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The authors present a new technique for transforming fourth-order semi-canonical nonlinear neutral difference equations into
canonical form. This greatly simplifies the examination of the oscillation of solutions. Some new oscillation criteria are established
by comparison with first-order delay difference equations. Examples are provided to illustrate the significance and novelty of the
main results. The results are new even for the case of nonneutral difference equations.

1. Introduction

In recent years, there has been an increasing interest in
studying the oscillatory properties of difference equations;
see for example, the monographs [1-3]. This interest is moti-
vated by the importance of difference equations in modeling
real-world problems and in the numerical solution of differ-
ential equations. In particular, the oscillatory and asymptotic
behavior of solutions of fourth-order delay and neutral type
difference equations have received great attention in the last
few years; see, for example, the papers [3-23].

In view of the above facts, in this paper, we consider the
fourth-order nonlinear neutral delay difference equation:

Dyz(n) + g(n)x*(n —7) =0,n > ny>0, (1)

where Dyz(n)=z(n), Djz(n)=a;(n)A(D;_1z(n)), i=1,2,
3, Duz(n)=A(Dsz(n)), and z(n)=x(n)+p(n)x(n-o).
Throughout the paper, we assume that:

(Hy) {a;(n)}, j=1,2,3, are positive sequences of real
numbers;

(H,) {p(n)} and {q(n)} are nonnegative real sequences
with 0 <p(n)<1;

(H;3) a is a ratio of odd positive integers and ¢ and 7 are
positive integers.

By a solution of (1), we mean a real sequence {x(n)}
satistying Equation (1) for all n > n,. We consider only such
solutions that are nontrivial for all large n. A solution of (1) is
called nonoscillatory if it is eventually positive or eventually
negative; otherwise it is called oscillatory. If all solutions are
oscillatory, then the equation itself called oscillatory.

In reviewing the literature, it is seen that the most known
results are for Equation (1) when it is in canonical form, that is,
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In order to clarify and facilitate our discussion, we
introduce the following terminology and classification of

Equation (1). We define:

1
—, fori=1,2,3, 3
7 a;(s) G)

and we will say that Equation (1) is in canonical form if:

8

Aj(n) =

S

Ai(ng) =00, i=1,2,3, (4)
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and it is in noncanonical form if:

Ai(n0)<oo, i= 1,2, 3.

(5)

In addition, we will say that Equation (1) is in semi-
canonical form if either:

Ay (ng) = Ay(ng) = oo and As(ng) <oo, (6)
Ay (ng) = 00, Ay(ng) <00, and A3(ng) = oo, (7)
Ay (ng) <ooand A, (ng) = As () = oo. (8)

Finally, we will say that Equation (1) is in semi-nonca-
nonical form if either:

A (ny) = 00, A, (ny) <oo, and Az(ny) <oo, 9)

or
A, (ny) <00, Ay(ny) = oo, and Az(ny) < oo, (10)

or
A (ng) <00, Ay (ny) <oo, and As(ny) = oo. (11)

Note. When we refer to Equation (1) being in canonical,
noncanonical, semi-canonical, or semi-noncanonical form,
we will use this same terminology to describe the operator
D,yz(n) in the equation as well.

In the papers [4, 8, 10, 15, 16, 21-23], the authors studied
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solutions. Therefore, our aim in this paper is to first trans-
form Equation (1) in cases (6) or (7) into canonical form.
This greatly simplifies the examination of the equation since,
in this case, the positive solutions are one of only two types.
We then apply techniques known for canonical equations to
obtain oscillation criteria for Equation (1). Examples illus-
trating the significance and novelty of our main results are
provided. Note that, our results established here are new for
nonneutral difference equations as well.

2. Main Results

In this section, we study the oscillatory behavior of
Equation (1) in case (6) or (7) holds.

2.1. The Case Where (6) Holds. We begin by defining:

bi(n) = ay(n), by(n) = (12)

bs(n) = as(n)As(n)A3(n + 1), Q(n) = As(n + 1)q(n).

(13)
Theorem 1. Assume that
% As(n)
= 0. 14
& ) (4)

Then, the semi-canonical operator D,z(n) can be written
in canonical form as follows:

1

AT

A(bs(n)A(by(n)A(by(1)Az(n)))).

