removed.

• t: a length p vector that holds the mean gene expression values (as quantified by the HPA)

for the normal tissue associated with the cancer type whose data is held in X.

• �t: a length p vector that holds the average of the mean gene expression values across all 18

normal tissues in Table 1.

• A:m × pmatrix that represents the annotation of p genes tom gene sets as defined by a col-

lection from a repository like the Molecular Signatures Database (MSigDB) [2] (ai,j = 1 if

gene j belongs to gene set i).

Given X, t, �t, and A, TPAC computes n ×mmatrices S, S+, and S−. These matrices hold sin-

gle sample scores for each of them gene sets defined in A and n tumors captured in X. These

single sample gene set scores are computed as follows:

1. Compute normal tissue-specificity: Let the length p vector t* hold values representing the

normal tissue-specificity of the p genes in X. These tissue-specific values are computed as

t∗ ¼ t=�t, i.e., the fold-change in mean expression between the normal tissue associated with

the target cancer type and the average in all 18 normal tissues listed in Table 1.

2. Compute expression deviation between each tumor and associated normal tissue: Let Δ
hold the differences between the expression values in X and the normal tissue means in t, i.

e, row i in Δ is computed by subtracting t from row i of X. Define two versions of Δ, Δ+ and

Δ−, that capture just the positive or just the negative deviations. Specifically, element d
þ

i; j of

Δ+ is set to element δi,j of Δ if δi,j� 0, otherwise, it is set to 0. Similarily, element d
�

i;j of Δ− is

set to element δi, j of Δ if δi,j< 0, otherwise, it is set to 0.

3. Compute weighted sample covariance matrices: Two weighted versions of the unbiased

sample covariance matrix, Σ̂þ and Σ̂ � , are computed that adjust the sample variance

according to normal tissue-specificity. Specifically, diagonal element ŝþi;i of Σ̂þ is set to the

sample variance of gene i as computed on X multiplied by t∗i (the tissue-specificity value for

gene i). Similarly, diagonal element ŝ �i;i of Σ̂ � is set to the sample variance of gene i divided

by t∗i . All off-diagonal elements in Σ̂þ and Σ̂ � are set to 0. Table 2 captures the impact of this

weighting on the sample variance for gene i (i.e., ŝ i), e.g., the variance is inflated for genes

that are up-regulated in the normal tissue relative to other tissues (i.e., t∗i > 1) and have
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elevated expression in the tumor relative to normal tissue (i.e., δi,j� 0). The impact of these

variance changes is discussed in more detail below.

4. Compute modified Mahalanobis distances for positive expression deviations: Let M+ be

an n ×mmatrix of squared values of modified Mahalanobis distances. Each column k of

M+, which holds the positive component of the sample-specific squared distances for gene

set k, is calculated as:

Mþ½; k� ¼ diagðΔþk ðΣ̂
þ
k Þ
� 1
ðΔþk Þ

T
Þ ð1Þ

where g is the size of gene set k, Δþk is a n × gmatrix containing the g columns of Δ+ corre-

sponding to the members of set k, and Σ̂þk is a g × gmatrix containing the g rows and col-

umns of Σ̂þ corresponding to the members of set k.

5. Compute modified Mahalanobis distances for negative expression deviations: Let M− be

an n ×mmatrix of squared values of modified Mahalanobis distances. Similar to M+, each

column k of M−, which holds the negative component of the sample-specific squared dis-

tances for gene set k, is calculated as:

M� ½; k� ¼ diagðΔ�k ðΣ̂
�
k Þ
� 1
ðΔ�k Þ

T
Þ ð2Þ

where g is the size of gene set k, Δ�k is a n × gmatrix containing the g columns of Δ− corre-

sponding to the members of set k, and Σ̂ �k is a g × gmatrix containing the g rows and col-

umns of Σ̂ � corresponding to the members of set k.

6. Compute modified Mahalanobis distances for positive and negative expression devia-

tions: Let M be an n ×mmatrix of squared values of modified Mahalanobis distances that

capture both positive and negative expression deviations from the associated normal tissue.

These total squared distances are simply computed as the sum of the positive and negative

distances:

M ¼Mþ þM� ð3Þ

7. Compute modified Mahalanobis distances on permuted X: To capture the distribution of

the squared modified Mahalanobis distances under theH0 that the expression values in X

are uncorrelated with no mean difference between samples, the M, M+, and M− matrices

are recomputed on a version of X where the row labels of each column are randomly per-

muted. Let Xp represent the row-permuted version of X and let Mp, Mþ

p , and M�

p that hold

the squared modified Mahalanobis distances computed on Xp according to (1), (2), or (3).

