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The authors present a new technique for transforming fourth-order semi-canonical nonlinear neutral difference equations into
canonical form. This greatly simplifies the examination of the oscillation of solutions. Some new oscillation criteria are established
by comparison with first-order delay difference equations. Examples are provided to illustrate the significance and novelty of the
main results. The results are new even for the case of nonneutral difference equations.

1. Introduction

In recent years, there has been an increasing interest in
studying the oscillatory properties of difference equations;
see for example, the monographs [1–3]. This interest is moti-
vated by the importance of difference equations in modeling
real-world problems and in the numerical solution of differ-
ential equations. In particular, the oscillatory and asymptotic
behavior of solutions of fourth-order delay and neutral type
difference equations have received great attention in the last
few years; see, for example, the papers [3–23].

In view of the above facts, in this paper, we consider the
fourth-order nonlinear neutral delay difference equation:

D4z nð Þ þ q nð Þxα n − τð Þ ¼ 0; n ≥ n0>0; ð1Þ

where D0zðnÞ¼ zðnÞ; DizðnÞ¼ aiðnÞΔðDi−1zðnÞÞ; i¼ 1; 2;
3; D4zðnÞ¼ΔðD3zðnÞÞ, and zðnÞ¼ xðnÞþ pðnÞxðn− σÞ:
Throughout the paper, we assume that:

ðH1Þ fajðnÞg, j¼ 1; 2; 3, are positive sequences of real
numbers;
ðH2Þ fpðnÞg and fqðnÞg are nonnegative real sequences
with 0≤ pðnÞ<1;

ðH3Þ α is a ratio of odd positive integers and σ and τ are
positive integers.

By a solution of (1), we mean a real sequence fxðnÞg
satisfying Equation (1) for all n≥ n0. We consider only such
solutions that are nontrivial for all large n. A solution of (1) is
called nonoscillatory if it is eventually positive or eventually
negative; otherwise it is called oscillatory. If all solutions are
oscillatory, then the equation itself called oscillatory.

In reviewing the literature, it is seen that the most known
results are for Equation (1) when it is in canonical form, that is,

∑
1

s¼n0

1
aj sð Þ

¼1 for j¼ 1; 2; 3: ð2Þ

In order to clarify and facilitate our discussion, we
introduce the following terminology and classification of
Equation (1). We define:

Ai nð Þ ¼ ∑
1

s¼n

1
ai sð Þ

;  for i¼ 1; 2; 3; ð3Þ

and we will say that Equation (1) is in canonical form if:

Ai n0ð Þ ¼1;  i¼ 1; 2; 3; ð4Þ
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and it is in noncanonical form if:

Ai n0ð Þ<1;  i¼ 1; 2; 3: ð5Þ

In addition, we will say that Equation (1) is in semi-
canonical form if either:

A1 n0ð Þ ¼ A2 n0ð Þ ¼1 andA3 n0ð Þ<1; ð6Þ

or

A1 n0ð Þ ¼1;A2 n0ð Þ<1; andA3 n0ð Þ ¼1; ð7Þ

or

A1 n0ð Þ<1 andA2 n0ð Þ ¼ A3 n0ð Þ ¼1: ð8Þ

Finally, we will say that Equation (1) is in semi-nonca-
nonical form if either:

A1 n0ð Þ ¼1;A2 n0ð Þ<1; andA3 n0ð Þ<1; ð9Þ

or

A1 n0ð Þ<1;A2 n0ð Þ ¼1; andA3 n0ð Þ<1; ð10Þ

or

A1 n0ð Þ<1;A2 n0ð Þ<1; andA3 n0ð Þ ¼1: ð11Þ

Note. When we refer to Equation (1) being in canonical,
noncanonical, semi-canonical, or semi-noncanonical form,
we will use this same terminology to describe the operator
D4zðnÞ in the equation as well.

In the papers [4, 8, 10, 15, 16, 21–23], the authors studied
Equation (1) in case (6) or (7) holds, that is Equation (1) is in
semi-canonical form. In these cases, the positive solutions of
the equation satisfy one of four possible cases, and each of
these have to be eliminated to obtain the oscillation of all

solutions. Therefore, our aim in this paper is to first trans-
form Equation (1) in cases (6) or (7) into canonical form.
This greatly simplifies the examination of the equation since,
in this case, the positive solutions are one of only two types.
We then apply techniques known for canonical equations to
obtain oscillation criteria for Equation (1). Examples illus-
trating the significance and novelty of our main results are
provided. Note that, our results established here are new for
nonneutral difference equations as well.