Equation (1) in case (6) or (7) holds, that is Equation (1) is in (15)
semi-canonical form. In these cases, the positive solutions of
the equation satisfy one of four possible cases, and each of
these have to be eliminated to obtain the oscillation of all ~ Proof. A direct calculation shows that:
|
1
mﬂ(bs(n)ﬂ(bz(")ﬂ(bl(H)AZ("))))
- a,(n) n)Az(n
oA (003 (2 a0 mazto)
1 (bs(n)as(")As(")A(az(")A(bl(n)AZ(n))) + b3(ﬂ)az(”)4(bl(n)42(n)))
As(n+1) A3(n)As(n + 1)as(n) (16)
= Ty A (s (A ax(1)A by (m)Az(1) + ax(mA by (1) 4z(m)
= A(a3(n)A(ay(n)A(by (n)Az(n)))) = Aay(n)A(by (n)Az(n)))/ As(n + 1)
+A(ay(n)A(by (n)Az(n)))/As(n + 1)
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Furthermore,
S 3 1 5 1
R e R T R R e (A3<n>)
. 1 1
T A
(17)
and
L & As(n)
- =00, 18
”Z‘;’o bZ( ) n:znu az(n) e ( )
by (14). Also,
00 1 50 1
Z ) ) (19)

by (6). Hence, the right hand side of (15) is in canonical
form. This completes the proof of the theorem. O

From the above theorem, we obtain the following
corollary.

Corollary 1. Let (14) hold. Then x(t) is a solution of
Equation (1) if and only if it is also a solution of the canonical
equation:

(20)

Dyz(n) + Q(n)x*(n - 7) =0,

where Dyz(n) bi(n)A(D;_,z(n)),i=1,2,3,

e n), Diz(n) =
and Dz(n) z(n

iZ\n
().

The next lemma gives us the classification of positive
nonoscillatory solutions of Equation (20).

=z(n
A(D,

Lemma 1. Let {x(n)} be an eventually positive solution of
(20). Then the corresponding sequence {z(n)} is also eventu-
ally positive, and exactly one of the following statements holds:

(I) D,2(n)>0, D,z(n)<0, D3z(n)>0, Dyz(n) <0
(I1) Dyz(n)>0, D,z(n)>0, D3z(n)>0, Dyz(n) <0,

for sufficiently large n.

Proof. The proof is similar to that of [11, Lemma 3] and so we
omit the details. O

Lemma 2. Let {x(n)} be an eventually positive solution of
(Ey). Then:
x(n) 2 (1 = p(n))z(n - o), (21)

for all n>n, >n.

3
Proof. From the definition of z(n), we have:
x(n) =z(n) — p(n)x(n — 6) > z(n) — p(n)z(n — o).
(22)
In view of Lemma 1, we see that z(n) satisfies:
D,z(n) = by(n)Az(n)>0 (23)

for both cases (I) and (II). This implies that z(n) is increas-
ing and using this in (22) yields:

x(n) > (1 -p(n))z(n-o). (24)
This proves the lemma. O
We next obtain another oscillation result.
Theorem 2. Let (14) hold. If
3 Q1= pln =) =ce. (25)

then Equation (1) is oscillatory.

Proof. Let {x(n)} be an eventually positive solution of (E).
Then by Corollary 1, we see that {x(n)} is also an eventu-
ally positive solution of (E;). Then by Lemma 1, the
sequence {z(n)} satisfies either Case (I) or Case (II) for all
nn; >n,.

Now using (21) in (E;), we obtain:
Bz(n) + Qn)(1 -

p(n—1))"2%n-7-0)<0, n>ny.
(26)

In both cases z(n) is increasing, so there exists a constant
M>0 and an integer n, >n; such that z(n —7—0¢) > M for
n>n,. Using this in Equation (26), we have
(27)

~Dyz(n) = MQ(n)(1 - p(n - 7).

Summing Equation (27), from n, to n gives:

MY Qs)(1 -

s=Mn,

p(s = 7)) < D3z(ny) —

(28)

since in both cases D3z(n)>0. This contradiction completes
the proof of the theorem. O

Remark 1. Theorem 2 is independent of the values of @ and
the delay argument 7. Hence, it is applicable to linear, sub-
linear, or superlinear equations as well as to ordinary, delay,
or advanced type difference equations.

Dsz(n+1) < Dsz(n

2);



Before we present our next results, we introduce the
notation:

) - 1 - n-1-c-1 ] “
= (5 £ £ =l =) >( 23 ”“> |

(29)

where n, >y is a sufficiently large integer.

Theorem 3. Let (14) hold and assume that both of the first-
order delay difference equations:

Aw(n) + Q(n)w*(n —7—0) =0, (31)

and

Aw(n) + Q,(n)w*(n—7-0) =0, (32)

are oscillatory. Then Equation (1) is oscillatory.