8. Fit gamma distribution to columns of Mp, Mþ

p , and M�

p : A separate gamma distribution is

fit using the method of maximum likelihood (as implemented by the fitdistr() function in

the MASS R package [33]) to the non-zero elements in each column of Mp, Mþ

p , and M�

p .

Let âk and b̂k; k 2 1; . . . ;m represent the gamma shape and rate parameters estimated for

Table 2. Impact of tissue-specific weighting on sample variance for gene i.

t∗i � 1 t∗i < 1

δi,j� 0 ŝ i " ŝ i #

δi,j< 0 ŝ i # ŝ i "

https://doi.org/10.1371/journal.pcbi.1011717.t002
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gene set k on Mp using this procedure. For Mþ

p and M�

p , these estimated parameters are âþk ,

b̂þk , â �k , and b̂ �k .

9. Use gamma cumulative distribution function (CDF) to compute tumor-specific gene

set scores: The tumor-specific gene set scores are set to the gamma CDF value for each ele-

ment of M, M+, and M−. Specifically, each column k of S, which holds the tumor-specific

scores for gene set k, is calculated as:

S½; k� ¼ Fgðâk;b̂kÞðMp½; k�Þ ð4Þ

where Fgðâk;b̂kÞðÞ is the CDF for the gamma distribution with shape âk and rate b̂k. Under

theH0 of uncorrelated expression, valid p-values can be generated by subtracting the ele-

ments of S from 1. The elements of S+ and S− are populated using the same approach for

the elements of M+ and M− and gamma distributions fit on Mþ

p , and M�

p .

The TPAC method is motivated in part by our previously developed Variance-adjusted

Mahalanobis (VAM) method [34], which uses a modified Mahalanobis distance for cell-level

gene set testing of single cell RNA-sequencing data. For the VAM approach, only positive dis-

tances, measured relative to the origin, are used and the sample covariance matrix is modified

to capture just the technical component of gene expression variance. Similar to the use of

gamma CDF values for the VAM method, the use of Fgðâk;b̂kÞðÞ to generate TPAC scores has

several important benefits: 1) it enables gene set inference for individual tumors, 2) it trans-

forms the distances for gene sets of different sizes into a common scale, and 3) it produces

scores that are bound between 0 and 1 and robust to large expression values.

Choice of S, S+ or S−

The three different TPAC generated score matrices, S, S+ and S−, capture distinct features of

pathway dysregulation within each tumor and the choice of which scores to use will therefore

vary depending on the analysis goals. For all matrices, large scores correspond to tumors that

are more significantly dysregulated relative to the corresponding normal tissue and are there-

fore more likely on average to be associated with a poor prognosis or advanced cancer stage.

• S+: Large values in S+ correspond to tumors where expression of gene set members is ele-

vated relative to the associated normal tissue. The use of normal tissue-specificity to adjust

sample variances (as detailed in Table 2 above) will prioritize expression differences for

genes that are normally surpressed in the associated normal tissue, i.e., a tumor is considered

more dysregulated if genes that are expressed at a low level in the associated normal tissue

relative to other tissues are up-regulated in the tumor.

• S−: Large values in S− correspond to tumors where expression of gene set members is down-

regulated relative to the associated normal tissue. In constrast to the impact on S+, the use of

normal tissue-specificity to adjust sample variances leads to larger S− values when tissue-spe-

cific genes are down-regulated in the tumor, i.e., a tumor is considered more dysregulated if

genes that are expressed at a high level in the associated normal tissue relative to other tissues

are down-regulated in the tumor.

• S: Large values in S correspond to tumors where expression of gene set members exhibit a

combination of up and down-regulation relative to the associated normal tissue.
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For most of the analysis results presented below, we use the scores in the S matrix since

these capture a wider range of dysregulation patterns.

TPAC implementation

The TPAC method detailed above is implemented by the TPAC R package that is available on

CRAN (https://cran.r-project.org/web/packages/TPAC). The requires normal tissue expres-

sion data from the HPA is made available via the TPACData R package, which is imported by

TPAC and is also available on CRAN (https://cran.r-project.org/web/packages/TPACData).