2. Main Results

In this section, we study the oscillatory behavior of
Equation (1) in case (6) or (7) holds.

2.1. The Case Where (6) Holds. We begin by defining:

b1 nð Þ ¼ a1 nð Þ;  b2 nð Þ ¼ a2 nð Þ
A3 nð Þ ; ð12Þ

b3 nð Þ ¼ a3 nð ÞA3 nð ÞA3 nþ 1ð Þ;  Q nð Þ ¼ A3 nþ 1ð Þq nð Þ:
ð13Þ

Theorem 1. Assume that

∑
1

n¼n0

A3 nð Þ
a2 nð Þ ¼1: ð14Þ

Then, the semi-canonical operator D4zðnÞ can be written
in canonical form as follows:

D4z nð Þ ¼ 1
A3 nþ 1ð ÞΔ b3 nð ÞΔ b2 nð ÞΔ b1 nð ÞΔz nð Þð Þð Þð Þ:

ð15Þ

Proof. A direct calculation shows that:

1
A3 nþ 1ð ÞΔ b3 nð ÞΔ b2 nð ÞΔ b1 nð ÞΔz nð Þð Þð Þð Þ

¼ 1
A3 nþ 1ð ÞΔ b3 nð ÞΔ a2 nð Þ

A3 nð ÞΔ b1 nð ÞΔz nð Þð Þ
� �� �

¼ 1
A3 nþ 1ð ÞΔ

b3 nð Þa3 nð ÞA3 nð ÞΔ a2 nð ÞΔ b1 nð ÞΔz nð Þð Þð Þ þ b3 nð Þa2 nð ÞΔ b1 nð ÞΔz nð Þð Þ
A3 nð ÞA3 nþ 1ð Þa3 nð Þ

� �

¼ 1
A3 nþ 1ð ÞΔ A3 nð Þa3 nð ÞΔ a2 nð ÞΔ b1 nð ÞΔz nð Þð Þð Þ þ a2 nð ÞΔ b1 nð ÞΔz nð Þð Þð Þ

¼ Δ a3 nð ÞΔ a2 nð ÞΔ b1 nð ÞΔz nð Þð Þð Þð Þ − Δ a2 nð ÞΔ b1 nð ÞΔz nð Þð Þð Þ=A3 nþ 1ð Þ
  þ Δ a2 nð ÞΔ b1 nð ÞΔz nð Þð Þð Þ=A3 nþ 1ð Þ
¼ D4z nð Þ:

ð16Þ
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Furthermore,

∑
1

n¼n0

1
b3 nð Þ ¼ ∑

1

n¼n0

1
a3 nð ÞA3 nð ÞA3 nþ 1ð Þ ¼ ∑

1

n¼n0
Δ

1
A3 nð Þ
� �

¼ lim
n→1

1
A3 nð Þ −

1
A3 n0ð Þ ¼1;

ð17Þ

and

∑
1

n¼n0

1
b2 nð Þ ¼ ∑

1

n¼n0

A3 nð Þ
a2 nð Þ ¼1; ð18Þ

by (14). Also,

∑
1

n¼n0

1
b1 nð Þ ¼ ∑

1

n¼n0

1
a1 nð Þ ¼1; ð19Þ

by (6). Hence, the right hand side of (15) is in canonical
form. This completes the proof of the theorem. □

From the above theorem, we obtain the following
corollary.

Corollary 1. Let (14) hold. Then xðtÞ is a solution of
Equation (1) if and only if it is also a solution of the canonical
equation:

D4z nð Þ þ Q nð Þxα n − τð Þ ¼ 0; ð20Þ

where D0zðnÞ¼ zðnÞ, DizðnÞ¼ biðnÞΔðDi−1zðnÞÞ, i¼ 1; 2; 3;
and D4zðnÞ¼ΔðD3zðnÞÞ.

