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Abstract: Real-time collision risk prediction is essential for improving highway safety and reducing
traffic accidents. However, previous studies have mainly used crash data and associated spatially
discrete and temporally continuous traffic data, overlooking the potential of vehicle trajectory data,
which provides comprehensive spatio-temporal information to characterize traffic near a specific
location. Moreover, researchers have typically focused on either traffic flow characteristics or inter-
vehicle microscopic kinematic characteristics for real-time risk prediction, with a dearth of studies
integrating these two aspects. Given that risk events transpire more frequently than accidents and
exhibit a strong correlation with them, it is imperative to concentrate more on risk events to proactively
diminish crash probabilities. This study introduces a novel approach that extracts traffic flow and
inter-vehicle kinematic features from risk events. It also provides a comparative analysis of the
effectiveness of five machine-learning methods (Logistic Regression, K-Nearest Neighbors, eXtreme
Gradient Boosting, Random Forests, and Multilayer Perceptron) and two data-processing strategies
(oversampling and undersampling) in addressing risk identification and prediction issues. The results
showed that (1) the synergistic use of traffic flow and inter-vehicle kinematic features surpasses
the use of a single feature in identifying and predicting risks; (2) The eXtreme Gradient Boosting
model, trained on the undersampled dataset, emerges as the optimal model for risk identification,
boasting an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.976 and an F1
score of 0.604; (3) The RF model exhibits commendable performance under both risk prediction
conditions (5 s ahead prediction and 10 s prediction), demonstrating the highest performance with F1
scores of 0.377 and 0.374, respectively. Additionally, it was discovered that the resampling strategy
does not always prove effective in developing risk analysis models and should be chosen based
on the model’s characteristics and target metrics. This offers valuable insights into the selection
of data-processing strategies when handling unbalanced data. Finally, the study’s limitations and
potential enhancements are discussed.

Keywords: vehicle trajectory data; real-time collision risk prediction; machine-learning; highway

1. Introduction

Highways, a crucial component of transportation systems, are often sites of frequent
traffic accidents. The World Health Organization (WHO) reports that road traffic accidents
claim over 1.4 million lives and cause approximately 50 million injuries annually [1]. A
significant proportion of these accidents occur on highways, which are often characterized
by higher mortality rates and a propensity for chain accidents. In response to this situation,
the WHO urges all nations to implement measures aimed at reducing road traffic casualties
by at least 50% by 2030 [2].

To enhance highway safety and decrease traffic accident incidence, it is imperative to
perform real-time risk monitoring and assessment of highway vehicles. This allows for the
early identification of collision risks and the implementation of preventive measures [3,4].
With the advancement of traffic sensor technology, the acquisition of real-time traffic operation
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data has become increasingly convenient, which has also promoted the research interest in
real-time risk analysis [5,6]. Researchers are exploring the relationship between collision
probability and pre-collision traffic operating conditions, with the aim of reducing collision
likelihood through proactive traffic control strategies [7]. In addition, real-time risk analysis
also has application potential in autonomous driving within vehicle networks, which places
higher requirements on data resolution and accuracy of collision risk analysis [8].

From a data usage standpoint, current real-time risk analysis research primarily re-
lies on collision data and corresponding spatially discrete, temporally continuous traffic
data [9,10] (e.g., loop detector, video detection system data) to develop traffic risk identifi-
cation and prediction models. A common approach involves using extracted upstream and
downstream traffic flow parameters (e.g., average speed, speed standard deviation, traffic
volume) from the collision site to build a collision risk assessment and prediction model
of the statistical relationship between collision risk and traffic flow state [11]. However,
as collisions and traffic conflicts frequently occur at specific intermediate locations on
the road, traffic flow data summarized at the road segment level inadequately reflects
traffic changes near the collision location. This necessitates vehicle-level traffic data that
provides comprehensive coverage of road traffic conditions. Owing to continuous advance-
ments in transportation technology, the latest generation of traffic sensing data acquisition
technologies (e.g., drones [12], distributed vehicle trajectory acquisition systems [13]) and
the application of intelligent Internet-connected vehicles have enabled the collection of
individual-level vehicle trajectory data. This paves the way for real-time traffic risk analysis
and prediction using micro-level vehicle trajectory information, which holds significant
potential for enhancing road traffic safety.

Moreover, numerous researchers have used crashes as the subject of risk identifica-
tion in their studies. However, collisions are low-probability events, and gathering data
with sufficient collision events is time-consuming, resource-intensive, and potentially ac-
companied by inaccurate data recording [14]. Consequently, trajectory data containing
collisions are relatively scarce, prompting some studies to construct accident detection and
classification models based on simulated collision trajectory data generated in a simulation
environment [15]. In contrast, practical traffic safety management systems prioritize the
identification and warning of more frequently occurring risk events, given the strong
correlation between the frequency of risk events and traffic accidents [16]. Therefore, imple-
menting risk prediction models through surrogate safety measures (e.g., TTC, MTTC, etc.)
by identifying risk events from vehicle trajectory datasets offers significant potential to un-
cover collision occurrence mechanisms and enhance road traffic safety. Additionally, most
collision risk studies typically employ either traffic flow features or microscopic kinematic
features between neighboring vehicles for real-time risk prediction [17,18]. However, clear
evidence to demonstrate whether these two feature types can jointly predict risk occurrence
is lacking, which is the focus of this study.

To address the above research gaps, this study aims to establish a real-time identifi-
cation and prediction model for risk events in road traffic using traffic flow features and
kinematic features between vehicles in trajectory datasets. The primary contributions and
innovations of this study include:

• The proposal of a risk-event-based method for extracting traffic flow features and
inter-vehicle kinematic features designed to analyze collision risk on highways.

• The development of machine-learning-based risk identification and prediction models,
specifically the Risk Identification Model, Risk Prediction Model-5s, and Risk Predic-
tion Model-10s. These models were used to compare the performance of five distinct
machine-learning approaches under various data-processing strategies.

• An exploration of the impacts of traffic flow features and inter-vehicle kinematic
features on risk events, confirming the effectiveness of joint prediction using these
two features.

The following remainder of this paper is organized as follows. Section 2 provides a
review of prior research on risk event identification and real-time traffic risk identification
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and prediction methods. Section 3 details the data preparation process, while Section 4 out-
lines the methodology employed. Section 5 presents the results and associated discussion.
Finally, Section 6 offers a summary and discussion of the work.

2. Background
2.1. Identification of Risk Events

The identification of risk events in trajectory data is a crucial step in the development
of risk identification and prediction models. Risk events are typically identified in two
primary ways: (1) by using the vehicle’s own kinematic parameters to detect the occurrence
of an emergency event and (2) by employing a surrogate safety measure (SSM) to evaluate
the severity of a traffic conflict. The first method involves recognizing a risky event by
comparing the vehicle’s kinematic parameters with a pre-established reasonable range
threshold (e.g., longitudinal acceleration ≥ 0.6 g, lateral acceleration ≥ 0.7 g [19]). This
method is relatively straightforward to implement, as it only requires the vehicle’s motion
information. However, it can result in high false alarm rates and does not effectively
quantify risk severity. The second method necessitates the use of measures (e.g., time
to collision (TTC), deceleration to avoid collision (DRAC), and post-encroachment time
(PET) [20]) to identify risky events in road traffic. This is achieved by considering the
motion information and positional relationship between the target vehicle and surrounding
traffic participants. Such methods can decrease the false alarm rate of risk identification
and aid in further classifying risk levels.

Specifically, SSM can be classified into three categories: deceleration-based SSM,
energy-based SSM, and time-based SSM [21]. DRAC is a commonly employed method
in deceleration-based SSM. It evaluates the potential risk level between a vehicle and the
vehicle in front of it in the target lane by calculating the minimum deceleration required for
the vehicle to match the speed of the vehicle in front during a lane change [22]. DeltaV, a
key component of energy-based SSM, calculates the change in speed of the vehicles due
to a collision to evaluate the propensity to collide and the potential collision severity of a
traffic conflict [23]. TTC is the most popular method in time-based SSM, which represents
the remaining time before a collision occurs if a front and a rear vehicle continues to travel
at their current speed and on a consistent path [24]. However, it is important to note that
this method is only applicable when the speed of the rear vehicle is faster than the speed
of the vehicle in front, and it cannot identify the potential collision risk in other cases.
To overcome this limitation, Modified Time to Collision (MTTC) was proposed, which
takes into account the speed, acceleration, and relative distance of the potentially colliding
vehicles [25], and has been demonstrated to cover all collision scenarios and to be effective
in identifying risky events [26]. Therefore, MTTC is used as a metric to identify risky events
in this study.