Readers interested in using the TPAC method should start by reviewing the liver cancer

vignette (included in S2 Text and embedded in the TPAC package) which illustrates the com-

putation of TPAC scores for TCGA liver cancer RNA-seq data using MSigDB Hallmark gene

sets. The TPAC R package documentation contains complete details on the supported

functions.

Comparison methods

We compared the performance of the TPAC method against four existing single sample gene

set testing techniques: GSVA [35], ssGSEA [36], the z-scoring method of Lee et al. [37]

(referred to throughout the reminder of the paper as the ‘z-scoring method’), and GRAPE

[38]. We also included results for a ‘null’ version of TPAC as a negative control (i.e., TPAC

scores with permuted sample labels to break any associations with cancer prognosis or stage),

and a version of TPAC that does not use tissue-specific weights to adjust gene expression sam-

ple variances.

GSVA and ssGSEA are both widely used competitive techniques that generate sample-

level scores using a Kolmogorov-Smirnov (KS) like random walk statistic computed on the

gene ranks within each sample following some form of gene standardization across the sam-

ples. The z-scoring method is a simple self-contained technique that fits a standard normal

distribution to the average of set genes across all samples. For GSVA, ssGSEA and the z-scor-

ing method, the implementation in the GSVA R package was used with default parameter

settings. Like the z-scoring technique and TPAC, the GRAPE method only uses the expres-

sion values for genes within the evaluated set. Similar to TPAC, and unique among the four

comparison methods, GRAPE generates scores for each sample by comparison with a refer-

ence expression profile. In particular, GRAPE scores are based on the distance between a

binarized version of set gene expression value for a given sample and a binarized reference

template profile (or profile collection). For GRAPE, the binarization of a gene set with m
members results in a m(m − 1)/2 length binary vector whose elements are indicator variables

for an inequality operator applied to all gene pairs, i.e., the value for the i, j comparison is 1

(gi< gj) with ties resolved randomly, and the distance between binary vectors are computed

as the weighted average absolute difference of the elements. For the results in this paper,

GRAPE scores were computed using the makeGRAPE_psMat() function in the GRAPE R

package with the reference template set to the HPA expression profile for the associated nor-

mal tissue with all other parameters set to default values.

Although GRAPE is the most similar of the comparison methods to TPAC, there are a

number of important differences between the two approaches: 1) the binarization approach

used by GRAPE is equivalent to a rank-based representation whereas TPAC measures dis-

tances directly on the normalized expression values, 2) GRAPE computes distances as the aver-

aged weighted absolute difference between binarized vectors and thereby ignores direction;

TPAC separately models increased and decreased expression in the sample relative to the ref-

erence, 3) TPAC scores have a valid null distribution so can be used for inference; GRAPE
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scores do not have a probabilistic interpretation, and 4) TPAC is specifically designed for the

analysis of cancer gene expression data and adjusts scores based on gene normal tissue-speci-

ficity; although the GRAPE paper included TCGA analysis results, the method is not specifi-

cally optimized for the analysis of cancer data, the reported analyses did not score tumor

expression data relative to the associated normal tissue and the method does not account for

normal tissue-specificity.

TCGA analyses

The TPAC method and the comparative methods outlined above in Section were used to gen-

erate single sample gene set scores for TCGA RNA-seq data from the 21 cohorts listed in

Table 1 and the 50 gene sets from the MSigDB Hallmark collection. The TPAC S matrix scores

and scores from the comparative methods were used for the following analyses:

• Landscape of pan-cancer gene set dysregulation: Single sample gene set scores for tumors

from all TCGA cohorts and Hallmark gene sets were clustered and visualized. This analysis

was performed to explore the pattern of gene set dysregulation across multiple cancer types.

• Survival analysis: Univariable Cox proportion hazards models were fit for each cohort using

progression free interval (PFI) as the outcome and single sample gene set scores as a single

predictor variable. The rationale for this analysis is an assumption that cancer prognosis is

associated with the level of transcriptional dysregulation of important biological processes

(as represented by Hallmark gene sets). Given ths assumption, we expected to find more sta-

tistically significant associations between TPAC scores and PFI than for the scores generated

by comparative single sample gene set testing methods.

• Tumor/lymph node stage analysis: For each TCGA cohort, a Wilcoxon rank sum test was

performed on the single sample scores generated by each method for all Hallmark gene sets.

For the analysis of tumor stage, the TCGA tumor stage was discretized as T01 vs non-T01.