The next lemma gives us the classification of positive
nonoscillatory solutions of Equation (20).

Lemma 1. Let fxðnÞg be an eventually positive solution of
(20). Then the corresponding sequence fzðnÞg is also eventu-
ally positive, and exactly one of the following statements holds:

(I) D1zðnÞ>0; D2zðnÞ<0; D3zðnÞ>0; D4zðnÞ≤ 0;
(II) D1zðnÞ>0; D2zðnÞ>0;  D3zðnÞ>0;  D4zðnÞ≤ 0,

for sufficiently large n:

Proof. The proof is similar to that of [11, Lemma 3] and so we
omit the details. □

Lemma 2. Let fxðnÞg be an eventually positive solution of
ðE1Þ: Then:

x nð Þ ≥ 1 − p nð Þð Þz n − σð Þ; ð21Þ

for all n≥ n1 ≥ n0:

Proof. From the definition of zðnÞ; we have:

x nð Þ ¼ z nð Þ − p nð Þx n − σð Þ ≥ z nð Þ − p nð Þz n − σð Þ:
ð22Þ

In view of Lemma 1, we see that zðnÞ satisfies:

D1z nð Þ ¼ b1 nð ÞΔz nð Þ>0; ð23Þ

for both cases ðIÞ and ðIIÞ. This implies that zðnÞ is increas-
ing and using this in (22) yields:

x nð Þ ≥ 1 − p nð Þð Þz n − σð Þ: ð24Þ

This proves the lemma. □

We next obtain another oscillation result.

Theorem 2. Let (14) hold. If

∑
1

n¼n1
Q nð Þ 1 − p n − τð Þð Þα ¼1; ð25Þ

then Equation (1) is oscillatory.

Proof. Let fxðnÞg be an eventually positive solution of ðEÞ:
Then by Corollary 1, we see that fxðnÞg is also an eventu-
ally positive solution of ðE1Þ: Then by Lemma 1, the
sequence fzðnÞg satisfies either Case ðIÞ or Case ðIIÞ for all
n≥ n1 ≥ n0:

Now using (21) in ðE1Þ; we obtain:

D4z nð Þ þ Q nð Þ 1 − p n − τð Þð Þαzα n − τ − σð Þ ≤ 0;  n ≥ n1:

ð26Þ

In both cases zðnÞ is increasing, so there exists a constant
M>0 and an integer n2 ≥ n1 such that zðn− τ− σÞ≥M for
n≥ n2: Using this in Equation (26), we have

−D4z nð Þ ≥MαQ nð Þ 1 − p n − τð Þð Þα: ð27Þ

Summing Equation (27), from n2 to n gives:

Mα ∑
n

s¼n2
Q sð Þ 1 − p s − τð Þð Þα ≤ D3z n2ð Þ − D3z nþ 1ð Þ ≤ D3z n2ð Þ;

ð28Þ

since in both cases D3zðnÞ>0. This contradiction completes
the proof of the theorem. □

Remark 1. Theorem 2 is independent of the values of α and
the delay argument τ. Hence, it is applicable to linear, sub-
linear, or superlinear equations as well as to ordinary, delay,
or advanced type difference equations.
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Before we present our next results, we introduce the
notation:

Q1 nð Þ ¼ 1
b2 nð Þ ∑

1

s¼n

1
b3 sð Þ ∑

1

u¼s
Q uð Þ 1 − p u − τð Þð Þα

� �
∑

n−τ−σ−1

s¼n∗

1
b1 sð Þ

 !
α

;

ð29Þ

and

Q2 nð Þ¼ Q nð Þ 1 − p n − τð Þð Þα ∑
n−σ−τ−1

s¼n∗

1
b1 sð Þ ∑

s−1

u¼s∗

1
b2 uð Þ ∑

u−1

s1¼n∗

1
b3 s1ð Þ

 !
α

;

ð30Þ

where n∗ ≥ n0 is a sufficiently large integer.

Theorem 3. Let (14) hold and assume that both of the first-
order delay difference equations:

Δw nð Þ þ Q1 nð Þwα n − τ − σð Þ ¼ 0; ð31Þ

and

Δw nð Þ þ Q2 nð Þwα n − τ − σð Þ ¼ 0; ð32Þ

are oscillatory. Then Equation (1) is oscillatory.

