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Abstract: The lifetime performance index is a process capability index that is commonly used for
the evaluation of the durability of products in life testing and reliability analysis. In the context
of multiple production lines, we introduce an overall lifetime performance index and explore the
relationship between this comprehensive index and individual lifetime performance indices. For
products with lifespans following the Rayleigh distribution in the ith production line, we delve
into the maximum likelihood estimator and asymptotic distribution to derive both the individual
and overall lifetime performance indices. By establishing a predetermined target for the overall
lifetime performance index, we can determine the corresponding target for each individual lifetime
performance index. The testing algorithmic procedure is proposed to ascertain whether the overall
lifetime performance index has reached its target value based on the maximum likelihood estimator,
accompanied by figures illustrating the analysis of test power. We found that there is a monotonic
relationship for the test power with various structures of parameters. Finally, a practical illustration
with one numeral example is presented to demonstrate how the testing procedure is employed to
evaluate the capabilities of multiple production lines.

Keywords: Rayleigh distribution; multiple production lines; progressive type I interval censoring;
maximum likelihood estimator; lifetime performance index; testing procedure

1. Introduction

Analyzing process capability is a crucial aspect in statistical quality control applica-
tions, providing insights into whether a product aligns with the specified quality require-
ments. The process capability index (PCI) serves as a tool to quantify this capability by
assessing the extent to which a quality characteristic meets the specified specification limit.
Several widely employed process capability indices have been proposed in the literature,
such as Cp, Cpk, Cpm, and Cpmk (see Juran [1], Kane [2], Hsiang and Taguchi [3], and
Pearn et al. [4]). These indices were designed for bilateral specifications. For unilateral
specification, Montgomery [5] proposed a process capability index CL = µ−L

σ for the larger-
the-better quality characteristic, where u, σ, and L are the process mean, standard deviation,
and the lower specification limit. This index is well known as the lifetime performance
index in life testing and reliability analysis. The primary emphasis of this investigation
is the evaluation of the lifetime performance index CL within the context of unilateral
tolerance in multiple production lines. Unlike many process capability indices assuming a
normal distribution, product lifetimes often follow distributions like gamma, exponential,
Rayleigh, or other lifetime distributions. In this paper, we assume a Rayleigh distribution
for the lifetime of products in each production line utilizing the lifetime performance index
CL due to the preference for longer product lifetimes. For products that are produced in a
single production line, Tong et al. [6] developed a uniformly minimum variance unbiased
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estimator (UMVUE) for complete samples under the assumption of a one-parameter expo-
nential distribution. In practice, many experimenters are unable to collect complete samples
and can only observe incomplete ones, such as progressive censored samples. Previous
studies (like those by Aggarwala [7], Balakrishnan and Aggarwala [8], Hong et al. [9],
Wu et al. [10], Sanjel and Balakrishnan [11], and Lee et al. [12]) focus on drawing conclu-
sions from data that have been censored. Additionally, for step-stress accelerated life testing
data, Lee et al. [13] evaluated the lifetime performance index. Wu et al. [14] proposed a
testing procedure for product lifetimes in a single production line based on progressive
type I interval censored samples for Rayleigh distribution. Furthermore, Wu et al. [15] im-
plemented an experimental design for Rayleigh products under the condition of achieving
a given test power or minimizing the total experimental cost for a specific cost structure.
Later on, Wu et al. [16] conducted an experimental design for the lifetime performance
Index of Weibull products based on the progressive type I interval censored sample. Wu
and Song [17] investigated the sampling plan for progressive type I interval censoring on
the lifetime performance index of the Chen lifetime distribution. These studies are based on
one production line. By extending from one production line to multiple production lines,
we will define an overall lifetime performance index and explore the relationship between
the overall lifetime performance index and all individual lifetime performance indices. We
will develop a testing procedure to see if the overall lifetime performance index reaches
the target value through the use of the maximum likelihood estimator and its asymptotic
normal distribution for a given level of significance. Our aim for this research is to propose
an overall lifetime performance index and design a testing procedure for this index to
determine if the whole production process is capable with multiple production lines. This
is a study that extends from analyzing one single production line to multiple production
lines. The motivation for this study stems from the fact that many manufacturing processes
consist of multiple production lines.

The progressive type I interval censoring is delineated as follows: Initially, a set
of products of size n undergoes a life test starting at time 0. The inspection times are
predetermined and denoted as (t1, . . ., tm), where tm is the scheduled termination time of
the experiment. At each inspection time ti, the number of observed failures Xi is recorded
during the interval (ti−1,ti), and then Ri products are removed from the remaining products.
This process continues until the experiment concludes at time tm, where the number of
failures Xm is observed during the interval (tm−1,tm), and all of the remaining items are
removed and lead to the termination of the life test.

Our primary objective is to formulate a hypothesis testing procedure for the overall
lifetime performance index by using the maximum likelihood estimator as the test statistic
based on the progressive type I interval censored sample collected from multiple production
lines, assuming a Rayleigh distribution. The shape of the Rayleigh distribution is skewed
to the right, and it is an asymmetric probability distribution. Therefore, this research
applies the asymmetric probability distribution model to the field of lifetime performance
assessment in quality control.

The subsequent sections of this paper are structured as follows: In Section 2, the
overall lifetime performance index is defined for products produced in multiple production
lines. The relationship between the overall lifetime performance index and all individual
lifetime performance indices is also explored. In Section 3.1, we delve into the study of the
maximum likelihood estimator (MLE) for the overall lifetime performance index and all
individual lifetime performance indices and explore their asymptotic normal distributional
properties. This is accomplished based on the progressive type I interval censored samples
from multiple production lines, assuming a Rayleigh distribution. In Section 3.2, we present
a testing algorithmic procedure designed for the overall lifetime performance index under
a given level of significance, which equivalently tests all individual lifetime performance
indices. With the aim of illustrating our proposed testing procedure, one numerical example
is provided to illustrate the application of the proposed testing procedure. Finally, Section 4
encapsulates the paper with concluding remarks.
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2. The Overall Lifetime Performance Index and the Conforming Rate

We consider products produced in d production lines. Suppose that the lifetime Ui of
products in the ith production line follows a Rayleigh distribution with the probability density
function (pdf), cumulative distribution function (cdf), and hazard function, as follows:

f (u) =
u
λ2

i
e
− u2

2λ2
i , u ≥ 0, λi > 0, (1)

F(u) = 1 − e
− u2

2λ2
i , u ≥ 0, λi > 0 (2)

and

h(u) =
f (u)