Proof. Let x(n) be an eventually positive solution of (E), say
n>n, >ny. Then by Corollary 1, we see that {x(n)} is a
positive solution of Equation (20), and by Lemma 1, the
function z(n) is positive and belongs to either Class (I) or
Class (II). Moreover, using Equation (21) in (20), we obtain:

Dyz(n) + Q(n)(1 = p(n = 7))*z*(n -z - 0) <0, (33)

foralln>n, >n, +7+o. -
First assume that z(n) is in Class (I). Notice that D,z(n)
is decreasing, and we have:

2(n) > :':i: bll(s) by (s)Az(s) > Blz(n);g %(s)

(34)

Summing Equation (33), from # to oo, we obtain:

Dsz(n) >

S

Q(s)(1 = p(s—1))*2z%(s— 7 —0). (35)

g

Since z(n — 7 — o) is increasing, this implies:

Z%(n—1-0) X

A(Dyz(n)) 2 2 Q9)(1 = p(s —7))*.
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Summing Equation (36), we find that:

%(n-1t-0)x 1

-A(Dz(n)) >

ng!

3 Q()(1 - plu - 1))"
(37)

Using Equation (34) in (37) gives:

-A(Dyz(n)) > (Dyz(n - 7 - 0))*Q,(n). (38)

Hence, the sequence w(n) = D,z(n) is a positive solution
of the delay difference inequality:

Aw(n) + Q,(n)w*(n -7 -10) <0. (39)

By Grace and Graef [7, Lemma 3], we see that the asso-
ciated delay difference Equation (31) also has a positive solu-
tion, which is a contradiction.

Next, assume that z(n) belongs to Class (II). Since
Dsz(n) is decreasing, we have:

. n—1 n—1 1
Dyz(n) > %

——Dsz(s) > D3z(n . 40
S, b3(5) 3 ( ) 3 ( )S:znz b3($) ( )
Summing the above inequality, we obtain:
Az(n) > Dyz(m)—— 5 L5 1 (41)
T by (1) S, by(5) w55, b3 ()

and summing again, we see that w(n) = D;3z(n) satisfies:

n—1 1 s—1 u—1

1
s=n, by (s) M:ZVIZ bz(”) 51§Vlz bs (51) .

(42)
Using the last estimate in Equation (33) shows that w(n)

is a positive solution of the difference inequality:

Aw(n) + Q,(n)w*(n -7 -0) <0, (43)

which implies that the corresponding difference Equation (32)
also has a positive solution. In view of Grace and Graef
[7, Lemma 3], this is again a contradiction and proves the
theorem. O

Corollary 2. Assume that, Equation (14) holds. If

7+0+1
,fora=1,

(44)

-1
liminf Y H(s) > (”—"

n=00 s=n-1-0 T+o+1
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or
i H(n) = oo, for 0<a<1, (45)
where
H(n) = min{Q,(n), Q:(n)}, (46)

then Equation (1) is oscillatory.

Proof. Itis clear (e.g., [3, Theorem 7.6.1] and [13, Theorem 1],
respectively) that conditions (44) and (45) ensure the oscilla-
tion of (31) and (32) in the cases =1 and 0<a <1, respec-
tively. This proves the corollary. O

Corollary 3. Assume that, Equation (14) holds. If a>1 and
there exists a constant A>1/(t + o) In a such that:

lim inf [H(s)exp(—¢*")]>0

n—o0o

(47)

where H(n) is defined as in Corollary 2, then Equation (1) is

5
2.2. The Case Where (7) Holds. We set
() =2y ) = ay(m) A, (m) s (4 1), and
Ay(n)
az(n)
d =—7
3(”) Az(f’l T 1)
(48)
for all n>n, >n,.
The following result is analogous to Theorem 1.
Theorem 4. Assume that
T Ant+l) g An)
= = Q. 49
B am S, an) 49)

Then the semi-canonical operator Dyz(n) has the canoni-
cal representation:

as(n)

Dyz(n) =4 ( IRESIE (uz(n)Az(n)Az(n +1)A (1‘;‘2((’;)) Az(n)) ) ) .

oscillatory. (50)
The conclusion of this corollary follows from Theorem 3
and study by Tang [13, Theorem 2]. Proof. Taking the difference:
|
A(ds(n)A(dy(n)A(d, (n)Az(n))))
_ dy(n)ay(n)Ay(n)A(ay (n)Az(n)) + dy(n)a, (n)Az(n)
=4 (w0 A A+ 1)as () ) (51
= A(d;(n) (A (n + 1)A(az(n)A(ar(n)Az(n))) — Ay (n)Az(n))) + A(ar(n)Az(n)))
= A(as(n)A(ay(n)A(ay (n)Az(n)))) = Dyz(n)
\
Clearly,
|
5w = 2 (am) e A .

so together with Equation (49), this shows that the operator
is in canonical form. This completes the proof of the
theorem. 0

From Theorem 4, we see that under condition (49),
Equation (1) can be written in the equivalent canonical
form as follows:
x*(n—1)=0. (53)

A(ds(n)A(dy(n)A(dy(n)Az(n)))) + q(n)

\
That is, we have the following result that is analogous to
Corollary 1.