Proof. Let xðnÞ be an eventually positive solution of ðEÞ, say
n≥ n1 ≥ n0. Then by Corollary 1, we see that fxðnÞg is a
positive solution of Equation (20), and by Lemma 1, the
function zðnÞ is positive and belongs to either Class ðIÞ or
Class ðIIÞ. Moreover, using Equation (21) in (20), we obtain:

D4z nð Þ þ Q nð Þ 1 − p n − τð Þð Þαzα n − τ − σð Þ ≤ 0; ð33Þ

for all n≥ n2 ≥ n1 þ τþ σ.
First assume that zðnÞ is in Class ðIÞ. Notice that D1zðnÞ

is decreasing, and we have:

z nð Þ ≥ ∑
n−1

s¼n2

1
b1 sð Þ b1 sð ÞΔz sð Þ ≥ D1z nð Þ ∑

n−1

s¼n2

1
b1 sð Þ : ð34Þ

Summing Equation (33), from n to 1, we obtain:

D3z nð Þ ≥ ∑
1

s¼n
Q sð Þ 1 − p s − τð Þð Þαzα s − τ − σð Þ: ð35Þ

Since zðn− τ− σÞ is increasing, this implies:

Δ D2z nð ÞÀ Á
≥
zα n − τ − σð Þ

b3 nð Þ ∑
1

s¼n
Q sð Þ 1 − p s − τð Þð Þα:

ð36Þ

Summing Equation (36), we find that:

−Δ D1z nð ÞÀ Á
≥
zα n − τ − σð Þ

b2 nð Þ ∑
1

s¼n

1
b3 sð Þ ∑

1

u¼s
Q uð Þ 1 − p u − τð Þð Þα:

ð37Þ

Using Equation (34) in (37) gives:

−Δ D1z nð ÞÀ Á
≥ D1z n − τ − σð ÞÀ Á

αQ1 nð Þ: ð38Þ

Hence, the sequence wðnÞ¼D1zðnÞ is a positive solution
of the delay difference inequality:

Δw nð Þ þ Q1 nð Þwα n − τ − σð Þ ≤ 0: ð39Þ

By Grace and Graef [7, Lemma 3], we see that the asso-
ciated delay difference Equation (31) also has a positive solu-
tion, which is a contradiction.

Next, assume that zðnÞ belongs to Class (II). Since
D3zðnÞ is decreasing, we have:

D2z nð Þ ≥ ∑
n−1

s¼n2

1
b3 sð ÞD3z sð Þ ≥ D3z nð Þ ∑

n−1

s¼n2

1
b3 sð Þ : ð40Þ

Summing the above inequality, we obtain:

Δz nð Þ ≥ D3z nð Þ 1
b1 nð Þ ∑

n−1

s¼n2

1
b2 sð Þ ∑

s−1

u¼n2

1
b3 uð Þ ; ð41Þ

and summing again, we see that wðnÞ¼D3zðnÞ satisfies:

z nð Þ ≥ w nð Þ ∑
n−1

s¼n2

1
b1 sð Þ ∑

s−1

u¼n2

1
b2 uð Þ ∑

u−1

s1¼n2

1
b3 s1ð Þ : ð42Þ

Using the last estimate in Equation (33) shows that wðnÞ
is a positive solution of the difference inequality:

Δw nð Þ þ Q2 nð Þwα n − τ − σð Þ ≤ 0; ð43Þ

which implies that the corresponding difference Equation (32)
also has a positive solution. In view of Grace and Graef
[7, Lemma 3], this is again a contradiction and proves the
theorem. □

Corollary 2. Assume that, Equation (14) holds. If

lim inf
n→1 ∑

n−1

s¼n−τ−σ
H sð Þ ≥ τ þ σ

τ þ σ þ 1

� �
τþσþ1

;  for α¼ 1;

ð44Þ
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or

∑
1

n¼n∗
H nð Þ ¼1;  for 0<α<1; ð45Þ

where

H nð Þ ¼min Q1 nð Þ;Q2 nð Þf g; ð46Þ

then Equation (1) is oscillatory.