1 − F(u)
=

u
λi

2 , (3)

where λi is the scale parameter, i = 1, . . ., d. The larger-the-better type process capability
index proposed in Montgomery [5] is defined as

CL =
µ − L

σ
, (4)

where µ represents the process mean, σ represents the process standard deviation, and
L denotes the specified lower specification limit. This index is also called the lifetime
performance index (LPI) for products. Consider the transformation of Yi = U2

i ; then, the
new lifetime Yi has a one-parameter exponential distribution with pdf, cdf, and hazard
functions as

f (y) =
1

2λ2
i

e
− y

2λi
2 , y ≥ 0, λi > 0, (5)

F(y) = 1 − e
− y

2λi
2 , y ≥ 0, λi > 0 (6)

and

h(y) =
f (y)

1 − F(y)
=

1
2λi

2 (7)

The mean and standard deviation of the new lifetime are µi = E(Yi) = 2λ2
i ,

σi =
√

Var(Yi) = 2λ2
i , i = 1, . . . , d. The lifetime performance index CLi for the ith

production line is reduced to

CLi =
µ − Li

σ
=

2λ2
i − Li

2λ2
i

= 1 − Li

2λ2
i

, i = 1, . . . , d. (8)

It can be observed that the lifetime performance index CLi can precisely evaluate the
long-term performance of products, since the smaller the hazard function, the larger the
lifetime performance index CLi .

The ith production line’s conformity rate is defined as the probability that the product’s
lifetime will exceed the lower specification limit Li, and it is obtained as

Pri = P(Yi ≥ Li) =
∫ ∞

Li

1
2λ2

i
e
− y

2λ2
i dy = e

− Li
2λ2

i = eCLi
−1,−∞ < CLi < 1. (9)

Apparently, the conforming rate for the ith production line increases when the lifetime
performance index CLi increases. For example, if the user wishes Pri to be over 0.860708,
then they can determine that the value of CLi must be 0.95 from Equation (9).
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We assume that the lifetimes of products in d production lines are independent. The
overall conforming rate Pr for d production lines is computed as

Pr = P(Yi ≥ Li, i = 1, · · · , d)

= exp
{
−

d
∑

i=1

Li
2λ2

i

}
= exp

{
d
∑

i=1
CLi − d

}
,−∞ < CLi < 1.

We define the overall lifetime performance index CT as Pr = exp
{

∑d
i=1 CLi − d

}
=

exp{CT − 1},−∞ < CT < 1 so that the overall conforming rate Pr is an increasing function
of the overall lifetime performance index CT. To solve this equation, we can find the
relationship between the overall lifetime performance index and all individual lifetime
performance indices as

CT =
d

∑
i=1

CLi − (d − 1),−∞ < CT < 1. (10)

Under the reasonable consideration of CL1 = . . . = CLd = CL, the relationship between
the individual lifetime performance index CL and the overall lifetime performance index
CT becomes

CL =
CT + d − 1

d
,−∞ < CT < 1. (11)

For example, if the engineer wished the target value of the overall lifetime performance
index to be CT = c0, the individual lifetime performance index CL for each production line
can be determined by CL = C0+d−1

d . For example, if the experimenter desires the target
value of the overall lifetime performance index to be CT = c0 = 0.95, then the desired target
value for each production line can be determined from Equation (11) as CL = 0.975, 0.98333,
0.9875, 0.99, 0.99166, 0.99285, 0.99375, 0.99444, or 0.995 for d = 2, 3, . . ., 10.

3. The Testing Procedure for the Overall Lifetime Performance Index

In this section, the maximum likelihood estimator and the asymmetric distribution of
the overall lifetime performance index and each individual lifetime performance index are
investigated in Section 3.1. To test whether the overall lifetime performance index reaches
the desired target level, the testing procedure and the power analysis for various structures
of parameters are given in Section 3.2. In Section 3.3, we give one numerical example to
demonstrate how to apply our proposed testing procedure.

3.1. Maximum Likelihood Estimator of the Lifetime Performance Index

For the ith production line, the progressive type I interval censored sample Xi1, . . . , Xim
is collected at the observation times t1, . . . , tm under the progressive censoring scheme of
R1, . . . , Rm. The likelihood function for the censored sample Xi1, . . . , Xim is

L(λi) ∝
m

∏
j=1

(
F
(
tj
)
− F

(
tj−1

))xij
(
1 − F

(
tj
))Rij ∝

m

∏
j=1

1 − e
−

t2j −t2j−1
2λ2

i

xij

e
−

t2j−1xij+t2j Rij

2λ2
i . (12)

The log-likelihood function is

ln L(λi) ∝ ∑m
j=1

{
xijln

[
1 − exp

(
−Aij

)]
− Bij

}
, (13)
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where Aij =
t2
j −t2

j−1

2λ2
i

, Bij =
t2
j−1xij+t2

j Rij

2λ2
i

, i = 1, . . . , d, j = 1, . . . , m. When taking the derivative

for the parameter λi from Equation (12), the log-likelihood equation becomes

d
dλi

ln L(λi) = − 1
λ3

i

m

∑
j=1

xij

 t2
j − t2

j−1

exp
(

t2
j −t2

j−1

2λ2
i

)
− 1

−
(

t2
j−1xij + t2

j Rij

) = 0. (14)

By numerically solving the log-likelihood Equation in (14), we can obtain the maxi-
mum likelihood estimator (MLE) of λi denoted by λ̂i.

In order to find the asymptotic variance of the estimator λ̂i, the Fisher’s information

number I(λi) = −E
[

d2lnL(λi)

dλ2
i

]
needs to be computed. By taking the second derivative to

the likelihood function in (12), we have

d2lnL(λi)

dλ2
i

=
m
∑

j=1

 −Xij[
exp

(
tj

2−tj−1
2

2λ2
i

)
−1

]2 exp
(

tj
2−tj−1

2

2λ2
i

)(
tj

2−tj−1
2

λ3
i

)2


+

xij

exp

(
tj

2−tj−1
2

2λ2
i

)
−1

3(tj
2−tj−1

2)
λ4

i
−

3
(

tj−1
2xij+tj

2Rij

)
λ4

i

(15)

Note that

Xij
∣∣Xi,j−1, . . . , Xi1 ∼ Binomial

(
n −

j−1

∑
l=1

Xil , qij

)
, (16)

where qij =
F(tj)−F(tj−1)

1−F(tj−1)
= 1 − exp(− tj

2−tj−1
2

2λ2
i

), j = 1, · · · , m.