For the analysis of lymph node stage, the TCGA lymph node stage was discretized as N0 vs

non-N0. Similar to the rationale for performing a survival analysis using single sample gene

set scores, this analysis was motivated by the assumption that transcriptional dysregulation

is associated with cancer progression (as represented by tumor stage).

• Single tumor inference: To evaluate the use of TPAC scores for tumor-level inference, the

CDF values in the S matrices for all cohorts were converted to p-values. False discovery rate

(FDR) values were then computed for the family containing all gene set scores across the 21

TCGA cohorts and 50 Hallmark gene sets using the method of Benjamini and Hochberg

method [39].

• Kaplan-Meir analysis: To explore the association between TPAC score significance and can-

cer prognosis, a Kaplan-Meir analysis was performed for the TCGA KIRP cohort and the

progression-free interval (PFI) outcome with patients stratified according to the significance

of TPAC score for the MSigDB Hallmark MYC Targets V1 gene set. Significance was deter-

mined according to whether the FDR value associated with the TPAC score was < 0.25

where the family of hypotheses included the TPAC scores for all 50 Hallmark gene sets for

all 321 KIRP samples with PFI data (16,050 total hypotheses).

• Transcription factor activity: To explore the biological features represented by TPAC gene

set dsyregulation scores, we estimated sample-level transcription factor (TF) activity from

the TCGA gene expression data for all analyzed cohorts using the decoupleR method [40].

Following the logic in the ‘Transcription factor activity inference in bulk RNA-seq’ vignette
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associated with the decoupleR Bioconductor R package, this analysis executed the decoupleR

method using run_wmean() function with transcription factor target information obtained

from the Collection of Transcriptional Regulatory Interactions (CollecTRI) database [41].

This decoupleR analysis generated a matrix of sample-level activity estimates for 618 TFs for

all tumors in the analyzed TCGA cohorts. Spearman rank correlations were then computed

between the TF activity estimates and the TPAC scores for all MSigDB Hallmark gene sets.

Results

Inference with TPAC scores maintains type I error control

To explore the statistical properties of the TPAC method, normalized count data was simu-

lated under both the null and alternative hypotheses. To estimate the type I error rate, we gen-

erated a 10,0000-by-100 matrix of independent Poisson random variables with λ = 5 to which

library size normalization was applied. For this null simulation, p-values derived from the S

matrix generated by TPAC for a single set containing the first 20 variables maintained a type I

error rate of 0.0527 at α = 0.05. To estimate power, a similar 10,000-by-100 matrix of Poisson

counts was simulated with a constant offset of λ * δ added to the values for the first 1,000 sam-

ples and 20 variables with δ 2 {0.1, 0.2, . . ., 2}. Fig 1 illustrates the estimated empirical power

for different effect sizes at α = 0.05.

TPAC scores reveal pan-cancer landscape of gene set dysregulation

Fig 2 illustrates the overall pattern of S matrix TPAC scores for the MSigDB Hallmark gene

sets across tumors from all 21 evaluated TCGA cohorts (a similar heatmap for GSVA scores is

included as Fig A in S1 Text). As seen in this figure, tumors cluster into four primary groups

according to TPAC scores (these clusters are annotated along the bottom of the heatmap):

Fig 1. TPAC empirical power for different simulated effect sizes. The simulation model is detailed in section

‘Inference with TPAC scores maintains type I error control’.

https://doi.org/10.1371/journal.pcbi.1011717.g001
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1. Overall dysregulation: Tumors that are highly dysregulated across all Hallmark gene sets

(i.e., tumors represented by the left-most columns in the heatmap)

2. Minimal dysregulation: Tumors that exhibit limited gene expression dysregulation (i.e.,

tumors represented by columns in the middle of the heatmap).

3. Immune signaling dysregulation: Tumors that show pronounced dysregulation among

gene sets related to immune cell signaling (i.e., tumors represented by columns to the

immediate right of the minimally dysregulated tumors)

4. Proliferation dysregulation: Tumors that show pronounced dysregulation among prolifer-

ation gene sets (i.e., tumors represented by the right-most columns in the heatmap)

TPAC scores have more significant associations with cancer prognosis than

scores generated by comparative methods

Fig 3 illustrates the distribution of p-values from univariable Cox proportional hazards models

fit for each TCGA cohort that use progression-free interval (PFI) as the outcome. Separate Cox