Proof. It is clear (e.g., [3, Theorem 7.6.1] and [13, Theorem 1],
respectively) that conditions (44) and (45) ensure the oscilla-
tion of (31) and (32) in the cases α¼ 1 and 0<α<1, respec-
tively. This proves the corollary. □

Corollary 3. Assume that, Equation (14) holds. If α>1 and
there exists a constant λ>1=ðτþ σÞ ln α such that:

lim inf
n→1 H sð Þexp −eλnð Þ½ �>0; ð47Þ

where HðnÞ is defined as in Corollary 2, then Equation (1) is
oscillatory.

The conclusion of this corollary follows from Theorem 3
and study by Tang [13, Theorem 2].

2.2. The Case Where (7) Holds. We set

d1 nð Þ ¼ a1 nð Þ
A2 nð Þ ;  d2 nð Þ ¼ a2 nð ÞA2 nð ÞA2 nþ 1ð Þ;   and  

d3 nð Þ ¼ a3 nð Þ
A2 nþ 1ð Þ ;

ð48Þ

for all n≥ n∗ ≥ n0.
The following result is analogous to Theorem 1.

Theorem 4. Assume that

∑
1

n¼n0

A2 nþ 1ð Þ
a3 nð Þ ¼ ∑

1

n¼n0

A2 nð Þ
a1 nð Þ ¼1: ð49Þ

Then the semi-canonical operator D4zðnÞ has the canoni-
cal representation:

D4z nð Þ ¼ Δ
a3 nð Þ

A2 nþ 1ð ÞΔ a2 nð ÞA2 nð ÞA2 nþ 1ð ÞΔ a1 nð Þ
A2 nð ÞΔz nð Þ
� �� �� �

:

ð50Þ

Proof. Taking the difference:

Δ d3 nð ÞΔ d2 nð ÞΔ d1 nð ÞΔz nð Þð Þð Þð Þ
¼ Δ d3 nð ÞΔ d2 nð Þa2 nð ÞA2 nð ÞΔ a1 nð ÞΔz nð Þð Þ þ d2 nð Þa1 nð ÞΔz nð Þ

A2 nð ÞA2 nþ 1ð Þa2 nð Þ
� �� �

¼ Δ d3 nð Þ A2 nþ 1ð ÞΔ a2 nð ÞΔ a1 nð ÞΔz nð Þð Þð Þ − Δ a1 nð ÞΔz nð Þð Þð Þ þ Δ a1 nð ÞΔz nð Þð Þð Þ
¼ Δ a3 nð ÞΔ a2 nð ÞΔ a1 nð ÞΔz nð Þð Þð Þð Þ ¼ D4z nð Þ:

ð51Þ

Clearly,

∑
1

n¼n0

1
a2 nð ÞA2 nð ÞA2 nþ 1ð Þ ¼ ∑

1

n¼n0
Δ

1
A2 nð Þ
� �

¼ lim
n→1

1
A2 nð Þ −

1
A2 n0ð Þ ¼1; ð52Þ

so together with Equation (49), this shows that the operator
is in canonical form. This completes the proof of the
theorem. □

From Theorem 4, we see that under condition (49),
Equation (1) can be written in the equivalent canonical
form as follows:

Δ d3 nð ÞΔ d2 nð ÞΔ d1 nð ÞΔz nð Þð Þð Þð Þ þ q nð Þxα n − τð Þ ¼ 0: ð53Þ

That is, we have the following result that is analogous to
Corollary 1.

Corollary 4. Assume that condition (49) holds. Then xðnÞ is a
solution of Equation (1) if and only if it is a solution of (53).

Using Equation (21) in (53) gives:

L4z nð Þ þ q nð Þ 1 − p n − τð Þð Þαzα n − τ − σð Þ ≤ 0; ð54Þ

Abstract and Applied Analysis 5



where L0zðnÞ¼ zðnÞ;  LizðnÞ¼ diðnÞΔðLi−1zðnÞÞ;  i¼ 1; 2; 3;
and L4zðnÞ¼ΔðL3zðnÞÞ.

Similar to what we did previously, we will now apply
Theorem 2, Theorem 3, Corollary 2, and Corollary 3 to
Equation (54) to obtain the following oscillation results.