Hence, we have

E
(

Xij
∣∣Xi,j−1, · · · , Xi1, Ri,j−1, · · · , Ri1

)
== nqij

j−1

∏
l=1

(1 − pl)(1 − qil), j = 1, · · · , m . (17)

Hence, the Fisher’s information number is

I(λi) =
n
λ2

i

m

∑
j=1

1 − qij

qij

[
4ln2(1 − qij

)
+ 6qijln

(
1 − qij

)]
+

3
(

t2
j−1qij + t2

j pij
(
1 − qij

))
λ2

i

j−1

∏
l=1

(1 − pil)(1 − qil), (18)

According to the distributional property of the maximum likelihood estimator, we

have λ̂i
d→

n→∞
N
(
λi, I−1(λi)

)
.

For likelihood-based inferences, Guillermo et al. [18] estimated the parameters for the
asymmetric beta-skew alpha-power distribution by considering the maximum likelihood
method, and the Fisher information matrix was derived. For other censoring schemes,
like the combined generalized progressive hybrid censoring scheme, Seong and Lee [19]
found the conditional maximum likelihood estimator for the scale parameter of exponen-
tial distribution. For the confidence intervals for binomial distribution in Equation (16),
Jäntschi [20] proposed three alternative confidence interval calculation methods and algo-
rithms to improve the nominal coverage probabilities compared to the Wald asymptotic
interval method. Félix et al. [21] improved the performance of several confidence intervals,
including the Wald, Wilson score, and arcsine confidence intervals, by using the parametric
family p̂c =

X+c
n+2c with c ≥ 0 to estimate the parameter p, where X is the number of successes

out of n trials. Rather than using the confidence intervals approach, their analysis was
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conducted based on the hypothesis test approach. They identified the values of c that result
in the optimal testing procedure.

Based on the invariance property of the maximum likelihood estimator, the maximum
likelihood estimator of CLi is obtained as

ĈLi = 1 − Li

2λ̂2
i

. (19)

Using the Delta method, we can show that

ĈLi
d→

n→∞
N
(
CLi , V

(
ĈLi

))
(20)

where V̂i
(
ĈLi

)
=

L2
i V̂(λ̂i)

λ̂6
i

=
L2

i I−1(λ̂i)
λ̂6

i
.

Based on the invariance property of the maximum likelihood estimator, the maximum
likelihood estimator of CT is

ĈT = ∑d
i=1 ĈLi − (d − 1) (21)

Its asymptotic distribution is ĈT
d→

n→∞
N
(

CT , ∑d
i=1 V̂

(
ĈLi

))
, where the variance of ĈT

is ∑d
i=1 V

(
ĈLi
)

and its estimate is ∑d
i=1 V̂

(
ĈLi
)
= ∑d

i=1
L2

i I−1(λ̂i)
λ̂6

i
.

3.2. The Testing Procedure for the Overall Lifetime Performance Index and Power Analysis

For the assessment of whether the overall lifetime performance index exceeds the
desired target value c0, we develop a statistical testing procedure in this section. The
null and alternative hypotheses are H0 : CT ≤ c0 (d production lines are not capable) vs.
Ha : CT > c0 (d production lines are capable). Under the condition of CL1 = · · · = CLd= CL,

if the overall lifetime performance index is CT =
k
∑

i=1
CLi − (k − 1) > c0, we can obtain the

condition of CLi > c∗0 , i = 1, . . . , d, where the target value for each individual lifetime
performance index is c∗0 = c0+k−1

k . The above statistical hypothesis for testing the overall
lifetime performance index is equivalently set up as follows:

H0 : CLi ≤ c∗0 for some i (d production lines are not capable) vs. Ha : CLi > c∗0 ,
i = 1, . . . , d (d production lines are capable). This is called an intersection–union test
(IUT). In order to find the rejection region by controlling the overall error rate, we use the
following theorem:

Theorem 1. To test H0 : CLi ≤ c∗0 for some i vs. Ha : CLi > c∗0 , i = 1, . . . , d with level α, the

rejection region for this test is R =
k
∩

i=1
Ri, where Ri =

{
ĈLi
∣∣ĈLi > C0

Li
}

, the test statistic is

ĈLi = 1 − Li
2λ̂2

i
, the critical value is C0

Li
= 1 − Li

2
(

λi0+Zα′
√

I−1(λi0)
)2 , i = 1, . . . , d, and

λi0 =
√

Li
2(1−c∗0)

. The proof of Theorem 1 is given in Appendix A.

The algorithm for conducting a testing procedure for CT is shown below (Algorithm 1).
Furthermore, the test power function h(c1) of the testing procedure at the point of

CT = dCL − (d − 1) = c1 > c0 or CL = c1+d−1
d = c∗1 can be obtained as follows:

h(c1) = P

(
ĈLi > C0

Li
, i = 1, · · · , d

∣∣∣∣∣ c∗1 = 1 − Li

2λ2
i1

, i = 1, · · · , d

)
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Algorithm 1. Testing procedure for the overall lifetime performance index

Step 1: For the pre-assigned target level c0 for the overall lifetime performance index, the required
target level for each individual lifetime performance index is determined as c∗0 = c0+k−1

k for each
production line. Then the testing hypothesis H0 : CLi ≤ c∗0 for some i vs.
Ha : CLi > c∗0 , i = 1, . . . , d are constructed.
Step 2: Under the known lower specification Li, observe the progressive type I interval censored
sample Xi1, . . . , Xim at the observation times t1, . . . , tm with censoring schemes of R, . . . , Rm from
the Rayleigh distribution.
Step 3: Compute the value of the test statistic ĈLi = 1 − Li

2λ̂2
i
, where λ̂i is obtained by solving

Equation (14).
Step 4: For significance level of α, we can calculate the critical value

C0
Li
= 1 − Li

2
(

λi0+Zα′
√

I−1(λi0)
)2 where λi0 =

√
Li

2(1−c∗0)
, α′ = α

1
d and I−1(λi0) is defined in

Equation (18).
Step 5: If ĈLi > C0

L for all i = 1, . . . , d, we can concluded that the overall lifetime performance
index of the products adhered the required level.