Fig 2. Heatmap illustrating the pan-cancer distribution of S matrix TPAC scores for the MSigDB Hallmark gene sets. Annotations along the top

reflect cancer type and annotations on the bottom represent the four main types of dyregulation pattern (1: overall dysregulation across all gene sets, 2:

minimal dysregulation, 3: immune signaling dysregulation, and 4: proliferation dysregulation).

https://doi.org/10.1371/journal.pcbi.1011717.g002
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models were fit for each combination of TCGA cohort, Hallmark gene set, and gene set testing

method with the distribution of all p-values associated with each analysis methods plotted as a

separate curve. As shown in the figure, models using TPAC-generated gene set predictors pro-

vided the most significant associations (286), as determined by Cox models with FDR

values� 0.1. As expected, the null version of TPAC had 0 significant results. The results for

each TCGA cohort are visualized in separate Q-Q plots in Fig C in S1 Text, which demon-

strates significant variability in prognositic signal and relative method performance across the

different cancer types. The magnitude and direction of the PFI associations for the TPAC-gen-

erated gene set scores are visualized in Fig D in S1 Text. As illustrated by Fig D in S1 Text,

gene set dysregulation is usually associated with an unfavorable cancer prognosis and the

strength of the association varies across the TCGA cohorts.

TPAC scores are strongly associated with tumor and lymph node stage

Fig 4 and Fig F in S1 Text provide a similar visualization as Fig 3 and Fig D in S1 Text of the p-

values from statistical models based on single sample gene set scores computed using TPAC and

Fig 3. Q-Q plot comparing p-values from Cox proportional hazards models that use single sample gene set scores

generated by TPAC and each of the comparison techniques as the single predictor and PFI as the outcome against

the U(0, 1) distribution expected under the null. For each evaluated method, a separate test is performed for all 50

MSigDB Hallmark pathways for each of the 21 analyzed TCGA cancer types for a total of 1,050 tests per method. The

results for each evaluated single sample gene set testing method are plotted separately with the number of hypothesis tests

out of a family of 1,050 tests associated with FDR values� 0.1 listed in paratheses after the method in the legend.

https://doi.org/10.1371/journal.pcbi.1011717.g003
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the other comparison methods. For these figures, the p-values capture the association between

gene set scores and discretized tumor stage (T01 vs. other) as evaluated using a Wilcoxon rank

sum test. For these analyses, the scores generated by GRAPE generate the most significant

results (330) with the TPAC variants a close second (299 and 265) and all other comparison

methods producing a markedly smaller number of significant results (104, 137, and 147).

Importantly, the two methods that generate scores based on the deviation in gene expression

between each tumor and the corresponding normal tissue (i.e., TPAC and GRAPE) have sub-

stantially more significant associations relative to techniques that do not use a normal tissue ref-

erence. It is interesting to note that the version of TPAC that does not include an adjustment for

tissue-specificity outperforms the version that includes the tissue-specific adjustment. The

results for each TCGA cohort are visualized in separate Q-Q plots in Fig E in S1 Text.

Similar to Fig 4 and Fig F in S1 Text, Fig 5 and Fig H in S1 Text visualize the association

between single sample gene set scores and lymph node stage associated with each tumor. Similar

to the tumor stage analysis, the GRAPE method generated the most significant results (216) for

the lymph node stage analysis with TPAC second (173). In this case, the standard TPAC

Fig 4. Q-Q plot comparing the distribution of p-values from Wilcoxon rank sum tests comparing single sample gene

set scores generated by TPAC and each of the comparison techniques for tumors with stage T01 vs. the scores for

tumors with higher stages. For each evaluated method, a separate test is performed for all 50 MSigDB Hallmark

pathways for each of the 21 analyzed TCGA cancer types for a total of 1,050 tests per method. The results for each

evaluated single sample gene set testing methods are plotted separately with the number of hypothesis tests out of a family

of 1,050 tests associated with FDR values� 0.1 listed in paratheses after the method in the legend.

https://doi.org/10.1371/journal.pcbi.1011717.g004
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generated substantially more significant associations (173) than the non-tissue specific TPAC

(118). The results for each TCGA cohort are visualized in separate Q-Q plots in Fig G in S1 Text.