To accomplish this, we need the additional notation:

Q3 nð Þ ¼ 1
d2 nð Þ ∑

1

s¼n

1
d3 sð Þ ∑

1

u¼s
q uð Þ 1 − p u − τð Þð Þα

� �
∑

n−τ−σ−1

s¼n∗

1
d1 sð Þ

 !
α

;

ð55Þ

and

Q4 nð Þ ¼ q nð Þ 1 − p n − τð Þð Þα ∑
n−σ−τ−1

s¼n∗

1
d1 sð Þ ∑

s−1

u¼s∗

1
d2 uð Þ ∑

u−1

s1¼n∗

1
d1 s1ð Þ

 !
α

;

ð56Þ

where n∗ ≥ n0 is a sufficiently large integer.

Theorem 5. Let Equation (49) hold. If

∑
1

n¼n1
q nð Þ 1 − p n − τð Þð Þα ¼1; ð57Þ

then Equation (1) is oscillatory.

Theorem 6. Let Equation (49) hold. Assume that, both of the
first-order delay difference equations:

Δw nð Þ þ Q3 nð Þwα n − σ − τð Þ ¼ 0; ð58Þ

and

Δw nð Þ þ Q4 nð Þwα n − σ − τð Þ ¼ 0; ð59Þ

are oscillatory. Then Equation (1) is oscillatory.

Corollary 5. Assume that, Equation (49) holds. If

lim inf
n→1 ∑

n−1

s¼n−τ−σ
H1 sð Þ ≥ τ þ σ

τ þ σ þ 1

� �
τþσþ1

 for α¼ 1;

ð60Þ

or

∑
1

n¼n∗
H1 nð Þ ¼1 for 0<α<1; ð61Þ

where

H1 nð Þ ¼min Q3 nð Þ;Q4 nð Þf g; ð62Þ

then Equation (1) is oscillatory.

Corollary 6. Assume that, Equation (49) holds. If α>1 and
there exists a constant λ> 1

τþσ ln α such that:

lim inf
n→1 H1 nð Þ exp −eλnð Þ½ �>0; ð63Þ

where H1ðnÞ is as in Corollary 5, then Equation (1) is
oscillatory.

3. Examples

In this section, we present examples to illustrate our main
results.

Example 1. Consider the semi-canonical fourth-order neutral
delay difference equation as follows:

Δ n nþ 1ð ÞΔ 1
n
Δ2z nð Þ

� �� �
þ q0
n nþ 2ð Þ x n − 1ð Þ ¼ 0;  n ≥ 1;

ð64Þ

where q0>0 and zðnÞ¼ xðnÞþ 1
2 xðn− 1Þ. Here, we have

a1ðnÞ¼ 1, a2ðnÞ¼ 1
n, a3ðnÞ¼ nðnþ 1Þ, pðnÞ¼ 1

2, σ¼ 1, τ¼ 1,
α¼ 1, and qðnÞ¼ q0=ðnðnþ 2ÞÞ.We easily see that ðH1Þ–ðH3Þ
and Equation (6) hold, and A3ðnÞ¼ 1

n, b1ðnÞ¼ 1, b2ðnÞ¼ 1,
b3ðnÞ¼ 1, and QðnÞ¼ q0=ðnðnþ 1Þðnþ 2ÞÞ. The trans-
formed equation then becomes (see (20))

Δ4z nð Þ þ q0
n nþ 1ð Þ nþ 2ð Þ x n − 1ð Þ ¼ 0; n ≥ 1; ð65Þ

which is clearly in canonical form. Further computations
show that:

Q1 nð Þ ≈ q0 n − 2ð Þ
4n

;Q2 nð Þ ≈ q0 n − 1ð Þ n − 2ð Þ n − 3ð Þ
n nþ 1ð Þ nþ 2ð Þ ;

ð66Þ

and

H nð Þ ≈ q0
12

1 −
1
n

� �
1 −

2
nþ 1

� �
1 −

3
nþ 2

� �
: ð67Þ

Condition (14) clearly holds and condition (44) becomes

lim inf
n→1 ∑

n−1

s¼n−2

q0
12

1 −
1
s

� �
1 −

2
sþ 1

� �
1 −

3
sþ 2

� �
¼ q0
12

>
2
3

� �
3
;

ð68Þ

that is, condition (44) holds if q0> 32
9 . Therefore, by Corollary 2,

the Equation (64) is oscillatory.