Let λi1 =
√

Li
2(1−c*

1)
and λi0 =

√
Li

2(1−c*
0)

. Then, the power function becomes

h(c1) = P(1 − Li
2λ̂2

i
> 1 − Li

2
(

λi0+Zα′
√

I−1(λi0)
)2 , i = 1, · · · , d)

= P(λ̂i > λi0 + Zα′
√

I−1(λi0), i = 1, · · · , d)

=
d

∏
i=1

P
(

λ̂i > λi0 + Zα′
√

I−1(λi0)
)

=
d

∏
i=1

P( λ̂i−λi1√
I−1(λi1)

>
λi0−λi1+Zα′

√
I−1(λi0)√

I−1(λi1)
)

= ∏d
i=1

[
1 − Φ

(
λi0−λi1+Zα′

√
I−1(λi0)√

I−1(λi1)

)]
(22)

where Φ(·) is the cdf for the standard normal distribution.
Under L1 = . . . = Lk = L, the power function is reduced to

h(c1) =

[
1 − Φ

(
λ0−λ1 + Zα′

√
I−1(λ0)√

I−1(λ1)

)]d

, (23)

where λ1 =
√

L
2(1−c*

1)
and λ0 =

√
L

2(1−c*
0)

.

The powers h(c1) for testing H0 : CL ≤ 0.85 are computed by Equation (23), and we
use R software for programming. The powers are tabulated in Tables A1–A9 for d = 2, 3,
and 4 with α = 0.01, 0.02, and 0.05, respectively, for c1 = 0.85, 0.885, 0.9, 0.915, 0.93, and 0.96;
m = 5, 6, and 7; n = 70, 90, and 110; and p = 0.050, 0.075 and 0.1 under L = 0.05 and T = 0.5.
The power values are showcased in Figures 1–5 using the values from Tables A1–A9 to
exemplify several standard cases. We obtain the following findings: (1) In Figure 1, it can be
seen that the power is an increasing function of n under d = 3, α = 0.02, m = 5, and p = 0.01
(other combinations of d, m, p, and α also show the same pattern). (2) In Figure 2, it can be
seen that the power increases when m increases under d = 3, n = 110, p = 0.01, and α = 0.02
(other combinations of d, n, p, and α also show the same pattern). (3) In Figure 3, the power
is a decreasing function of p under d = 3, n = 110, m = 5, and α = 0.02 (other combinations
of d, n, m, and α also have the same pattern). (4) In Figure 4, the power is an increasing
function of α under d = 3, n = 110, m = 5, and p = 0.01 (other combinations of d, n, m, and p
also have the same pattern). (5) In Figure 5, the power is a decreasing function of d under
n = 110, m = 5, p = 0.01, and α = 0.02 (other combinations of n, m, p, and α also have the
same pattern). The difference of power converges when c1 increases. (6) In Figures 1–5 the
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power is an Increasing function of the value of c1 under various combinations of d, n, m, p,
and α.
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3.3. Example

We regard the sample data in Caroni [22], consisting of the failure times of ball bearings
of n = 20, as the lifetimes in the first production line. The data are listed as follows: 0.1788,
0.2892, 0.4152, 0.4212, 0.4560, 0.4880, 0.5184, 0.5196, 0.5412, 0.5556, 0.6780, 0.6844, 0.6864,
0.6888, 0.9312, 0.9864, 1.0512, 1.0584, 1.2804, 1.7340. We use the Gini statistic proposed in
Gail and Gastwirth [23] to test the goodness of fit of the Rayleigh distribution, and the
value of the test statistic does not fall into the rejection region, so these data fit the Rayleigh
distribution well. We regard the sample data in Aarset [24], consisting of the failure times
of n = 50 devices, as the lifetimes in the second production line. The data are listed as
follows: 0.01, 0.02, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.3, 0.6, 0.7, 1.1, 1.2, 1.8, 1.8, 1.8, 1.8, 1.8, 2.1,
3.2, 3.6, 4.0, 4.5, 4.5, 4.7, 5.0, 5.5, 6.0, 6.3, 6.3, 6.7, 6.7, 6.7, 6.7, 7.2, 7.5, 7.9, 8.2, 8.2, 8.3, 8.4,
8.4, 8.4, 8.5, 8.5, 8.5, 8.5, 8.5, 8.6, 8.6. The Gini test in Gail and Gastwirth [19] is used to test
the goodness of fit of the Rayleigh distribution, and the p-value is 0.538 > 0.05, so the test
results support the Rayleigh distribution.

Suppose we want to test H0 : CT ≤ 0.85 vs H1 : CT > 0.85. Furthermore, we create
the progressive type I interval censored sample for the failure times of products from



Symmetry 2024, 16, 195 10 of 19

two production lines. Let the termination time be T = 2.0 and let the number of inspections
be m = 5; the equal length of inspection interval is t = 0.1 (thousand cycles), and the pre-
specified removal percentages of the remaining survival units are given by the following:
(p1, p2, p3, p4, p5) = (0.05, 0.05, 0.05, 0.05, 1.0).

Using the algorithm of the testing procedure for the overall lifetime performance
index, the testing procedure is implemented as follows:

Step 1: Given the known lower specification L1 = L2 = L = 0.05 and at the observation
times (t1, . . . , t5) = (0.4, 0.8, 1.2, 1.6, 2.0), we collect the progressive type I interval censored
sample, (X11, X12, X13, X14, X15) = (2, 9, 5, 1, 0) and (X21, X22, X23, X24, X25) = (9, 2, 1, 0, 2),
for each production line with censoring schemes of (R11, R12, R13, R14, R15) = (1, 1, 1, 0, 0)
and (R21, R22, R23, R24, R25) = (1, 1, 1, 1, 2).

Step 2: Under the required level, c0 = 0.85, we can determine the required level to be
0.925 for each production line: c∗0 = c0+k−1

k = 0.85+2−1
2 = 0.925. Equivalently, we can test

the null hypothesis H0 : CLi ≤ 0.925 for some i vs. Ha : CLi > 0.925, i = 1, 2.
Step 3: For two production lines, we can obtain the maximum likelihood estimators

for two production lines as λ̂1 = 0.6055 and λ̂2 = 0.8789. Then, we can compute the values
of the testing statistic as ĈL1 = 1 − L1

2λ̂2
1
= 1 − 0.05

2×(0.6055)2 = 0.9318 and ĈL2 = 1 − L2
2λ̂2

2
=

1 − 0.05
2×(0.8789)2 = 0.9676.

Step 4: For the level of significance of α = 0.1, we have α′ = 0.1
1
2 = 0.3162 and

λi0 = λ20 =
√

Li
2(1−c*

0)
=
√

0.05
2×(1−0.925) = 0.5774. The critical values are obtained as

C0
L1

= C0
L2

= 1 − Li

2
(

λi0+Zα′
√

I−1(λi0)
)2 = 1 − 0.05

2(0.5774+(−0.4782)×0.0048)2 = 0.9156 for two pro-

duction lines.
Step 5: Since ĈL1 > C0

L1
and ĈL2 > C0

L2
, we can conclude that the overall lifetime

performance index has attained the required target level since all individual lifetime
performance indices have reached their corresponding desired target values.