Corollary 4. Assume that condition (49) holds. Then x(n) is a
solution of Equation (1) if and only if it is a solution of (53).

Using Equation (21) in (53) gives:
(54)

Lyz(n) + g(n)(1 = p(n - 1))72%(n - 7 - 0) <0,



6
where Lyz(n) =z(n), Liz(n) =d;(n)A(Li_,z(n)), i=1,2,3,
and Lyz(n) =A(Lsz(n)).

Similar to what we did previously, we will now apply
Theorem 2, Theorem 3, Corollary 2, and Corollary 3 to
Equation (54) to obtain the following oscillation results.

To accomplish this, we need the additional notation:

and

(56)
where n, > nj is a sufficiently large integer.
Theorem 5. Let Equation (49) hold. If
Py (1= pln = 7)) =oc. (57)

then Equation (1) is oscillatory.

Theorem 6. Let Equation (49) hold. Assume that, both of the
first-order delay difference equations:

Aw(n) + Q;(n)w*(n-0-1) =0, (58)

and

Aw(n) + Qq(n)w*(n—o6-1) =0, (59)
are oscillatory. Then Equation (1) is oscillatory.

Corollary 5. Assume that, Equation (49) holds. If

n—1 T+o+1
liminf Y H(s)> (H_G) fora=1,

=0 s=p-1-0

T+o0+1

(60)
or
:ZC‘, H,(n) = o0 for 0<a<1, (61)
where
H,(n) =min{Q;(n), Q4(n)}, (62)

then Equation (1) is oscillatory.
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Corollary 6. Assume that, Equation (49) holds. If a>1 and

there exists a constant A> —— Hg In a such that:

lim inf [H,(n) exp (—=€/")]>0, (63)

where H,(n) is as in Corollary 5, then Equation (1) is
oscillatory.

3. Examples

In this section, we present examples to illustrate our main
results.

Example 1. Consider the semi-canonical fourth-order neutral
delay difference equation as follows:

A (n(n 11)4 <%A22(n))) + n(nqi A= =0n21,
(64)

where go>0 and z(n) =x(n)+3x(n—1). Here, we have
al(n)ZLaz( )=pas(n)=n(n+1),pn)=30=17=1,

(n
=1l,andgq(n) = qo/( (n+2)). W easﬂyseethat (H,)—(H;)
and Equation (6) hold, and A;(n) =1, b;(n)=1, by(n)=1,
bs(n)=1, and Q(n)=gqy/(n(n+ )(n +2)). The trans-
formed equation then becomes (see (20))
90 —
A4z(n)+m (l’l— 1)—0,1’121, (65)

which is clearly in canonical form. Further computations
show that:

qo(n = 1)(n=2)(n - 3)
nn+1)(n+2)

go(n —2)

4n ) QZ(”) ~

Q(n) ~

’

(66)

H(n) ~ ?g<1_%><l_nil)<l_n43rz)' (67)

Condition (14) clearly holds and condition (44) becomes

G

(68)

liminf S

-1
DN 2 13Dy
12 s s+1 s+2 12

n—=00 —y_2

that is, condition (44) holds if g, > 2. Therefore, by Corollary 2,
the Equation (64) is oscillatory.

Example 2. Consider the fourth-order semi-canonical neutral
delay difference equation:
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A (%A (n(n +1)4 (%Az(n)) )) + mxm _1)

=0,n>1,
(69)

where go>0and z(n) = x(n) + 3 x(n - 1). We have a, (n) =1,
ay(n)=n(n+1),a3(n) =1 p(n)=4,6=1,7=1,a=1,and
q(n)=qo/(n(n+1)(n + 2)). It is easy to see that (H,)—(H;)
and Equation (7) hold, and A,(n) =1, and d,(n) =d,(n) =
d;(n) = 1. The transformed equation becomes (see (53))

Az(n) + ¢x(n -

)T Y=zl (70)

which is in canonical form. We see that Equation (49) holds,
and further computations show that:

qo(n = 1)(n=2)(n - 3)
nn+1)(n+2)

go(n —2)

Qs(n) ~ in

, Qu(n) =

El

(71)

and

w8 (D020

Condition (60) becomes:
Do)
s s+1 s+2 12

which holds if gy> 3%
Equation (69) is oscillatory.