2.2. Real-Time Traffic Risk Identification and Prediction Methods

This section reviews research on real-time risk identification and prediction methods,
focusing on three aspects: data source, feature selection, and classification model.

2.2.1. Data Source

From the perspective of data sources, the existing real-time traffic risk identification
and prediction methods can be roughly divided into three categories: the methods based on
macro traffic flow data, the methods based on single-vehicle attitude data, and the methods
based on trajectory data.

The methods based on macro traffic flow data use data acquisition equipment, such
as loop detectors, to identify risks by analyzing the changes in traffic flow characteristics
over time. This approach generally has two types: rule-based and machine-learning-based.
Pirdavani A et al. [27] developed a rule-based real-time collision Risk Prediction Model by
pruning part of the decision tree and using characteristics such as traffic volume, average
speed, and speed standard deviation at the 5-minute aggregation level. Xu C et al. [9]
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designed a sequential logic model to link collision probability with traffic flow characteris-
tics and to predict the likelihood of accidents of different severities. In summary, the risk
prediction method based on macro traffic flow data is widely used in practice because of
its accessibility and robustness. However, this method has some limitations, especially in
detection ability, as it can only provide lane-level aggregated traffic flow characteristics and
cannot obtain the driving data of individual vehicles. Therefore, the differential behavior
of individual vehicles cannot be incorporated into the risk modeling process.

At present, researchers have applied the attitude data of vehicles to identify traffic
accidents and set the threshold values of variables, such as speed, acceleration, and angular
velocity of a single vehicle, to detect the risk. Bhatti F et al. [28] designed an accident
detection and reporting system that collects vehicle operation data through the pressure
sensor, noise sensor, and accelerometer of mobile phones and uses the threshold method
to detect and report accidents. Khan A et al. [29] used a similar method with Android
applications and mobile phone accelerometers to achieve accident detection and rescue.
The risk identification method based on bicycle attitude data has the advantages of high
real-time and low cost, but it cannot perceive the running state of surrounding vehicles
well, limiting the accuracy of risk identification.

Real-time risk prediction based on trajectory data uses the position, speed, acceleration,
and other information of the vehicle to predict the risks that the vehicle may encounter
according to its motion state and the surrounding environment. Yu R et al. [17] achieved
short-term prediction of high-risk events and analysis of influencing factors using ran-
dom parameter logistic regression model and random effects logistic regression model.
Yuan C et al. [18] proposed a two-step framework that employs statistical models and vari-
ous machine-learning models to analyze the feature interpretability of trajectory data and
construct a Risk Prediction Model. Compared with other data sources, trajectory data have
the following advantages: (1) Large amount of data, wide coverage, and ability to reflect
more traffic scenarios and conditions; (2) High real-time data, frequent updates, and respon-
siveness to changes in traffic status. However, trajectory data also has some limitations,
such as (1) high data dimensions and complex features that require effective reduction
and feature extraction, (2) high difficulty in data analysis and mining, which requires
consideration of the spatio-temporal correlation, nonlinearity, and other characteristics of
trajectory data, and adoption of more advanced models and algorithms.

2.2.2. Feature Selection

The most widely used features in real-time risk identification and prediction models
are the mean values of flow, speed, and occupancy and other statistical variables of these
three basic traffic parameters, such as standard deviation and coefficient of variation [10].
Differential features, such as the difference in traffic parameters between upstream and
downstream and between lanes [9], have been gradually incorporated into risk prediction
modeling. Feature sensitivity analysis confirmed that the model with lane differential
features performed better than the model with only single lane features [18]. Moreover,
the occurrence of risk depends not only on the traffic state but also on various complex
factors, such as people, vehicles, road conditions, and the environment. The interaction and
influence degree among these factors are often hard to quantify and predict, making the
establishment of an effective real-time collision Risk Prediction Model a challenging task.

Furthermore, some scholars use micro-kinematic characteristics between adjacent
vehicles for real-time risk prediction [17]. In general, previous studies tend to use two
types of features for real-time risk prediction: traffic flow features, which reflect the macro
traffic conditions of the road section, and micro-kinematic characteristics, which reflect the
micro motion characteristics and driving behavior of vehicles. Each type of feature has its
own pros and cons. However, there is no clear evidence on whether these two types of
features can jointly predict the occurrence of risk or whether they have complementary or
redundant effects. Therefore, exploring the relationship between different feature types
and their impact on the model is a problem for further study.
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2.2.3. Classification Model

The real-time identification and prediction of traffic risks is a classification problem
that aims to differentiate the risk level of traffic operation status based on precursors of risk
events. To achieve this, researchers have proposed various methods, primarily classified
into two categories: statistical models and machine-learning models. Statistical models, the
earliest methods used for traffic risk analysis, primarily utilize crash data and traffic flow
data to establish statistical relationships between risk and traffic flow features. Common
methods include Bayesian logistic regression models [30], probabilistic models with random
parameters and random effects [31,32], and correlated random parameters models [33,34],
which have been recently found to be more effective. These methods can elucidate the
correlation between traffic flow states and the probability of collision occurrence. However,
statistical models struggle with the nonlinearity and high dimensionality of data when
dealing with real-time traffic collision risk prediction, and they require high-quality and
well-distributed data. Consequently, machine-learning models have been extensively used
in traffic risk analysis in recent years, effectively addressing these issues. For instance,
machine-learning models such as Support Vector Machines (SVMs) [35], Random Forest
(RF) [36], eXtreme Gradient Boosting (XGBoost) [37], and Neural Networks [38] have
proven effective in solving the classification problem in real-time safety analysis.

Additionally, the selection of the classification threshold becomes a significant issue
when dealing with the classification problem of unbalanced data. Real-time risk identifica-
tion and prediction exemplify such a problem, as the number of non-risk situations in real
traffic significantly outweighs the risk situations. The selection of classification thresholds
involves adjusting these thresholds at the output level to bias the prediction results towards
a certain category [39,40]. In traditional binary classification problems, “0.5” is typically
chosen as the classification threshold, and accuracy is used as the primary performance
metric of the model. However, this approach is not applicable to risk prediction where the
sample distribution is severely unbalanced [41,42]. This is particularly evident in extreme
cases where all risky events are incorrectly classified as non-risky, yet the prediction model
still maintains high prediction accuracy. Furthermore, the trade-off between the precision
and recall of the model must be considered, as adjusting the threshold can cause these
two metrics to change in opposite directions. Consequently, it is essential to select an ap-
propriate metric to evaluate the model’s performance in risk identification and prediction
to determine the optimal classification threshold. Therefore, in this study, the model’s
performance and the determination of the classification threshold were evaluated using the
F1 score, which considers both the precision and recall of the model.

3. Data Preparation
3.1. Trajectory Dataset

This study utilizes the HIGHD [12] (“The Highway Drone Dataset”), a naturalistic
vehicle trajectory dataset that documents vehicle movements on German motorways. As
shown in Table 1, the dataset employs a drone to record six distinct motorway scenarios,
encompassing various lane counts and speed limit conditions and spanning a broad spec-
trum of traffic operating conditions (e.g., smooth and congested). As shown in Figure 1,
the drone covers a road with a record range of 420 m, collecting vehicle driving trajectory
images at a high resolution of 4 K and a frame rate of 25 fps. Each trajectory frame in
the dataset comprises structured information such as vehicle position, speed, acceleration,
and surrounding vehicles. Moreover, owing to its low typical positioning error (less than
10 cm), the HIGHD dataset has found extensive application in traffic simulation modeling
analysis and validation of technologies related to automated driving [43,44].
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Table 1. Information about the HIGHD dataset.