4. Conclusions

In numerous manufacturing sectors, the examination of lifetime performance indices for
products is a crucial area of focus, particularly when a product’s lifespan adheres to a Rayleigh
distribution. For products that are produced in multiple production lines, with each one
following a Rayleigh distribution for its lifetime, we introduce an overall lifetime performance
index for these multiple production lines. Our investigation delves into the correlation
between the overall lifetime performance index and individual lifetime performance indices.
We examine the maximum likelihood estimator and asymptotic distribution for both the
individual and overall lifetime performance indices in the context of progressive type I
interval censored samples. To evaluate whether the overall lifetime performance index attains
the desired target level, we devise a hypothesis testing procedure. This method entails testing
each individual lifetime performance index using the maximum likelihood estimator as the
test statistic. We explore the influences of different configurations of the sample size n, the
number of inspection intervals m, the removal probability p, the level of significance α, and
the number of production lines d on the test power using graphical representations and
table values, with a specific focus on the number of production lines. All findings are also
outlined. We found that the test power is an increasing function of n, m, and α when the other
parameters are fixed. We also found that the test power is a decreasing function of p and d
when the other parameters are fixed. To illustrate the application of our proposed testing
algorithm for the overall lifetime performance index with two production lines, we provide
one numerical example in the conclusion.
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Appendix A

Proof of Theorem 1. Use the maximum likelihood estimator ĈLi as the test statistic. To
control the overall error rate to be at most α in a multiple hypothesis testing, the probability
of the type I error (false positive) is

P
(
ĈLi > C0

Li
,
∣∣CLi = c∗0 , i = 1, . . . , d

)
= P(1 − Li

2λ̂2
i
> C0

Li
,
∣∣∣∣CLi = c∗0 , i = 1, . . . , d)

= P

(
λ̂i >

√
Li

2
(

1−C0
Li

)
∣∣∣∣∣λi = λi0, i = 1, . . . , d

)
, where λi0 =

√
Li

2(1−c∗0)
.

= P(Z >

√
Li

2
(

1−C0
Li

)−λi

√
I−1(λi)

|λi = λi0, i = 1, . . . , d)

= ∏d
i=1

1 − Φ


√

Li

2
(

1−C0
Li

)−λi0

√
I−1(λi0)


 ≤ α,

where Z = λ̂i−λi0√
I−1(λi0)

d→
n→∞

N(0, 1) and Φ(·) is the cumulative distribution function for the

standard normal distribution.

Set

1 − Φ


√

Li

2
(

1−C0
Li

) − λi0√
I−1(λi0)


 = α

1
d = α′ (A1)

Then, we have the probability of the type I error being at most α. Then, this test reaches the
level α. From Equation (A1), we can obtain the critical value as C0

Li
= 1− Li

2
(

λi0+Zα′
√

I−1(λi0)
)2 ,

i = 1, . . . , d, where Zα′ represents the upper α′th percentile of a standard normal distribu-
tion. The proof is complete. □

Table A1. The power h(c1) at d = 2; α = 0.01.

c1

m n p 0.85 0.885 0.9 0.915 0.93 0.96

6 70 0.05 0.0100 0.2580 0.4975 0.7178 0.8612 0.9636

0.075 0.0100 0.2479 0.4803 0.6997 0.8474 0.9577

0.1 0.0100 0.2318 0.4523 0.6691 0.8229 0.9465

90 0.05 0.0100 0.3163 0.5887 0.8041 0.9200 0.9844

0.075 0.0100 0.3036 0.5697 0.7873 0.9094 0.9811

0.1 0.0100 0.2835 0.5385 0.7583 0.8901 0.9745
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Table A1. Cont.

110 0.05 0.0100 0.3721 0.6657 0.8649 0.9540 0.9933

0.075 0.0100 0.3573 0.6461 0.8504 0.9465 0.9915

0.1 0.0100 0.3337 0.6135 0.8246 0.9321 0.9878

7 70 0.05 0.0100 0.2568 0.4953 0.7155 0.8595 0.9629

0.075 0.0100 0.2447 0.4749 0.6939 0.8428 0.9557

0.1 0.0100 0.2260 0.4421 0.6575 0.8132 0.9418

90 0.05 0.0100 0.3147 0.5863 0.8020 0.9187 0.9840

0.075 0.0100 0.2997 0.5638 0.7819 0.9059 0.9800

0.1 0.0100 0.2763 0.5270 0.7471 0.8822 0.9716

110 0.05 0.0100 0.3703 0.6632 0.8631 0.9531 0.9931

0.075 0.0100 0.3527 0.6399 0.8457 0.9439 0.9909

0.1 0.0100 0.3251 0.6012 0.8144 0.9260 0.9861

8 70 0.05 0.0100 0.2555 0.4931 0.7132 0.8578 0.9622

0.075 0.0100 0.2417 0.4695 0.6881 0.8383 0.9537

0.1 0.0100 0.2205 0.4321 0.6460 0.8035 0.9369

90 0.05 0.0100 0.3130 0.5839 0.7999 0.9174 0.9836

0.075 0.0100 0.2958 0.5578 0.7764 0.9023 0.9788

0.1 0.0100 0.2693 0.5156 0.7358 0.8741 0.9685

110 0.05 0.0100 0.3684 0.6607 0.8613 0.9522 0.9929

0.075 0.0100 0.3482 0.6337 0.8408 0.9413 0.9902

0.1 0.0100 0.3168 0.5891 0.8040 0.9197 0.9842

Table A2. The power h(c1) at d = 2; α = 0.02.

c1

m n p 0.85 0.885 0.9 0.915 0.93 0.96

6 70 0.05 0.0200 0.3276 0.5662 0.7644 0.8854 0.9685

0.075 0.0200 0.3163 0.5493 0.7479 0.8733 0.9633

0.1 0.0200 0.2982 0.5216 0.7199 0.8517 0.9533

90 0.05 0.0200 0.3910 0.6537 0.8409 0.9357 0.9868

0.075 0.0200 0.3774 0.6358 0.8262 0.9268 0.9839

0.1 0.0200 0.3556 0.6059 0.8006 0.9102 0.9781

110 0.05 0.0200 0.4499 0.7248 0.8930 0.9639 0.9944

0.075 0.0200 0.4344 0.7070 0.8807 0.9577 0.9929

0.1 0.0200 0.4095 0.6768 0.8586 0.9458 0.9897

7 70 0.05 0.0200 0.3262 0.5641 0.7623 0.8839 0.9679

0.075 0.0200 0.3128 0.5440 0.7426 0.8693 0.9615

0.1 0.0200 0.2917 0.5113 0.7091 0.8431 0.9491

90 0.05 0.0200 0.3893 0.6514 0.8391 0.9346 0.9864

0.075 0.0200 0.3732 0.6301 0.8215 0.9238 0.9829

0.1 0.0200 0.3477 0.5948 0.7906 0.9035 0.9756

110 0.05 0.0200 0.4479 0.7226 0.8915 0.9632 0.9942



Symmetry 2024, 16, 195 13 of 19

Table A2. Cont.