Example 2. Consider the fourth-order semi-canonical neutral
delay difference equation:
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Δ
1
n
Δ n nþ 1ð ÞΔ 1

n
Δz nð Þ

� �� �� �
þ q0
n nþ 1ð Þ nþ 2ð Þ x n − 1ð Þ

¼ 0;  n ≥ 1;

ð69Þ

where q0>0 and zðnÞ¼ xðnÞþ 1
2 xðn− 1Þ. We have a1ðnÞ¼ 1

n,
a2ðnÞ¼ nðnþ 1Þ, a3ðnÞ¼ 1

n, pðnÞ¼ 1
2, σ¼ 1, τ¼ 1, α¼ 1, and

qðnÞ¼ q0=ðnðnþ 1Þðnþ 2ÞÞ. It is easy to see that ðH1Þ–ðH3Þ
and Equation (7) hold, and A2ðnÞ¼ 1

n, and d1ðnÞ¼ d2ðnÞ¼
d3ðnÞ¼ 1. The transformed equation becomes (see (53))

Δ4z nð Þ þ q0
n nþ 1ð Þ nþ 2ð Þ x n − 1ð Þ ¼ 0; n ≥ 1; ð70Þ

which is in canonical form. We see that Equation (49) holds,
and further computations show that:

Q3 nð Þ ≈ q0 n − 2ð Þ
4n

;  Q4 nð Þ ≈ q0 n − 1ð Þ n − 2ð Þ n − 3ð Þ
n nþ 1ð Þ nþ 2ð Þ ;

ð71Þ

and

H1 nð Þ ≈ q0
12

1 −
1
n

� �
1 −

2
nþ 1

� �
1 −

3
nþ 2

� �
: ð72Þ

Condition (60) becomes:

lim inf
n→1 ∑

n−1

s¼n−2

q0
12

1 −
1
s

� �
1 −

2
sþ 1

� �
1 −

3
sþ 2

� �
¼ q0
12

>
2
3

� �
3
;

ð73Þ

which holds if q0> 32
9 . Therefore, by Corollary 5,

Equation (69) is oscillatory.

Example 3. Consider the nonlinear semi-canonical neutral
equation:

Δ n nþ 1ð ÞΔ3z nð Þð Þ þ q0x3 n − 1ð Þ ¼ 0;  n ≥ 1; ð74Þ

where zðnÞ¼ xðnÞþ 1
2 xðn− 1Þ and q0>0: In this case we

have a1ðnÞ¼ 1, a2ðnÞ¼ 1, a3ðnÞ¼ nðnþ 1Þ, pðnÞ¼ 1
2, σ¼ 1,

τ¼ 1, α¼ 3, and qðnÞ¼ q0. We easily see that ðH1Þ–ðH3Þ and
Equation (6) hold, A3ðnÞ¼ 1

n, b1ðnÞ¼ 1, b2ðnÞ¼ n, b3ðnÞ¼ 1,
and QðnÞ¼ q0

nþ1. Equation (74) is transformed into the
canonical equation

Δ2 nΔ2z nð Þð Þ þ q0
nþ 1

x3 n − 1ð Þ ¼ 0: ð75Þ

Condition (25) becomes

∑
1

n¼1

q0
8 nþ 1ð Þ ¼1; ð76Þ

so it is satisfied as is condition (14). Therefore, by Theorem 2,
the Equation (74) is oscillatory.