LocationId NumLanes SpeedLimit WeekDay NumCars NumTrucks AvgSpeed

1 3 120 km/h Thu, Mon, Wed 69,751 16,211 27.45 m/s
2 2 Infinite speed Tue 2400 674 30.00 m/s
3 3 130 km/h Thu 2710 1037 30.27 m/s
4 3 Infinite speed Fri 3799 952 30.11 m/s
5 2 Infinite speed Fri 8192 1887 29.94 m/s
6 3 Infinite speed Wed 2287 616 29.67 m/s

Figure 1. Using drone to record highway vehicle trajectory information [12].

3.2. Identification of Risk and Non-Risk Events
3.2.1. MTTC-Based Risk Event Identification

As previously mentioned, this study selected MTTC as the metric to evaluate the oper-
ating status of vehicles in the trajectory dataset, therefore identifying risky and non-risky
events. Various methods for selecting thresholds for SSM have been proposed in earlier
studies, such as those based on the type of vehicle ahead [45], dynamic calculation methods
grounded in the driving environment [46], and statistically based methods [47]. The objec-
tive of using MTTC in this study is to expect more identification of risky vehicle operating
conditions. Hence, a threshold of 2.5 s is selected for risky event identification [48,49]. As
shown in Figure 2, in the typical car following scenario, the MTTC value of the following
vehicle can be calculated as:

t1 =
−∆v−

√
∆v2 + 2∆aD
∆a

, t2 =
−∆v +

√
∆v2 + 2∆aD
∆a

, if ∆a 6= 0
(1)

MTTC =


min(t1, t2), if t1 > 0, t2 > 0
max(t1, t2), if t1 × t2 ≤ 0

D
∆v , if ∆a = 0

(2)

∆v = v f − vp, ∆a = a f − ap, D = xp − x f − l (3)

where vp, ap, xp represent the speed, acceleration, and longitudinal position of the preceding
vehicle, respectively; v f , a f , x f represent the speed, acceleration, and longitudinal position
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of the following vehicle, respectively; D represents the relative distance between the two
vehicles; l represents the length of the preceding vehicle. Consequently, the MTTC value
for any frame of the vehicle in the trajectory data can be computed using Equations (1)–(3).
A risk event is identified if the MTTC value is less than 2.5 s.

Figure 2. Typical car following scenario.

3.2.2. Risk Event and Non-Risk Event Extraction

To analyze the precursors of traffic risks and their influencing factors, it is necessary
to extract risky and non-risky events from the trajectory dataset for comparison of traffic
conditions in both scenarios. In the HIGHD dataset, the vehicle trajectory data are com-
posed of consecutive frames of data, from which a series of MTTC values are computed.
As shown in Figure 3, in the identification and extraction of events, the moment when a
vehicle’s MTTC reaches 2.5 s in trajectories is considered to be the occurrence of the risky
event. For the remaining vehicle trajectories where the MTTC never reaches 2.5 s, the
moment of the non-risky event is set to the time with the lowest MTTC. Thus, only one
risk event or non-risk event is extracted for each vehicle trajectory. Specifically, to eliminate
the potential influence of risky events on the traffic features of non-risky events, non-risky
events occurring within 30 s before and after the risky event were excluded, based on a
previous study [18]. Ultimately, 865 risk events and 46,821 non-risk events were obtained.

(a) (b)

Figure 3. Extraction examples of risk event and non-risk event. The blue solid line represents the
MTTC value calculated by Equations (1)–(3), and the red dashed line represents the MTTC threshold
of 2.5 s used to identify risk events. (a) Extraction of risk event. (b) Extraction of non-risk event.

3.3. Traffic Flow Features and Inter-Vehicle Kinematic Feature Extraction

In crash-based traffic risk prediction studies, researchers can obtain the corresponding
traffic flow features directly from nearby fixed sensors (such as loop detectors and automatic
vehicle recognition detectors) [9,35] once they have identified the crash data and its time
of occurrence. However, effectively characterizing traffic features remains a challenge
when using trajectory data to construct risk identification and prediction models based
on risk events, despite the comprehensive road operational state information contained
in trajectory data. To address this challenge, methods such as time-slice traffic feature
extraction for trajectory data [17] and the virtual detectors [18] method for obtaining cross-
sectional traffic data have been proposed. Moreover, most current traffic risk studies
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use either traffic flow features or inter-vehicle kinematic features aggregated at the road
segment level to characterize the precursor features of risk. This approach leaves a gap in
risk analysis studies that combine both traffic features. This study presents a method for
extracting traffic flow and inter-vehicle kinematic features from trajectory data. The aim
is to investigate the effects of traffic flow variations and micro-interactions of conflicting
vehicles on risk events. To achieve this, 18 traffic flow features and seven inter-vehicle
kinematic features were computed for risk identification and prediction modeling.

3.3.1. Temporal Range

Given that the features used for risk identification and prediction vary in their temporal
range, it is essential to delineate the corresponding feature extraction ranges for Risk
Identification Model, Risk Prediction Model-5s, and Risk Prediction Model-10s, as shown
in Figure 4. For the Risk Identification Model, the temporal extraction range for traffic flow
features is within 30 s prior to the event, and the temporal extraction range for inter-vehicle
kinematic features is within 1 s prior to the event, whereas for the Risk Prediction Model-5s
and Risk Prediction Model-10s, the temporal extraction ranges of the traffic features are 5 s
and 10 s in advance with respect to the event, respectively.

Figure 4. Temporal range for feature extraction.

3.3.2. Feature Variable Extraction

Upon defining the temporal range for feature extraction, it becomes necessary to
consider the methods for extracting traffic flow features and inter-vehicle kinematic features
within this temporal range. As shown in Figure 5, the blue dashed line, and the red
dashed line represent the spatial extraction ranges of these two features on the road,
respectively. Consequently, the two traffic features for each event are extracted as follows:
For the lane-level aggregated traffic flow features, parameters such as average speed, speed
standard deviation, and flow features of the vehicles passing at upstream and downstream
locations on the road are calculated. These calculations are based on the first frame of
data after the vehicle enters the road (the vehicle arrives at the upstream location) and
the last frame of data before the vehicle departs from the road (the vehicle arrives at
the downstream position), collected within the delineated 30 s temporal range. For the
inter-vehicle kinematic features, parameters within the same lane, such as maximum
longitudinal speed and maximum longitudinal speed gap, among others, are calculated
within the delineated 1 s temporal range. It should be noted that both features are extracted
in the event lane.
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Moreover, prior studies suggest that the factors contributing to the occurrence of
risky events are not confined to the current lane’s traffic operating status. An increase in
the inter-lane differences in operating status can also escalate the likelihood of conflict
situations [50,51]. Consequently, a more comprehensive consideration of inter-lane differ-
ences in traffic flow features is warranted. Since the HIGHD dataset encompasses both
2-lane and 3-lane road sections, it is necessary to establish selection rules for the main and
adjacent lanes of an event. These rules will guide the extraction of inter-lane difference
features of traffic flow: (1) The lane where the event occurs is always considered the main
lane; (2) If the main lane is situated at the edge of the road, its nearest lane is deemed
the adjacent lane; (3) If the main lane is located in the middle of the road and the current
vehicle has changed lanes, the lane prior to the lane change is selected as the adjacent
lane. Otherwise, the inter-lane difference feature of the traffic flow is calculated as the
average difference between the main lane and the two adjacent lanes. Ultimately, 25 traffic
feature variables were computed for modeling, as shown in Table 2. Some examples of
trajectory data and detailed steps about the process of data preparation can be found in the
“Appendix A” section.

Table 2. Description and statistics of traffic flow features and inter-vehicle kinematic features.