0.075 0.0200 0.4296 0.7013 0.8767 0.9556 0.9924

0.1 0.0200 0.4004 0.6653 0.8498 0.9407 0.9882

8 70 0.05 0.0200 0.3248 0.5619 0.7602 0.8824 0.9672

0.075 0.0200 0.3093 0.5387 0.7374 0.8653 0.9597

0.1 0.0200 0.2854 0.5012 0.6984 0.8344 0.9446

90 0.05 0.0200 0.3875 0.6492 0.8372 0.9335 0.9861

0.075 0.0200 0.3690 0.6244 0.8167 0.9207 0.9819

0.1 0.0200 0.3400 0.5838 0.7805 0.8965 0.9728

110 0.05 0.0200 0.4459 0.7203 0.8900 0.9624 0.9940

0.075 0.0200 0.4248 0.6956 0.8726 0.9534 0.9918

0.1 0.0200 0.3915 0.6540 0.8408 0.9354 0.9866

Table A3. The power h(c1) at d = 2; α = 0.05.

c1

m n p 0.85 0.885 0.9 0.915 0.93 0.96

6 70 0.05 0.0500 0.4432 0.6648 0.8254 0.9158 0.9749

0.075 0.0500 0.4309 0.6492 0.8117 0.9061 0.9706

0.1 0.0500 0.4110 0.6233 0.7880 0.8887 0.9622

90 0.05 0.0500 0.5098 0.7425 0.8870 0.9546 0.9897

0.075 0.0500 0.4958 0.7269 0.8754 0.9479 0.9874

0.1 0.0500 0.4729 0.7006 0.8549 0.9352 0.9827

110 0.05 0.0500 0.5687 0.8024 0.9268 0.9754 0.9958

0.075 0.0500 0.5535 0.7876 0.9176 0.9709 0.9946

0.1 0.0500 0.5285 0.7622 0.9007 0.9621 0.9920

7 70 0.05 0.0500 0.4416 0.6629 0.8237 0.9146 0.9744

0.075 0.0500 0.4270 0.6443 0.8073 0.9029 0.9691

0.1 0.0500 0.4037 0.6136 0.7788 0.8817 0.9586

90 0.05 0.0500 0.5080 0.7405 0.8855 0.9538 0.9895

0.075 0.0500 0.4914 0.7219 0.8717 0.9456 0.9866

0.1 0.0500 0.4645 0.6906 0.8468 0.9299 0.9807

110 0.05 0.0500 0.5668 0.8006 0.9257 0.9749 0.9956

0.075 0.0500 0.5487 0.7829 0.9145 0.9694 0.9942

0.1 0.0500 0.5193 0.7524 0.8939 0.9584 0.9909

8 70 0.05 0.0500 0.4401 0.6609 0.8220 0.9134 0.9738

0.075 0.0500 0.4232 0.6394 0.8028 0.8997 0.9675

0.1 0.0500 0.3966 0.6040 0.7696 0.8746 0.9549

90 0.05 0.0500 0.5062 0.7386 0.8841 0.9529 0.9892

0.075 0.0500 0.4870 0.7170 0.8678 0.9432 0.9858

0.1 0.0500 0.4563 0.6806 0.8386 0.9245 0.9784
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Table A3. Cont.

110 0.05 0.0500 0.5648 0.7987 0.9245 0.9744 0.9955

0.075 0.0500 0.5439 0.7781 0.9114 0.9678 0.9937

0.1 0.0500 0.5102 0.7426 0.8868 0.9544 0.9896

Table A4. The power h(c1) at d = 3; α = 0.01.

c1

m n p 0.85 0.885 0.9 0.915 0.93 0.96

6 70 0.05 0.0100 0.2114 0.4071 0.6057 0.7572 0.8961

0.075 0.0100 0.2026 0.3912 0.5864 0.7393 0.8842

0.1 0.0100 0.1888 0.3657 0.5546 0.7085 0.8628

90 0.05 0.0100 0.2613 0.4924 0.7010 0.8389 0.9435

0.075 0.0100 0.2502 0.4741 0.6815 0.8231 0.9351

0.1 0.0100 0.2327 0.4443 0.6487 0.7954 0.9193

110 0.05 0.0100 0.3101 0.5679 0.7747 0.8935 0.9692

0.075 0.0100 0.2969 0.5481 0.7563 0.8805 0.9635

0.1 0.0100 0.2759 0.5156 0.7245 0.8570 0.9525

7 70 0.05 0.0100 0.2103 0.4051 0.6032 0.7550 0.8946

0.075 0.0100 0.1999 0.3863 0.5803 0.7335 0.8803

0.1 0.0100 0.1839 0.3565 0.5427 0.6967 0.8542

90 0.05 0.0100 0.2599 0.4901 0.6985 0.8369 0.9425

0.075 0.0100 0.2468 0.4683 0.6753 0.8180 0.9323

0.1 0.0100 0.2264 0.4334 0.6362 0.7845 0.9128

110 0.05 0.0100 0.3084 0.5654 0.7724 0.8919 0.9685

0.075 0.0100 0.2928 0.5419 0.7503 0.8762 0.9616

0.1 0.0100 0.2684 0.5036 0.7123 0.8476 0.9478

8 70 0.05 0.0100 0.2091 0.4030 0.6008 0.7527 0.8931

0.075 0.0100 0.1972 0.3814 0.5743 0.7276 0.8763

0.1 0.0100 0.1791 0.3475 0.5310 0.6849 0.8454

90 0.05 0.0100 0.2585 0.4877 0.6961 0.8349 0.9414

0.075 0.0100 0.2434 0.4627 0.6691 0.8128 0.9294

0.1 0.0100 0.2203 0.4228 0.6239 0.7735 0.9061

110 0.05 0.0100 0.3067 0.5629 0.7700 0.8902 0.9678

0.075 0.0100 0.2887 0.5357 0.7443 0.8718 0.9596

0.1 0.0100 0.2611 0.4917 0.7000 0.8379 0.9428

Table A5. The power h(c1) at d = 3; α = 0.02.

c1

m n p 0.85 0.885 0.9 0.915 0.93 0.96

6 70 0.05 0.0200 0.2729 0.4727 0.6574 0.7903 0.9066

0.075 0.0200 0.2629 0.4565 0.6391 0.7738 0.8957

0.1 0.0200 0.2470 0.4304 0.6086 0.7454 0.8758



Symmetry 2024, 16, 195 15 of 19

Table A5. Cont.