Sample-level inference on TPAC scores highlights the significant elements

of pan-cancer gene set dysregulation

Fig 6 illustrates the use of TPAC scores for tumor-specific inference regarding gene set dysre-

gulation. To generate this heatmap, the CDF values in the S matrices for all TCGA cohorts

were converted to p-values. False discovery rate (FDR) values were then computed for the fam-

ily containing all gene set scores across the 21 TCGA cohorts and 50 Hallmark gene sets

(461,900 total hypotheses) using the method of Benjamini and Hochberg method [39]. For

cells corresponding to FDR values� 0.3, the TPAC scores are set to 0 and the modified TPAC

scores are then visualized as a heatmap. For this analysis, 2.6% of the TPAC scores (11,797

individual scores) were significant at an FDR threshold of 0.3.

Fig 5. Q-Q plot comparing the distribution of p-values from Wilcoxon rank sum tests comparing single sample gene

set scores generated by TPAC and each of the comparison techniques for tumors associated with lymph node stage

N0 vs. the scores for tumors associated with higher lymph node stages. For each evaluated method, a separate test is

performed for all 50 MSigDB Hallmark pathways for each of the 21 analyzed TCGA cancer types for a total of 1,050 tests

per method. The results for each evaluated single sample gene set testing methods are plotted separately with the number

of hypothesis tests out of a family of 1,050 tests associated with FDR values� 0.1 listed in paratheses after the method in

the legend.

https://doi.org/10.1371/journal.pcbi.1011717.g005
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TPAC score statistical significance effectively stratifies patients according

to cancer prognosis

Fig 7 visualizes the use of tumor-level inference for survival analysis. Specifically, the TPAC

scores for the TCGA KIRP cohort and Hallmark MYC Targets V1 gene set were discretized

according to an FDR threshold of 0.25 (16,050 total hypotheses) and these discretized values

were then used for a Kaplan-Meir analysis relative to patient PFI. As shown in this plot, tumors

with significant dysregulation of the MYC Targets V1 gene set have a significantly worse prog-

nosis than tumors lacking significant dysregulation. Because only the TPAC method sup-

ported score-level inference, comparable results cannot be generated for the other evaluated

methods.

Association between TPAC scores and transcription factor activity

illuminates the regulatory impact of tumorigenesis

Fig 8 visualizes the rank correlation between tumor-level transcription factor (TF) activity val-

ues, as estimated using the decoupleR [40] method, and overall TPAC scores for each analyzed

Fig 6. Illustration of the pan-cancer significance of S matrix TPAC scores for the MSigDB Hallmark gene sets. This figure visualizes the same data

as Fig 2 but with each TPAC scores whose associated FDR value is� 0.3 set to 0 (X total hypotheses).

https://doi.org/10.1371/journal.pcbi.1011717.g006
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TCGA cohort. Each cell represents the average rank correlation across all 50 MSigDB Hall-

mark gene sets; only the 25 TFs with the largest average absolute correlation are shown. These

results reveal that the estimated activity for most TFs do not have a consistent association with

TPAC scores across all Hallmark gene sets and that the pattern of association varies signifi-

cantly between the different cancer types. However, the cases where TF and TPAC scores do

have a consistent direction of association for a cancer type across all of the Hallmark gene sets,

e.g, KLF13, THAP11 and IRF7 for GBM, are consistent with prior findings on TFs whose

activity is linked to cancer (KLF13 [42], THAP11 [43], and IRF7 [44]). Fig F in S1 Text shows

the per-gene set correlation averaged across all cohorts. In this case, the rank correlations are

quite small when averaged across all cohorts but, for the top TFs, show a consistent direction

of association across all Hallmark gene sets. The TFs captured in Fig F in S1 Text also have

known associations with cancer (e.g., KLF4 [45] and PAX2 [46]).

As expected, larger magnitude TF/TPAC correlations are observed when not averaging

over cancer types or gene sets. Fig G in S1 Text and Fig H in S1 Text visualize these correla-

tions for the KIRP and KIRC cohorts. Looking specifically at the Hallmark MYC Targets V1

Fig 7. Kaplan-Meir plot for TCGA KIRP cohort and progression-free interval (PFI) outcome with patients stratified according to the significance

of the TPAC score for the MSigDB Hallmark MYC Targets V1 gene set. Significance was determined according to whether the FDR value associated

with the TPAC score was< 0.25 where the family of hypotheses included the TPAC scores for all 50 Hallmark gene sets for all 321 KIRP samples with

PFI data (16,050 total hypotheses).

https://doi.org/10.1371/journal.pcbi.1011717.g007
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gene set that was used to generate the Kaplan-Meir plot in Fig 7, the 10 TFs with the largest

positive and negative rank correlations in the KIRP cohort are listed in Table B in S1 Text and

provide some insight into potential regulatory mechanisms underlying the significant associa-

tion with TPAC score significance for this gene set and KIRP cancer prognosis. Similar to the

results shown in Fig 8, Fig F in S1 Text and Fig G in S1 Text, these TFs have known links to

cancer (e.g., SIX4 [47] and PURA [48]).