Category Variable Level Variable Definition
Risk Event Non-Risk Event

Mean Standard
Deviation Mean Standard

Deviation

Traffic
flow
feature

Velocity

AvgV_U Average upstream velocity (m/s) 25.906 7.959 30.081 4.722
AvgV_D Average downstream velocity (m/s) 24.939 9.628 30.400 4.832

DiffV_UD Difference of velocity between upstream
and downstream (m/s) 3.496 3.053 2.428 1.912

StdV_U Standard deviation of upstream velocity 2.819 1.441 2.451 1.267
StdV_D Standard deviation of downstream velocity 2.568 1.400 2.515 1.322
CvV_U Coefficient of variation of upstream velocity 0.114 0.067 0.082 0.041
CvV_D Coefficient of variation of downstream velocity 0.128 0.121 0.083 0.043

Volume
Vo_U Upstream volume (Veh/30 s) 11.472 4.005 11.599 4.431
Vo_D Downstream volume (Veh/30 s) 10.135 4.034 10.680 4.363

DiffVo_DU Difference of volume between upstream
and downstream (Veh/30 s) 2.494 2.036 2.550 2.200

Difference

Diff_AvgV_U Difference in average upstream velocity
between main lane and adjacent lane (m/s) 4.567 2.668 5.034 2.426

Diff_AvgV_D Difference in average downstream velocity
between main lane and adjacent lane (m/s) 4.464 2.919 4.995 2.481

Diff_StdV_U Difference in standard deviation of upstream
velocity between main lane and adjacent lane 1.147 1.066 1.188 1.004

Diff_StdV_D Difference in standard deviation of downstream
velocity between main lane and adjacent lane 1.166 1.106 1.244 1.058

Diff_CvV_U Difference in coefficient of variation of upstream
velocity between main lane and adjacent lane 0.056 0.085 0.041 0.034

Diff_CvV_D Difference in coefficient of variation of downstream
velocity between main lane and adjacent lane 0.063 0.088 0.043 0.036

Diff_Vo_U Difference in upstream volume
between main lane and adjacent lane (Veh/30 s) 3.890 2.627 4.278 3.106

Diff_Vo_D Difference in downstream volume
between main lane and adjacent lane (Veh/30 s) 3.684 2.697 4.117 2.947

Inter-
vehicle
kinematic
feature

Velocity
Max_XV Maximum longitudinal velocity (m/s) 29.226 9.309 32.936 5.247
Max_Diff_XV Maximum difference of longitudinal velocity (m/s) 8.834 3.874 5.590 3.144
Max_YV Maximum lateral velocity (m/s) 0.644 0.441 0.332 0.299

Acceleration
Max_XA Maximum longitudinal acceleration

(
m/s2) 1.395 1.026 0.689 0.445

Max_Diff_XA
Maximum difference of longitudinal acceleration(
m/s2) 0.855 0.404 0.387 0.332

Max_YA Maximum lateral acceleration
(
m/s2) 0.312 0.185 0.153 0.103

Distance Min_D Minimum distance between vehicle 17.137 8.080 39.897 40.379
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Figure 5. Spatial range for feature extraction.

4. Methodology

The identification and prediction of road traffic risk events constitute a typical clas-
sification problem, aiming to analyze the probability of risk event occurrence and their
influencing factors. To achieve real-time risk identification and prediction, it is essential
to employ effective machine-learning methods for traffic state classification. This study
utilizes five machine-learning methods widely used in traffic risk studies: Logistic Regres-
sion (LR) [9], K-Nearest Neighbors (KNN) [52], eXtreme Gradient Boosting (XGBoost) [53],
Random Forests (RF) [35], and Multilayer Perceptron (MLP) [54]. These five methods fall
into three categories of machine-learning classification methods: single classifier, integrated
learning, and deep learning. Specifically, LR and KNN are distance-based single-classifier
methods that use a log-odds function and Euclidean distance, respectively, to measure
sample similarity. XGBoost and RF are integrated learning methods based on decision
trees, each with distinct generative processes and combinations. XGBoost, a boosting
method, generates multiple classifiers sequentially. The weights and division points of each
classifier are adjusted according to the error of the previous classifier, and finally, all the
classifiers are summed according to their weights to obtain the final result. RF, a bagging
method, generates multiple classifiers in parallel, each drawing a portion of the samples
from the original dataset randomly and retrospectively. Finally, all the classifiers are voted
on or averaged to obtain the final result. MLP, on the other hand, belongs to the deep
learning methods, utilizing a multilayer neural network structure trained and optimized by
a back-propagation algorithm. All five selected methods have a wide range of applications
and demonstrate efficient performance in classification problems.

To assess the performance of the chosen method in identifying and predicting risk
events, several widely used metrics are employed, particularly due to the high degree
of data imbalance. These metrics include accuracy, precision, recall, and the F1 score,
as defined in Table 3 and Equations (4)–(7). The F1 score [55] is the harmonic mean of
precision and recall, which measures both the precision and completeness of the model in
classifying positive and negative samples. The F1 score varies from 0 to 1, where a higher
value indicates a better balance between precision and recall. The F1 score depends on
the classification threshold and is thus useful for assessing the model performance under
a specific threshold, especially when the positive sample has more significance than the
negative sample.

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

Precision =
TP

TP + FP
(5)
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Recall =
TP

TP + FN
(6)

F1 =
2× Precision× Recall

Precision + Recall
(7)

Additionally, the Area Under the Receiver Operating Characteristic Curve (AUC) was
employed as a metric to evaluate the prediction accuracy of the model [56]. The AUC,
which ranges from 0 to 1, reflects the model’s classification ability. A larger value indicates
superior classification ability, translating to higher prediction accuracy for risk. The AUC
reflects the prediction probability instead of the prediction category and thus remains
unaffected by the threshold. Moreover, the AUC is appropriate for assessing the model’s
overall performance, particularly when the positive and negative samples are imbalanced.

Table 3. Confusion matrix.

True Risk Event True Non-Risk Event

Predicted risk event True Positive (TP) False Positive (FP)
Predicted non-risk event False Negative (FN) True Negative (TF)

In prior studies, the precision and false alarm rate of risk prediction has been con-
sidered as two crucial evaluation metrics [9,18]. A risk warning system that frequently
intervenes in road traffic due to low precision or high false alarm rates can reduce road effi-
ciency and may result in drivers ignoring high-frequency warning messages. Conversely,
an excessive focus on high precision or low false alarm rates can lead to the neglect of
many real risk events, which is unacceptable in a highly risk-sensitive road safety warning
scenario. Consequently, this study places greater emphasis on the F1 score to balance the
precision and completeness of risk prediction.

5. Results and Discussion
5.1. Variable Importance

The importance of a variable is estimated based on the Random Forest algorithm
by monitoring how much the Gini index decreases after splitting each time the tree is
built [57]. The algorithm constructed 100 trees and used five candidate variables (m = 5)
for each split. Table 4 shows the results of the importance estimation of variables in the Risk
Identification Model, Risk Prediction Model-5s, and Risk Prediction Model-10s, respectively,
based on the MeanDecreaseGini criterion. Overall, the top six important variables of each
model comprised traffic flow features and inter-vehicle kinematic features, demonstrating
the significance of these two features for risk identification and prediction. In the Risk
Identification Model, the most important factors in the inter-vehicle kinematic feature
were the minimum distance between the vehicle (Min_D), the maximum difference of
longitudinal acceleration (Max_Diff_XA), and the maximum lateral acceleration (Max_YA).
In contrast, the Risk Prediction Model-5s and the Risk Prediction Model-10s focused
more on the traffic flow feature, especially the difference in average downstream velocity
between main lane and adjacent lane (Diff_AvgV_D) and the difference in average upstream
velocity between main lane and adjacent lane (Diff_AvgV_U). This indicates that the traffic
characteristics of both lanes should be considered in real-time risk prediction.

5.2. Risk Identification Model

To thoroughly evaluate the performance of the machine-learning approach in risk
identification and prediction, a five-fold cross-validation technique was employed for
model training and testing. As a result, the average of the five model performance metrics
was adopted as the final modeling result to represent the model’s overall performance
more accurately. This method ensures the fairness and precision of the evaluation results.
Simultaneously, to ensure that the non-risk events in the training and test sets accurately
mirror the distribution of MTTC values in real traffic, the non-risk events were divided
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into three groups based on the MTTC values at the time of extraction. Stratified random
sampling was then conducted proportionally when partitioning the data, as shown in
Figure 6.

Table 4. Random forests provide the normalized MeanDecreaseGini of variables. The top six
important variables in each of the three models are shown.

Category Risk Identification
Model

Risk Prediction
Model-5s

Risk Prediction
Model-10s

Traffic
flow
feature

AvgV_D(0.043) Diff_AvgV_D(0.085) Diff_AvgV_D(0.080)
Diff_AvgV_U(0.076) Diff_AvgV_U(0.075)
AvgV_D(0.060) AvgV_D(0.065)
Vo_U(0.051) Vo_U(0.064)

DiffVo_DU(0.059)

Inter-vehicle
kinematic
feature

Min_D(0.198) Max_XA(0.068) Max_YA(0.046)
Max_Diff_XA(0.177) Max_Diff_XV(0.046)
Max_YA(0.090)
Max_XA(0.072)
Max_Diff_XV(0.060)

Figure 6. Probability density and stratified sampling grouping of non-risk events.