90 0.05 0.0200 0.3286 0.5576 0.7459 0.8637 0.9499

0.075 0.0200 0.3163 0.5396 0.7280 0.8497 0.9423

0.1 0.0200 0.2968 0.5101 0.6976 0.8248 0.9279

110 0.05 0.0200 0.3814 0.6303 0.8123 0.9115 0.9730

0.075 0.0200 0.3672 0.6114 0.7958 0.9003 0.9680

0.1 0.0200 0.3445 0.5801 0.7673 0.8797 0.9580

7 70 0.05 0.0200 0.2716 0.4707 0.6550 0.7882 0.9053

0.075 0.0200 0.2598 0.4515 0.6333 0.7685 0.8921

0.1 0.0200 0.2413 0.4208 0.5972 0.7344 0.8678

90 0.05 0.0200 0.3270 0.5553 0.7436 0.8619 0.9490

0.075 0.0200 0.3125 0.5339 0.7223 0.8451 0.9397

0.1 0.0200 0.2898 0.4992 0.6860 0.8150 0.9220

110 0.05 0.0200 0.3795 0.6279 0.8102 0.9101 0.9724

0.075 0.0200 0.3628 0.6055 0.7905 0.8965 0.9662

0.1 0.0200 0.3363 0.5684 0.7561 0.8713 0.9538

8 70 0.05 0.0200 0.2703 0.4686 0.6527 0.7861 0.9039

0.075 0.0200 0.2567 0.4465 0.6275 0.7631 0.8884

0.1 0.0200 0.2357 0.4114 0.5859 0.7234 0.8597

90 0.05 0.0200 0.3254 0.5530 0.7414 0.8602 0.9481

0.075 0.0200 0.3088 0.5283 0.7166 0.8404 0.9371

0.1 0.0200 0.2829 0.4885 0.6744 0.8050 0.9158

110 0.05 0.0200 0.3777 0.6255 0.8081 0.9087 0.9718

0.075 0.0200 0.3584 0.5995 0.7851 0.8927 0.9644

0.1 0.0200 0.3283 0.5569 0.7450 0.8628 0.9493

Table A6. The power h(c1) at d = 3; α = 0.05.

c1

m n p 0.85 0.885 0.9 0.915 0.93 0.96

6 70 0.05 0.0500 0.3788 0.5717 0.7294 0.8346 0.9210

0.075 0.0500 0.3674 0.5560 0.7131 0.8205 0.9114

0.1 0.0500 0.3493 0.5301 0.6856 0.7959 0.8938

90 0.05 0.0500 0.4398 0.6518 0.8059 0.8958 0.9585

0.075 0.0500 0.4266 0.6351 0.7908 0.8843 0.9520

0.1 0.0500 0.4053 0.6074 0.7646 0.8637 0.9396

110 0.05 0.0500 0.4950 0.7171 0.8608 0.9342 0.9780

0.075 0.0500 0.4804 0.7004 0.8474 0.9253 0.9738

0.1 0.0500 0.4566 0.6723 0.8238 0.9088 0.9654

7 70 0.05 0.0500 0.3773 0.5697 0.7273 0.8328 0.9199

0.075 0.0500 0.3639 0.5510 0.7079 0.8159 0.9082

0.1 0.0500 0.3427 0.5205 0.6751 0.7863 0.8867
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Table A6. Cont.

90 0.05 0.0500 0.4381 0.6496 0.8040 0.8944 0.9577

0.075 0.0500 0.4225 0.6298 0.7859 0.8805 0.9498

0.1 0.0500 0.3975 0.5970 0.7545 0.8554 0.9344

110 0.05 0.0500 0.4931 0.7150 0.8591 0.9331 0.9775

0.075 0.0500 0.4758 0.6951 0.8430 0.9223 0.9723

0.1 0.0500 0.4479 0.6616 0.8145 0.9020 0.9618

8 70 0.05 0.0500 0.3758 0.5677 0.7252 0.8310 0.9187

0.075 0.0500 0.3604 0.5461 0.7027 0.8113 0.9050

0.1 0.0500 0.3362 0.5111 0.6647 0.7766 0.8795

90 0.05 0.0500 0.4364 0.6475 0.8021 0.8930 0.9569

0.075 0.0500 0.4184 0.6246 0.7810 0.8767 0.9475

0.1 0.0500 0.3899 0.5868 0.7443 0.8470 0.9290

110 0.05 0.0500 0.4912 0.7129 0.8574 0.9320 0.9770

0.075 0.0500 0.4712 0.6897 0.8386 0.9193 0.9708

0.1 0.0500 0.4393 0.6510 0.8051 0.8951 0.9579

Table A7. The power h(c1) at d = 4; α = 0.01.

c1

m n p 0.85 0.885 0.9 0.915 0.93 0.96

6 70 0.05 0.0100 0.1756 0.3361 0.5095 0.6552 0.8072

0.075 0.0100 0.1680 0.3218 0.4905 0.6352 0.7903

0.1 0.0100 0.1562 0.2990 0.4595 0.6016 0.7609

90 0.05 0.0100 0.2187 0.4141 0.6065 0.7506 0.8800

0.075 0.0100 0.2090 0.3970 0.5860 0.7314 0.8662

0.1 0.0100 0.1937 0.3695 0.5521 0.6984 0.8415

110 0.05 0.0100 0.2614 0.4856 0.6863 0.8206 0.9253

0.075 0.0100 0.2496 0.4665 0.6658 0.8033 0.9147

0.1 0.0100 0.2311 0.4355 0.6311 0.7730 0.8950

7 70 0.05 0.0100 0.1746 0.3343 0.5070 0.6527 0.8051

0.075 0.0100 0.1657 0.3174 0.4845 0.6288 0.7848

0.1 0.0100 0.1520 0.2908 0.4481 0.5890 0.7495

90 0.05 0.0100 0.2174 0.4119 0.6039 0.7482 0.8783

0.075 0.0100 0.2060 0.3916 0.5795 0.7252 0.8617

0.1 0.0100 0.1883 0.3595 0.5395 0.6858 0.8316

110 0.05 0.0100 0.2598 0.4832 0.6837 0.8184 0.9240

0.075 0.0100 0.2460 0.4605 0.6592 0.7977 0.9111

0.1 0.0100 0.2245 0.4241 0.6180 0.7611 0.8870
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Table A7. Cont.