G)-

(73)

Therefore, by Corollary 5,

Example 3. Consider the nonlinear semi-canonical neutral
equation:

A(n(n+1)A%2z(n)) + gpx*(n—-1)=0, n>1, (74)

where z(n) =x(n)+4x(n—1) and g,>0. In this case we
have a,(n) =1, ay(n) =1, as(n) =n(n+1), p(n) =3, 0 =1,
7=1,a=3,and q(n) = qo. We easily see that (H,)—(Hj3) and
Equation (6) hold, A;(n) =1, b, (n) =1, by(n) =n, by(n) =1,
and Q(n) =L Equation (74) is transformed into the
canonical equation

A2(nA? do
(nAz(n)) + 1

x(n-1)=0. (75)

7
Condition (25) becomes
S 4o
= 00, 76
Z 8+ 1) (76)

so it is satisfied as is condition (14). Therefore, by Theorem 2,
the Equation (74) is oscillatory.

Example 4. Consider the equation:

A2(n(n+1)8%2(n)) + n?ﬁ Bn-1)=0, n>1,

where z(n) =x(n)+3x(n—1) and go>0. Here, a,(n) =1,
a(n)=n(n+1), as(n)=1, p(n)=3, o=1, =1, a=3
q(n)=qo/(n+1), Ay(n)=1 di(n)=n, dy)(n)=1, and
d;(n) = n. Conditions (H, )—(H;) and Equation (7) hold. The
transformed equation is as follows:

2 9o 1 o
A(nA*(ndz(n))) + " 1x3(n -1)=0, (78)

which is in canonical form. Condition (49) holds and
Equation (61) takes the form:

x 1

Sy 79)

which is clearly satisfied. Therefore, by Corollary 5,
Equation (77) is oscillatory.

In our final two examples, we are able to actually exhibit
an oscillatory solution.

Example 5. Consider the neutral equation:

4 <n(n +1)a (%Azz(n))) LA

1)=0,n>2.
n-—1

(80)

Here, we have a,(n)=1, a,(n)

p(n)=%r=0c=1,a=1,and q(n) = 7(
)

Conditions (H;)—(H,) hold. Also, A;(n
bs(n) =1, and Q(n)=

equation is as follows:

%, as(n)=n(n+1),
+4n+3)/(n— 1).
=Lb,(n)=by(n)=
4(n+3)/(n-1). “The transformed

4(n+ 3)

A4
z(n) + pa

x(n=1)=0,n>2, (81)

which we see is in canonical form. Condition (14) clearly
holds and condition (25) becomes:



§4(n+3):

— (82)
n=

By Theorem 2, Equation (80) is oscillatory, and the
sequence x(n) = {n(—1)"} is one such oscillatory solution.
Example 6. Consider the nonneutral equation

A (n(n +1)4 (%A%(n))) +

=0, n>1,

16(n—|l—11_)(1n +2)x(n )
(83)

where we have a,(n) =1, a,(n)

1, ay(n) = n(n+ 1), pln)
=0,7=1,a=1,andgq(n)=16(n+1)(n
—1p
(n—

)=
+2)/(n-1). Con-
()”) =1, by(n)=

so the trans-

ditions (H,)—(H,) hold. Also, A3(n)
1, by(n)=1, and Q(n)=16(n+2)/
formed equation is as follows:

16(n + 2)

A4
z(n) + p—

x(n-1)=0,n>2, (84)

which we see is in canonical form. Condition (14) clearly
holds. Condition (25) becomes:

X 16(n+2)

> = (85)

By Theorem 2, Equation (83) is oscillatory, and the
sequence z(n) = x(n) = {n(-1)"} is an oscillatory solution.

4. Conclusion

In this paper, we introduced a technique to convert the semi-
canonical Equation (1) with (6) or (7) holding into a canonical
type equation. This simplified the investigation of the oscil-
latory properties of the solutions. Examples are presented to
illustrate the importance of the main results. One significant
improvement over the papers [4, 8, 10, 15, 16, 21-23] is that
we only need to eliminate two types of nonoscillatory solu-
tions to obtain our oscillation criteria. We leave the study of
Equation (1) in the cases where (8), (9), (10), or (—11) holds to
the future research efforts.
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