Additionally, given the low probability of risky events occurring compared to non-
risky events, resampling techniques are utilized to address the significant imbalance in
the dataset [58,59]. Two strategies, specifically oversampling and undersampling, are com-
pared in the experiments, using the original training dataset as a benchmark. The Synthetic
Minority Oversampling Technique (SMOTE) is a traditional oversampling strategy that bal-
ances the dataset by generating synthetic samples from minority classes using the k-nearest
neighbors algorithm and linear interpolation [60]. This technique has been extensively
used in real-time crash prediction studies [61,62]. Conversely, the undersampling strategy
balances the class proportions by removing samples from the majority class [17,42]. The Re-
peated Edited Nearest Neighbors (RENN) algorithm is employed in the experiments, which
enhances the boundaries of the minority class samples and improves the classification
performance by iteratively removing some majority class samples that are confused with
the minority class using the KNN algorithm. It is important to note that the resampling
technique is applied exclusively to the training dataset, while the test dataset retains the
original unbalanced proportions for evaluation.
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The modeling results of the Risk Identification Model are shown in Table 5. Overall,
the XGBoost model demonstrated the highest F1 scores of 0.596, 0.592, and 0.604 for all
data-processing methods (original dataset, SMOTE, and RENN), indicating superior classi-
fication results and generalization ability for unbalanced data. The XGBoost model, trained
on the RENN dataset, emerged as the best model with the highest F1 score, successfully
identifying 53.9% of risk events with a correct risk identification rate of 66.9%. In compari-
son, the Random Forest (RF) model yielded an F1 score of 0.594, slightly lower than the
XGBoost model, when using the original dataset. Both integrated learning models exhibited
robust risk identification capabilities. Additionally, the Multilayer Perceptron (MLP) model,
trained on the RENN dataset, achieved an F1 score of 0.536. Despite MLP-based models
not outperforming XGBoost and RF in terms of metrics, they are still considered viable
alternatives for risk identification models, particularly in addressing the issue of model
updating and migration [63,64], therefore circumventing the time-consuming process of
retraining the entire model.

Table 5. Modeling results of the Risk Identification Model.

Original Dataset SMOTE (Oversampling) RENN (Undersampling)
Model Metrics Model Metrics Model Metrics

LR

Accuracy 0.982

LR

Accuracy 0.979

LR

Accuracy 0.982
Precision 0.521 Precision 0.460 Precision 0.524
Recall 0.556 Recall 0.538 Recall 0.542
F1 0.535 F1 0.495 F1 0.531
AUC 0.967 AUC 0.968 AUC 0.967

KNN

Accuracy 0.983

KNN

Accuracy 0.976

KNN

Accuracy 0.982
Precision 0.624 Precision 0.389 Precision 0.552
Recall 0.388 Recall 0.523 Recall 0.382
F1 0.461 F1 0.446 F1 0.443
AUC 0.774 AUC 0.881 AUC 0.794

XGBoost

Accuracy 0.986

XGBoost

Accuracy 0.986

XGBoost

Accuracy 0.986
Precision 0.669 Precision 0.671 Precision 0.657
Recall 0.539 Recall 0.534 Recall 0.561
F1 0.596 F1 0.592 F1 0.604
AUC 0.975 AUC 0.978 AUC 0.976

RF

Accuracy 0.986

RF

Accuracy 0.982

RF

Accuracy 0.984
Precision 0.673 Precision 0.528 Precision 0.586
Recall 0.534 Recall 0.556 Recall 0.550
F1 0.594 F1 0.538 F1 0.567
AUC 0.961 AUC 0.976 AUC 0.961

MLP

Accuracy 0.983

MLP

Accuracy 0.983

MLP

Accuracy 0.983
Precision 0.578 Precision 0.575 Precision 0.596
Recall 0.491 Recall 0.430 Recall 0.515
F1 0.521 F1 0.489 F1 0.536
AUC 0.957 AUC 0.963 AUC 0.962

In relation to the resampling technique, it is evident that both SMOTE and RENN
influence the performance of the models, albeit differently. With respect to the overall
performance of the models, all machine-learning models achieved AUC values that were
comparable to or higher than those of the original dataset using the resampling technique,
suggesting an enhancement in the models’ overall classification capabilities. However,
most models that employed the resampling technique exhibited a decrease in F1 scores,
implying a reduction in their ability to balance the precision and completeness of risk
identification. The only exceptions were the XGBoost model and the MLP model when
RENN was used. This indicates that one should not indiscriminately apply a resampling
strategy when developing a Risk Identification Model. Instead, an appropriate resampling
strategy should be chosen based on the characteristics of the model and the target metrics
to prevent degradation of model performance due to overfitting and information loss.
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To explore the correlation between the performance of the Risk Identification Model
and the traffic flow features as well as the inter-vehicle kinematic features, the XGBoost
and the RF were used for risk identification modeling on datasets with three different
combinations of the features: the traffic flow features (18 variables), inter-vehicle kine-
matic features (7 variables), and complete features (25 variables). The results of feature
sensitivity analysis are shown in Table 6. It is obvious from the table that both traffic flow
features and inter-vehicle kinematic features significantly impact the performance of the
risk identification models. The F1 scores and AUC values of risk identification models
trained on different features by XGBoost and RF models differ, and both models achieve
optimal performance when using complete features. This suggests that the combined use
of both features for risk analysis can enhance the accuracy and robustness of the mod-
els. Furthermore, the comparison results of the two features reveal that the model using
inter-vehicle kinematic features outperforms the model using traffic flow features in both
F1 scores and AUC values. This indicates that inter-vehicle kinematic features possess a
stronger discriminative ability and differentiation for risk identification.

Table 6. Feature sensitivity analysis of risk identification models.

Model Accuracy Precision Recall F1 AUC

RF + Traffic flow features 0.983 0.663 0.267 0.371 0.802
RF + Inter-vehicle kinematic features 0.984 0.589 0.473 0.523 0.951
RF + Complete features 0.986 0.673 0.534 0.594 0.961
XGBoost + Traffic flow features 0.984 0.724 0.227 0.341 0.780
XGBoost + Inter-vehicle kinematic features 0.982 0.537 0.505 0.519 0.965
XGBoost + Complete features 0.986 0.669 0.539 0.596 0.975

5.3. Risk Prediction Model

Furthermore, risk prediction is considered to be more forward-looking and proactive
than risk identification in the context of actual road traffic accident prevention. Such a
model can provide drivers with more adjustment time and more effective decision support
for risk management. By extracting features within the specific temporal range, a dataset
for constructing a Risk Prediction Model can be generated. Consequently, two new models
are developed:

• Risk Prediction Model-5s: This model utilizes the currently extracted traffic flow
features and inter-vehicle kinematic features to predict the risk situation 5 s later.

• Risk Prediction Model-10s: This model employs the currently extracted traffic flow
features and inter-vehicle kinematic features to predict the risk situation 10 s later.

The modeling results of the Risk Prediction Model are shown in Table 7. Generally,
due to the advancement of the feature extraction temporal range, both the F1 scores
and AUC values of the Risk Prediction Model have decreased compared to the Risk
Identification Model, indicating a weakened classification ability of the model. Specifically,
the RF model displays the highest F1 scores of 0.377 and 0.370 for both risk prediction
conditions. This suggests that the RF model can predict 25.8% of the risk events with
74.9% precision 5 s in advance and 25.7% of the risk events with 72.0% precision 10 s in
advance. Moreover, the XGBoost model also exhibits strong risk prediction ability, with
F1 values of 0.356 and 0.361, respectively. This indicates that both integrated learning
models possess robust risk identification and prediction capabilities. These results imply
that both risk prediction models can provide timely early warnings to drivers and active
traffic management systems without excessively affecting driver alertness or limiting road
capacity, therefore contributing to the reduction of risky events.
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Table 7. Modeling results of the Risk Identification Model.