8 70 0.05 0.0100 0.1737 0.3324 0.5046 0.6501 0.8030

0.075 0.0100 0.1634 0.3130 0.4786 0.6224 0.7793

0.1 0.0100 0.1479 0.2829 0.4370 0.5765 0.7380

90 0.05 0.0100 0.2162 0.4097 0.6012 0.7458 0.8765

0.075 0.0100 0.2030 0.3864 0.5731 0.7190 0.8571

0.1 0.0100 0.1830 0.3498 0.5270 0.6731 0.8215

110 0.05 0.0100 0.2583 0.4807 0.6811 0.8163 0.9227

0.075 0.0100 0.2424 0.4546 0.6526 0.7920 0.9075

0.1 0.0100 0.2181 0.4130 0.6050 0.7491 0.8786

Table A8. The power h(c1) at d = 4; α = 0.02.

c1

m n p 0.85 0.885 0.9 0.915 0.93 0.96

6 70 0.05 0.0200 0.2305 0.3977 0.5629 0.6939 0.8230

0.075 0.0200 0.2217 0.3827 0.5443 0.6749 0.8071

0.1 0.0200 0.2077 0.3587 0.5137 0.6430 0.7792

90 0.05 0.0200 0.2796 0.4776 0.6560 0.7826 0.8911

0.075 0.0200 0.2687 0.4603 0.6366 0.7649 0.8783

0.1 0.0200 0.2513 0.4322 0.6042 0.7343 0.8552

110 0.05 0.0200 0.3269 0.5486 0.7304 0.8461 0.9329

0.075 0.0200 0.3140 0.5298 0.7115 0.8305 0.9231

0.1 0.0200 0.2935 0.4990 0.6791 0.8030 0.9050

7 70 0.05 0.0200 0.2293 0.3958 0.5605 0.6915 0.8210

0.075 0.0200 0.2189 0.3780 0.5384 0.6689 0.8019

0.1 0.0200 0.2027 0.3499 0.5024 0.6309 0.7683

90 0.05 0.0200 0.2782 0.4754 0.6535 0.7804 0.8895

0.075 0.0200 0.2653 0.4549 0.6304 0.7592 0.8741

0.1 0.0200 0.2451 0.4219 0.5920 0.7225 0.8459

110 0.05 0.0200 0.3252 0.5462 0.7280 0.8441 0.9317

0.075 0.0200 0.3100 0.5239 0.7054 0.8254 0.9199

0.1 0.0200 0.2861 0.4876 0.6668 0.7921 0.8975

8 70 0.05 0.0200 0.2282 0.3938 0.5581 0.6891 0.8190

0.075 0.0200 0.2163 0.3734 0.5326 0.6628 0.7967

0.1 0.0200 0.1979 0.3414 0.4912 0.6189 0.7573

90 0.05 0.0200 0.2768 0.4731 0.6510 0.7781 0.8879

0.075 0.0200 0.2619 0.4495 0.6243 0.7534 0.8698

0.1 0.0200 0.2390 0.4119 0.5799 0.7107 0.8364

110 0.05 0.0200 0.3236 0.5438 0.7256 0.8422 0.9305

0.075 0.0200 0.3061 0.5180 0.6993 0.8203 0.9165

0.1 0.0200 0.2790 0.4764 0.6545 0.7811 0.8898
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Table A9. The power h(c1) at d = 4; α = 0.05.

c1

m n p 0.85 0.885 0.9 0.915 0.93 0.96

6 70 0.05 0.0500 0.3280 0.4945 0.6407 0.7481 0.8453

0.075 0.0500 0.3177 0.4792 0.6232 0.7311 0.8308

0.1 0.0500 0.3013 0.4544 0.5943 0.7021 0.8052

90 0.05 0.0500 0.3838 0.5733 0.7253 0.8260 0.9064

0.075 0.0500 0.3715 0.5565 0.7080 0.8107 0.8951

0.1 0.0500 0.3519 0.5289 0.6786 0.7840 0.8744

110 0.05 0.0500 0.4351 0.6403 0.7902 0.8796 0.9432

0.075 0.0500 0.4213 0.6228 0.7739 0.8666 0.9347

0.1 0.0500 0.3991 0.5937 0.7457 0.8434 0.9188

7 70 0.05 0.0500 0.3267 0.4925 0.6384 0.7460 0.8435

0.075 0.0500 0.3145 0.4744 0.6177 0.7256 0.8261

0.1 0.0500 0.2953 0.4453 0.5834 0.6910 0.7952

90 0.05 0.0500 0.3822 0.5711 0.7231 0.8240 0.9050

0.075 0.0500 0.3677 0.5512 0.7024 0.8057 0.8913

0.1 0.0500 0.3448 0.5187 0.6675 0.7735 0.8660

110 0.05 0.0500 0.4333 0.6380 0.7882 0.8780 0.9421

0.075 0.0500 0.4170 0.6172 0.7686 0.8624 0.9318

0.1 0.0500 0.3909 0.5828 0.7349 0.8341 0.9122

8 70 0.05 0.0500 0.3254 0.4905 0.6362 0.7438 0.8417

0.075 0.0500 0.3114 0.4697 0.6122 0.7201 0.8213

0.1 0.0500 0.2895 0.4364 0.5727 0.6799 0.7850

90 0.05 0.0500 0.3806 0.5690 0.7209 0.8221 0.9036

0.075 0.0500 0.3640 0.5460 0.6969 0.8007 0.8875

0.1 0.0500 0.3378 0.5087 0.6564 0.7630 0.8575

110 0.05 0.0500 0.4315 0.6358 0.7861 0.8764 0.9411

0.075 0.0500 0.4127 0.6117 0.7633 0.8580 0.9289

0.1 0.0500 0.3830 0.5721 0.7240 0.8246 0.9053
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