Discussion

Novel features of the TPAC method

The TPAC method incorporates several novel features not found in existing single sample

gene set testing methods:

• TPAC scores capture the deviation in gene set expression between each analyzed tumor and

the associated normal tissue using a novel modified Mahalanobis distance metric. While the

GRAPE method also generates scores based on the distance between the expression profile

of each sample and a reference, it is not specific to cancer, and, prior to the evaluation in this

paper, had not been used to score tumor expression relative to normal tissue.

• TPAC adjusts for gene normal tissue-specificity using the weighting scheme detailed in

Table 2, which improves the association between the generated gene set scores and both can-

cer prognosis and lymph node stage.

• The TPAC method generates separate scores that capture the positive (S+), negative (S−) and

overall (S) deviations in tumor expression relative to normal tissue. These direction-based

scores not only support the use of tissue-specific weights (as detailed in Table 2) but also

enable a range of downstream analyses (as detailed in the ‘Choice of S, S+ or S−’ section). By

contrast, the GRAPE method generates scores based on the average weighted absolute

Fig 8. Association between transcription factor (TF) activity, as estimated using the decoupleR method, and

TPAC scores. Each cell represents the average rank correlation between overall TPAC scores and TF activity estimates

for one of the TCGA cohorts where averaging is performed across all 50 MSigDB Hallmark gene sets. Results are only

shown for the 25 TFs with the largest average absolute correlation.

https://doi.org/10.1371/journal.pcbi.1011717.g008
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difference between binarized vectors, which does not distinguish between positive and nega-

tive deviations.

• The modified Mahalanobis distances used by TPAC have a null distribution that approxi-

mately follows a gamma distribution, which enables both population and sample-level infer-

ence. While this probabilistic score model is shared by our previously developed VAM

technique [34], the VAM method is not appropriate for the TCGA analyses explored in this

paper since it focuses on single cell RNA-seq data and does not support the comparison

against a reference profile.

Benefits of TPAC for the analysis of cancer transcriptomics

The novel features of the TPAC method underpin several important analytical benefits:

• TPAC scores capture tissue-independent features of the tumor transcriptome. A differential

expression analysis of two cancer types will generate results that largely mirror the output

from a comparison of the associated normal tissues (this effect is visualized in Fig 4 of our

prior paper [21]). This strong tissue type signal makes it challenging to disentangle the con-

tribution of normal tissue biology from the impact of mutagenic processes when analyzing

cancer transcriptomic data. By quantifying the deviation of each tumor from the associated

normal tissue, the TPAC method help identify the tissue-independent transcriptomic impact

of a given cancer. This property of TPAC scores is demonstrated in Fig 2 by the fact that

tumors cluster according to common dysregulation patterns rather than by cancer/tissue

type.

• TPAC scores have the strongest association with cancer prognosis among comparable tech-

niques. Under the assumption that cancer aggressiveness is positively correlated with the dis-

ruption of important biological processes (as represented by the MSigDB Hallmark gene

sets), we expected to find statistically signficant associations between TPAC scores for many

of the Hallmark gene sets and cancer prognosis as represented by the progression free inter-

val (PFI). As shown in Fig 3, TPAC scores have the most significant associations with PFI

(286 vs. a range of 164–191 for the other techniques). Importantly, the standard version of

TPAC that adjusts for normal tissue-specificity has more significant associations (286) than

a variant of TPAC that does not include the tissue-specificity adjustment (247). The strong

association between TPAC scores and cancer prognosis is also illusrated by Fig 7, where

stratification of KIRP patients according to the statistical significance of the TPAC score for

Hallmark MYC Targets V1 gene set reveals a dramatic difference in PFI (i.e., significant dys-

regulation of this gene set relative to normal kidney tissue is associated with a much shorter

PFI).