Risk Identification Model Risk Prediction Model-5s Risk Prediction Model-10s
Model Metrics Model Metrics Model Metrics

LR

Accuracy 0.982

LR

Accuracy 0.984

LR

Accuracy 0.983
Precision 0.521 Precision 0.751 Precision 0.648

Recall 0.556 Recall 0.212 Recall 0.220
F1 0.535 F1 0.329 F1 0.326

AUC 0.967 AUC 0.799 AUC 0.767

KNN

Accuracy 0.983

KNN

Accuracy 0.983

KNN

Accuracy 0.983
Precision 0.624 Precision 0.647 Precision 0.684

Recall 0.388 Recall 0.223 Recall 0.237
F1 0.461 F1 0.330 F1 0.347

AUC 0.774 AUC 0.648 AUC 0.651

XGBoost

Accuracy 0.986

XGBoost

Accuracy 0.983

XGBoost

Accuracy 0.983
Precision 0.669 Precision 0.722 Precision 0.675

Recall 0.539 Recall 0.243 Recall 0.249
F1 0.596 F1 0.356 F1 0.361

AUC 0.975 AUC 0.801 AUC 0.778

RF

Accuracy 0.986

RF

Accuracy 0.984

RF

Accuracy 0.984
Precision 0.673 Precision 0.749 Precision 0.720

Recall 0.534 Recall 0.258 Recall 0.257
F1 0.594 F1 0.377 F1 0.374

AUC 0.961 AUC 0.831 AUC 0.819

MLP

Accuracy 0.983

MLP

Accuracy 0.982

MLP

Accuracy 0.983
Precision 0.578 Precision 0.629 Precision 0.685

Recall 0.491 Recall 0.217 Recall 0.221
F1 0.521 F1 0.316 F1 0.331

AUC 0.957 AUC 0.743 AUC 0.729

The effects of traffic flow features and inter-vehicle kinematic features on risk pre-
diction were further investigated. Specifically, the RF model was employed to perform
two risk prediction models on three datasets with different feature combinations, and the
results of the sensitivity analysis are shown in Table 8. It is obvious from the table that,
unlike risk identification, where inter-vehicle kinematic features play a dominant role, the
Risk Prediction Model using traffic flow features significantly outperforms the model using
inter-vehicle kinematic features in both F1 scores and AUC values. This implies that traffic
flow features are more predictive of the occurrence of risk events. Moreover, both risk
prediction models achieved optimal performance when utilizing the complete features.
This further substantiates that the combination of traffic flow features and inter-vehicle
kinematic features for risk prediction can facilitate earlier detection of risk events.

Table 8. Feature sensitivity analysis of risk prediction models.

Model Accuracy Precision Recall F1 AUC

Prediction Model-5s
RF + Traffic flow features 0.984 0.734 0.247 0.367 0.820
RF + Inter-vehicle kinematic features 0.984 0.764 0.222 0.343 0.715
RF + Complete features 0.984 0.749 0.258 0.377 0.831

Prediction Model-10s
RF + Traffic flow features 0.984 0.752 0.245 0.368 0.804
RF + Inter-vehicle kinematic features 0.984 0.740 0.224 0.343 0.686
RF + Complete features 0.984 0.720 0.257 0.374 0.819

Additionally, the models developed in this study were compared with previous work
that utilized trajectory data, and the results are shown in Table 9. Yu et al. [17] constructed
a high-risk event prediction model based on the kinematic characteristics of the vehicle
in front for a brief period prior to the risk occurrence, using a case-control dataset with
a fixed scale (1:4). The experimental results demonstrated that the AUC values of both
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models exceeded 0.96. Yuan et al. [18] predicted real-time conflict risk using traffic flow
characteristics 30 s before the risk occurrence, with the model achieving an F1 score of
0.447 and an AUC value of 0.871. Katrakazas et al. [14] constructed an SVM model for
real-time conflict prediction based on the speed, flow, and acceleration characteristics of
the 5 min before the risk occurrence, achieving an F1 score of 0.335. Compared with the
previous research works presented in the table, the model construction process in this study
gives greater consideration to the imbalance between risky and non-risky conditions in
real traffic environments. The proposed risk identification and prediction model shows
promising results in terms of accuracy, robustness, and applicability.

Table 9. Comparison of collision risk identification and prediction models based on trajectory data.

Authors Feature Extraction F1 AUC Sample Sized of
Risk Event

Sample Sized of
Non-Risk Event

Yu R et al. [17] Kinematics characteristics of vehicle front 0∼5 s before risk occurrence 0.866 0.960 256 1024
Yu et al. [17] Kinematics characteristics of vehicle front 2∼5 s before risk occurrence - 0.970 256 1024

Yuan et al. [18] Traffic flow characteristics of primary and secondary
lanes 0∼30 s before risk occurrence 0.447 0.871 129 3801

Katrakazas et al. [14]
Velocity, flow, and acceleration characteristics of
polymerization 0∼300 s prior to risk
occurrence

0.335 - 3075 9225

This study
Traffic flow characteristics 0∼30 s before risk
occurrence and kinematics characteristics between
vehicles 0∼1 s before risk occurrence

0.604 0.976 865 46,821

This study Traffic flow characteristics of 5∼35 s before
risk occurrence and kinematics characteristics of 5∼6 s between vehicles 0.377 0.831 865 46,821

This study
Traffic flow characteristics 10∼40 s before risk
occurrence and kinematics characteristics between
vehicles 10∼11 s before risk occurrence

0.374 0.819 865 46,821

6. Conclusions

Real-time risk prediction plays a crucial role in enhancing highway safety, reducing
traffic accident incidence, and facilitating proactive identification and prevention of collision
risks. In this study, a method for extracting traffic flow features and inter-vehicle kinematic
features based on risk events is proposed using the HIGHD trajectory dataset as empirical
data, and a risk identification and prediction model is established. First, surrogate safety
measures with MTTC less than 2.5 s are used to obtain risky events and non-risky events
in the trajectory dataset. Subsequently, 30 s of traffic flow features and 1 s of inter-vehicle
kinematic features are extracted within a delimited temporal range to cater to the needs
of risk identification and prediction. Then, a comparative study of five machine-learning
methods (Logistic Regression, K-Nearest Neighbors, eXtreme Gradient Boosting, Random
Forests, and Multilayer Perceptron) and two data-processing strategies (SMOTE and RENN)
was conducted using a five-fold cross-validation approach.

The modeling results reveal that the developed models exhibit robust risk identifica-
tion and prediction performance. The main findings are as follows:

• The XGBoost model trained on the RENN dataset emerges as the superior model for
risk identification, with an F1 score of 0.604, and can identify 53.9% of risk events
with a 66.9% correct risk identification rate. However, it is important to note that the
resampling strategy is not always effective when developing risk analysis models and
a decision on whether to adopt a resampling strategy and to select an appropriate
resampling technique needs to be made based on the characteristics of the model and
the target metrics.

• The RF model demonstrated optimal performance under both risk prediction condi-
tions, with precision and recall of 0.749 and 0.258 for the 5-s-advance scenario and 0.720
and 0.257 for the 10-s-advance scenario, respectively. In addition, the XGBoost model
also achieved a strong risk prediction capability with F1 values of 0.356 and 0.361,
indicating that the integrated learning model has strong fitting and generalization
performance in the identification and prediction of risk.
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• In the sensitivity analysis of traffic features, the model using complete features
achieved higher F1 scores and AUC values compared to the model using traffic
flow features or inter-vehicle kinematics features alone, indicating that the combined
use of traffic flow features and inter-vehicle kinematics features yields the best.

Although this study has made considerable progress, there is still potential for further
improvement. First, comprehensive and high-resolution vehicle trajectory data remain
limited. The empirical data used in this study covers only six scenarios on German
motorways and includes records with a total duration of 16.5 h. This may not sufficiently
reflect the diversity of different traffic operating conditions and risky events. Therefore,
it is necessary to validate the proposed method on datasets with larger sample sizes and
greater diversity to assess their validity and generalization capabilities. This could involve
applying trajectory data from different countries, traffic scenarios, and weather conditions.
Second, MTTC is used as a surrogate safety measure in the identification of risk events
in this study. However, it can only reflect the risk of collision between vehicles, not the
risk of collision between vehicles and roads or other obstacles, nor the risk arising from
the driver’s poor condition. Therefore, it is necessary to consider the use of a combination
of multiple surrogate safety measures or accident risk coefficients that take into account
driver factors [65] to improve the accuracy and coverage of risk identification.
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Appendix A

The detailed steps of the data preparation process are shown below, using the data
and parameters in Table A1 as an example:

• Based on Equations (1)–(3), calculate the MTTC of each frame data using parameters
x, width, laneId, Vx, Vy, Ax, Ay and precedingId. The calculation has been completed
in the table.