Example 4. Consider the equation:

Δ2 n nþ 1ð ÞΔ2z nð Þð Þ þ q0
nþ 1

x
1
3 n − 1ð Þ ¼ 0;  n ≥ 1;

ð77Þ

where zðnÞ¼ xðnÞþ 1
2 xðn− 1Þ and q0>0. Here, a1ðnÞ¼ 1,

a2ðnÞ¼ nðnþ 1Þ, a3ðnÞ¼ 1, pðnÞ¼ 1
2, σ¼ 1, τ¼ 1, α¼ 1

3,
qðnÞ¼ q0=ðnþ 1Þ, A2ðnÞ¼ 1

n, d1ðnÞ¼ n, d2ðnÞ¼ 1, and
d3ðnÞ¼ n. Conditions ðH1Þ–ðH3Þ and Equation (7) hold. The
transformed equation is as follows:

Δ nΔ2 nΔz nð Þð Þð Þ þ q0
nþ 1

x
1
3 n − 1ð Þ ¼ 0; ð78Þ

which is in canonical form. Condition (49) holds and
Equation (61) takes the form:

∑
1

n¼1

1

2
1
3 nþ 1ð Þ ¼1; ð79Þ

which is clearly satisfied. Therefore, by Corollary 5,
Equation (77) is oscillatory.

In our final two examples, we are able to actually exhibit
an oscillatory solution.

Example 5. Consider the neutral equation:

Δ n nþ 1ð ÞΔ 1
n
Δ2z nð Þ

� �� �
þ 8 n2 þ 4nþ 3ð Þ

n − 1
x n − 1ð Þ ¼ 0; n ≥ 2:

ð80Þ

Here, we have a1ðnÞ¼ 1, a2ðnÞ¼ 1
n, a3ðnÞ¼ nðnþ 1Þ,

pðnÞ¼ 1
2, τ¼ σ¼ 1, α¼ 1, and qðnÞ¼8ðn2 þ 4nþ 3Þ=ðn− 1Þ.

Conditions ðH1Þ–ðH4Þ hold. Also, A3ðnÞ¼ 1
n, b1ðnÞ¼ b2ðnÞ¼

b3ðnÞ¼ 1, and QðnÞ¼ 4ðnþ 3Þ=ðn− 1Þ. The transformed
equation is as follows:

Δ4z nð Þ þ 4 nþ 3ð Þ
n − 1

x n − 1ð Þ ¼ 0; n ≥ 2; ð81Þ

which we see is in canonical form. Condition (14) clearly
holds and condition (25) becomes:
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∑
1

n¼2

4 nþ 3ð Þ
n − 1

¼1: ð82Þ

By Theorem 2, Equation (80) is oscillatory, and the
sequence xðnÞ¼ fnð−1Þng is one such oscillatory solution.

Example 6. Consider the nonneutral equation

Δ n nþ 1ð ÞΔ 1
n
Δ2x nð Þ

� �� �
þ 16 nþ 1ð Þ nþ 2ð Þ

n − 1
x n − 1ð Þ

¼ 0;  n ≥ 1;

ð83Þ

where we have a1ðnÞ¼ 1, a2ðnÞ¼ 1
n, a3ðnÞ¼ nðnþ 1Þ, pðnÞ

≡ 0, τ¼ 1, α¼ 1, and qðnÞ¼ 16ðnþ 1Þðnþ 2Þ=ðn− 1Þ. Con-
ditions ðH1Þ–ðH4Þ hold. Also, A3ðnÞ¼ 1

n, b1ðnÞ¼ 1, b2ðnÞ¼
1, b3ðnÞ¼ 1, and QðnÞ¼ 16ðnþ 2Þ=ðn− 1Þ, so the trans-
formed equation is as follows:

Δ4z nð Þ þ 16 nþ 2ð Þ
n − 1

x n − 1ð Þ ¼ 0; n ≥ 2; ð84Þ

which we see is in canonical form. Condition (14) clearly
holds. Condition (25) becomes:

∑
1

n¼2

16 nþ 2ð Þ
n − 1

¼1: ð85Þ

By Theorem 2, Equation (83) is oscillatory, and the
sequence zðnÞ¼ xðnÞ¼ fnð−1Þng is an oscillatory solution.

4. Conclusion

In this paper, we introduced a technique to convert the semi-
canonical Equation (1) with (6) or (7) holding into a canonical
type equation. This simplified the investigation of the oscil-
latory properties of the solutions. Examples are presented to
illustrate the importance of the main results. One significant
improvement over the papers [4, 8, 10, 15, 16, 21–23] is that
we only need to eliminate two types of nonoscillatory solu-
tions to obtain our oscillation criteria. We leave the study of
Equation (1) in the cases where (8), (9), (10), or (–11) holds to
the future research efforts.
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