• TPAC scores have a strong association with both tumor and lymph node stage. Similar to

our assumption regarding a link between cancer aggressiveness and pathway dysregulation,

we also assumed that cancer progression is marked by an increased dysregulation in key cel-

lular pathways. Given this assumption, we expected to find a statistically significant associa-

tion between TPAC scores and both tumor and lymph node stage. In constrast to the PFI

analysis, scores from the GRAPE method had the most significant associations with tumor

stage (330 vs. a range of 104–299 for the other methods) and lymph node stage (216 vs. a

range 108–173). Although TPAC did not produce the most significant associations, its per-

formance was close to GRAPE (299 vs. 330 for tumor stage; 173 vs. 216 for lymph node

stage) and markedly above the other techniques (299 vs. a range of 104–147 for tumor stage;

173 vs. a range of 108–116 for lymph node stage). Importantly, the best performing methods
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(GRAPE and TPAC) both generate scores based on the deviation between tumor expression

and expression in the associated normal tissue. In this context, it is worth noting that the ver-

sion of GRAPE used in the comparative evaluation (i.e., GRAPE with HPA normal tissue

expression as the reference profile) is distinct from the version detailed in the GRAPE paper.

This use of associated normal tissue data was not explored in the original GRAPE paper and

can be viewed as part of the contribution of this manuscript.

• TPAC scores are associated with the activity of cancer-linked transcription factors (TF). As

illustrated in Fig 8 and Fig I in S1 Text, Fig J in S1 Text and Fig K in S1 Text, TPAC scores

are associated with the estimated activity of TFs that have been experimentally shown to be

up or down-regulated within human cancers. Although the strength of these associations is

low and there is significant heterogeneity across different tumor types, the results demon-

strate that TPAC scores may be helpful in characterizing the regulatory program driving bio-

logical process dysregulation during tumorigensis.

TPAC limitations

When interpreting the results in this manuscript or considering adoption of TPAC method,

readers should keep several important limitations in mind. First, the results presented in this

paper analyzed TCGA bulk RNA-seq data for solid human cancers using expression data for

the associated normal tissues from the HPA. While a common processing pipeline was used

on both the TCGA and HPA data, batch effects may still exist. Use of the TPAC method (as

implemented in the TPAC R package) uses HPA normal tissue bulk RNA-seq data so users

must ensure that a equivalent normalization process is employed if analyzing non-TCGA

RNA-seq data. A related limitation is that the TPAC R package only supports the analysis of

bulk RNA-seq data for 21 solid human cancer types associated with the 18 normal tissue types

whose HPA data is embedded in the package; analysis of other cancer types requires the cus-

tom integration of expression data for the relevant normal tissue from HPA or another reposi-

tory. Analysis of cancer single cell RNA-seq data is not currently supported and will require

the development of a cell type, vs. tissue type, reference model.

A second important limitation is that the relative performance of the TPAC method varies

considerably across the various analyzed cancer types. As a consequence, potential users of the

TPAC method should not assume that the overall analysis results presented in Figs 3, 4 and 5

will necessarily hold for a more focused analysis. The cancer type-specific results in Fig C in S1

Text, Fig E in S1 Text and Fig G in S1 Text should be consulted to understand the expected

performance on a specific cancer type and outcome measure. When interpreting the TPAC

performance reported in this paper, readers should also keep in mind that TPAC only supports

unordered gene sets (i.e., the relationships between genes within a pathway are not consid-

ered), that the normal tissue-specific weighting used by TPAC may not improve performance

in all cases (e.g., the association between TPAC scores and tumor stage shown in Fig 4), and

that an improvement in the number of significant associations (as shown for PFI in Fig 3 is

only beneficial as long as the type I error rate is maintained.

Conclusion

Cancer biology is highly tissue-specific: most cancer-driving somatic alterations occur in just a

limited number of tissues and inherited mutations frequently have a tissue-specific functional

impact. As we have explored in prior work [21], cancer tissue-specificity can be leverged to

improve the power and accuracy of cancer genomic analyses. To leverage the associations

between gene activity in normal and malignant tissue for gene set testing, we have developed a
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new single sample gene set testing method for tumor-derived transcriptomics data named

TPAC (tissue-adjusted pathway analysis of cancer). The TPAC method uses the normal tissue-

specificity of human genes to compute a robust multivariate distance score that quantifies

gene set dysregulation in each profiled tumor and can be used for both population and sam-

ple-level inference. As demonstrated through an analysis of TCGA RNA-seq data, TPAC gene

set scores are more strongly associated with patient prognosis than the scores generated by

existing single sample gene set testing methods.
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