• Refer to Section 3.2.2 to identify whether each trajectory contains risk events or non-
risk events in turn, and obtain the frame time of event occurrence. For example, the
trajectory with id 76 contains the risk event, which occurs at frame time 1509.

• Refer to Section 3.3.1 to calculate the time range for extracting traffic flow features and
inter-vehicle kinematic features. Taking the above risk event as an example, the time
range of feature extraction for traffic flow for risk identification is 760 to 1509 frames,
and the time range of feature extraction for inter-vehicle kinematic features is 1485 to
1509 frames.

• Refer to Section 3.3.2 to calculate the traffic flow features and inter-vehicle kinematic
features of the corresponding samples of events. For the traffic flow features, first, tra-
jectory data within the time range of traffic flow feature extraction is found, and parts
in the same direction are screened out. Then, the traffic flow features are calculated
using the frame data that belong to the first entry or exit of the road during this period.
For the inter-vehicle kinematic features, first, trajectory data within the time range of
inter-vehicle kinematic feature extraction is found, and the parts in the same direction
and lane are screened out. Then, the inter-vehicle kinematic features are calculated.
Table A2 shows the feature extraction results of risk events in the complete dataset.

Table A1. HIGHD data set trajectory data example (only some features in the original data are
shown). Frame is the current number of frames, id is the number of the track, width is the length
of the vehicle, x is the longitudinal position of the vehicle, laneId is the lane in which the vehicle is
located, and laneId “2” and “3” are adjacent lanes in the same direction; precedingId is the number of
the vehicle in front.

Frame Id Width x LaneId Vx Vy Ax Ay PrecedingId MTTC

1507 76 7.48 334.66 2 −27.82 0.82 −0.38 0.46 74 2.55
1508 76 7.48 333.54 2 −27.84 0.84 −0.37 0.45 74 2.51
1509 76 7.48 332.42 2 −27.85 0.87 −0.36 0.45 74 2.47
1507 74 8.49 314.94 2 −23.65 −0.11 0.2 −0.03 72 21.15
1508 74 8.49 313.98 2 −23.64 −0.11 0.2 −0.02 72 19.88
1509 74 8.49 313.01 2 −23.63 −0.11 0.2 −0.01 72 19.86
1507 77 4.45 309.41 3 −40.88 0.02 1.15 0.08 69 7.03
1508 77 4.45 307.79 3 −40.84 0.02 1.15 0.08 69 7.02
1509 77 4.45 306.16 3 −40.79 0.03 1.14 0.08 69 7.02

Table A2. Examples of feature extraction results for risk events in the complete dataset.

AvgV_U AvgV_D DiffV_UD StdV_U StdV_D CvV_U CvV_D Vo_U Vo_D

35.20 35.35 0.14 1.71 3.96 0.04 0.11 12.00 8.00

DiffVo_DU Diff_AvgV_U Diff_AvgV_D Diff_StdV_U Diff_StdV_D Diff_CvV_U Diff_CvV_D Diff_Vo_U Diff_Vo_D

4.00 8.56 6.35 2.25 0.98 0.10 0.05 5.00 1.00

Max_XV Max_Diff_XVMax_YV Max_XA Max_Diff_XAMax_YA Min_D

37.61 4.55 0.30 0.86 0.17 0.08 29.10



Electronics 2024, 13, 625 19 of 21

References
1. WHO, 2022. Road Traffic Injuries. Available online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries

(accessed on 20 June 2022).
2. WHO, 2021. Global Plan for the Decade of Action for Road Safety 2021–2030. Available online: https://www.who.int/

publications/m/item/global-plan-for-the-decade-of-action-for-road-safety-2021-2030 (accessed on 20 October 2021).
3. Flannagan, C.; LeBlanc, D.; Bogard, S.; Nobukawa, K.; Narayanaswamy, P.; Leslie, A.; Kiefer, R.; Marchione, M.; Beck, C.S.; Lobes,

K. Large-scale field test of forward collision alert and lane departure warning systems. Natl. Acad. Sci. 2016, 01605729 .
4. FHWA, 2020. Highway Safety Improvement Program (HSIP). Available online: https://safety.fhwa.dot.gov/hsip/hsip.cfm

(accessed on 11 February 2023).
5. Yasmin, S.; Eluru, N.; Wang, L.; Abdel-Aty, M. A joint framework for static and real-time crash risk analysis. Anal. Methods Accid.

Res. 2018, 18, 45–56. [CrossRef]
6. Yuan, J.; Abdel-Aty, M. Approach-Level Real-Time Crash Risk Analysis for Signalized Intersections. Accid. Anal. Prev. 2018, 119,

274–289. [CrossRef]
7. Lu, Q.L.; Yang, K.; Antoniou, C. Crash risk analysis for the mixed traffic flow with human-driven and connected and autonomous

vehicles. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN,
USA, 19–22 September 2021; pp. 1233–1238.

8. Dan Chia, W.M.; Loong Keoh, S.; Michala, A.L.; Goh, C. Real-time Recursive Risk Assessment Framework for Autonomous
Vehicle Operations. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland,
25–28 April 2021; pp. 1–7.

9. Xu, C.; Tarko, A.P.; Wang, W.; Liu, P. Predicting crash likelihood and severity on freeways with real-time loop detector data. Accid.
Anal. Prev. 2013, 57, 30–39. [CrossRef]

10. Chen Z.; Qin X. A novel method for imminent crash prediction and prevention. Accid. Anal. Prev. 2019, 125, 320–329. [CrossRef]
11. Liu, M.; Chen, Y. Predicting real-time crash risk for urban expressways in China. Math. Probl. Eng. 2017, 2017, 6263726. [CrossRef]
12. Krajewski, R.; Bock, J.; Kloeker, L.; Eckstein, L. The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German

Highways for Validation of Highly Automated Driving Systems. In Proceedings of the 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018.

13. Wang, J.; Fu, T.; Xue, J.; Li, C.; Song, H.; Xu, W.; Shangguan, Q. Realtime wide-area vehicle trajectory tracking using millimeter-
wave radar sensors and the open TJRD TS dataset. Int. J. Transp. Sci. Technol. 2023, 12, 273–290. [CrossRef]

14. Katrakazas, C.; Quddus, M.; Chen, W.H. A simulation study of predicting real-time conflict-prone traffic conditions. IEEE Trans.
Intell. Transp. Syst. 2018, 19, 3196–3207. [CrossRef]

15. Yang, D.; Wu, Y.; Sun, F.; Chen, J.; Zhai, D.; Fu, C. Freeway accident detection and classification based on the multi-vehicle
trajectory data and deep learning model. Transp. Res. Part C Emerg. Technol. 2021, 130, 103303. [CrossRef]

16. Guo, F.; Klauer, S.G.; McGill, M.T.; Dingus, T.A. 2010. Evaluating the Relationship between Near-Crashes and Crashes: Can Near-
Crashes Serve as a Surrogate Safety Metric for Crashes? Available online: https://api.semanticscholar.org/CorpusID:6401904
(accessed on 11 February 2023).

17. Yu, R.; Han, L.; Zhang, H. Trajectory data based freeway high-risk events prediction and its influencing factors analyses. Accid.
Anal. Prev. 2021, 154, 106085. [CrossRef] [PubMed]

18. Yuan, C.; Li, Y.; Huang, H.; Wang, S.; Sun, Z.; Li, Y. Using traffic flow characteristics to predict real-time conflict risk: A novel
method for trajectory data analysis. Anal. Methods Accid. Res. 2022, 35, 100217. [CrossRef]

19. Dingus, T.A.; Klauer, S.G.; Neale, V.L.; Petersen, A.; Lee, S.E.; Sudweeks, J.; Perez, M.A.; Hankey, J.; Ramsey, D.; Gupta, S.; et al.
The 100-Car Naturalistic Driving Study, Phase II-Results of the 100-Car Field Experiment; Department of Transportation, National
Highway Traffic Safety Administration: Washington, DC, USA, 2006.

20. Allen, B.L.; Shin, B.T.; Cooper, P.J. Analysis of Traffic Conflicts and Collisions. Transp. Res. Rec. 1978, 67–74 .
21. Wang, C.; Xie, Y.; Huang, H.; Liu, P. A review of surrogate safety measures and their applications in connected and automated

vehicles safety modeling. Accid. Anal. Prev. 2021, 157, 106157. [CrossRef] [PubMed]
22. Cooper, D.F.; Ferguson, N. Traffic studies at T-Junctions. 2. A conflict simulation Record. Traffic Eng. Control. 1976, 17, 306–309.
23. Shelby, S.G. Delta-V as a measure of traffic conflict severity. In Proceedings of the 3rd International Conference on Road Safety

and Simulati, Indianapolis, IN, USA, 14–16 September 2011.
24. Hayward, J.C. Near miss determination through use of a scale of danger. In Proceedings of the 51st Annual Meeting of the

Highway Research Board, Washington, DC, USA, 17–21 January 1972.
25. Ozbay, K.; Yang, H.; Bartin, B.; Mudigonda, S. Derivation and validation of new simulation-based surrogate safety measure.

Transp. Res. Rec. 2008, 2083, 105–113. [CrossRef]
26. Yang, H. Simulation-Based Evaluation of Traffic Safety Performance Using Surrogate Safety Measures. Ph.D. Thesis, Rutgers, The

State University of New Jersey, Newark, NJ, USA, 2012.
27. Pirdavani, A.; De Pauw, E.; Brijs, T.; Daniels, S.; Magis, M.; Bellemans, T.; Wets, G. Application of a rule-based approach in

real-time crash risk prediction model development using loop detector data. Traffic Inj. Prev. 2015, 16, 786–791. [CrossRef]
28. Bhatti, F.; Shah, M.A.; Maple, C. A novel internet of things-enabled accident detection and reporting system for smart city

environments. Sensors 2019, 19, 2071. [CrossRef]

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/publications /m/item/global-plan-for-the-decade-of-action-for-road-safety-2021-2030
https://www.who.int/publications /m/item/global-plan-for-the-decade-of-action-for-road-safety-2021-2030
https://safety.fhwa.dot.gov/hsip/hsip.cfm
http://doi.org/10.1016/j.amar.2018.04.001
http://dx.doi.org/10.1016/j.aap.2018.07.031
http://dx.doi.org/10.1016/j.aap.2013.03.035
http://dx.doi.org/10.1016/j.aap.2018.07.011
http://dx.doi.org/10.1155/2017/6263726
http://dx.doi.org/10.1016/j.ijtst.2022.02.006
http://dx.doi.org/10.1109/TITS.2017.2769158
http://dx.doi.org/10.1016/j.trc.2021.103303
https://api.semanticscholar.org/CorpusID:6401904
http://dx.doi.org/10.1016/j.aap.2021.106085
http://www.ncbi.nlm.nih.gov/pubmed/33773199
http://dx.doi.org/10.1016/j.amar.2022.100217
http://dx.doi.org/10.1016/j.aap.2021.106157
http://www.ncbi.nlm.nih.gov/pubmed/33975090
http://dx.doi.org/10.3141/2083-12
http://dx.doi.org/10.1080/15389588.2015.1017572
http://dx.doi.org/10.3390/s19092071


Electronics 2024, 13, 625 20 of 21

29. Khan, A.; Bibi, F.; Dilshad, M.; Ahmed, S.; Ullah, Z.; Ali, H. Accident detection and smart rescue system using Android
smartphone with real-time location tracking. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 341–355. [CrossRef]

30. Wang, L.; Abdel-Aty, M.; Shi, Q.; Park, J. Real-time crash prediction for expressway weaving segments. Transp. Res. Part C Emerg.
Technol. 2015, 61, 1–10. [CrossRef]

31. Yu, R.; Abdel-Aty, M.; Ahmed, M. Bayesian random effect models incorporating real-time weather and traffic data to investigate
mountainous freeway hazardous factors. Accid. Anal. Prev. 2013, 50, 371–376. [CrossRef]

32. Fu, C.; Sayed, T. Random parameters Bayesian hierarchical modeling of traffic conflict extremes for crash estimation. Accid. Anal.
Prev. 2021, 157, 106159. [CrossRef]

33. Hou, Q.; Tarko, A.P.; Meng, X. Analyzing crash frequency in freeway tunnels: A correlated random parameters approach. Accid.
Anal. Prev. 2018, 111, 94–100. [CrossRef]

34. Caliendo, C.; Guida, M.; Postiglione, F.; Russo, I. A Bayesian bivariate hierarchical model with correlated parameters for the
analysis of road crashes in Italian tunnels. Stat. Methods Appl. 2022, 31, 109–131. [CrossRef]

35. Yu, R.; Abdel-Aty, M. Analyzing crash injury severity for a mountainous freeway incorporating real-time traffic and weather data.
Saf. Sci. 2014, 63, 50–56. [CrossRef]

36. Jiang H.; Deng H. Traffic incident detection method based on factor analysis and weighted random forest. IEEE Access 2020, 8,
168394–168404. [CrossRef]

37. Parsa, A.B.; Movahedi, A.; Taghipour, H.; Derrible, S.; Mohammadian, A.K. Toward safer highways, application of XGBoost and
SHAP for real-time accident detection and feature analysis. Accid. Anal. Prev. 2020, 136, 105405. [CrossRef]

38. Zhao, H.; Li, X.; Cheng, H.; Zhang, J.; Wang, Q.; Zhu, H. Deep learning-based prediction of traffic accidents risk for Internet of
vehicles. China Commun. 2022, 19, 214–224. [CrossRef]

39. Pawar K.; Attar V. Deep learning based detection and localization of road accidents from traffic surveillance videos. ICT Express
2022, 8, 379–387. [CrossRef]

40. Karim, M.M.; Li, Y.; Qin, R.; Yin, Z. A dynamic spatial-temporal attention network for early anticipation of traffic accidents. IEEE
Trans. Intell. Transp. Syst. 2022, 23, 9590–9600. [CrossRef]

41. Yang, K.; Yu, R.; Wang, X.; Quddus, M.; Xue, L. How to determine an optimal threshold to classify real-time crash-prone traffic
conditions? Accid. Anal. Prev. 2018, 117, 250–261. [CrossRef] [PubMed]

42. Peng, Y.; Li, C.; Wang, K.; Gao, Z.; Yu, R. Examining imbalanced classification algorithms in predicting real-time traffic crash risk.
Accid. Anal. Prev. 2020, 144, 105610. [CrossRef] [PubMed]

43. Kurtc V. Studyg car-following dynamics on the basis of the HighD dataset. Transp. Res. Rec. 2020, 2674, 813–822. [CrossRef]
44. Schneider, P.; Butz, M.; Heinzemann, C.; Oehlerking, J.; Woehrle, M. Scenario-based threat metric evaluation based on the highd

dataset. In Proceedings of the 2020 IEEE intelligent vehicles symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020;
pp. 213–218.

45. Das, S.; Maurya, A.K. Defining time-to-collision thresholds by the type of lead vehicle in non-lane-based traffic environments.
IEEE Trans. Intell. Transp. Syst. 2019, 21, 4972–4982. [CrossRef]

46. Nadimi, N.; NaserAlavi, S.S.; Asadamraji, M. Calculating dynamic thresholds for critical time to collision as a safety measure.
Proc. Inst. Civ. Eng.-Transp. 2022, 175, 403–412. [CrossRef]

47. Jin, S.; Qu, X.; Wang, D. Assessment of expressway traffic safety using Gaussian mixture model based on time to collision. Int. J.
Comput. Intell. Syst. 2011, 4, 1122–1130.

48. Essa, M.; Sayed, T. Full Bayesian conflict-based models for real time safety evaluation of signalized intersections. Accid. Anal.
Prev. 2019, 129, 367–381. [CrossRef] [PubMed]

49. Yang, D.; Xie, K.; Ozbay, K.; Zhao, Z.; Yang, H. Copula-based joint modeling of crash count and conflict risk measures with
accommodation of mixed count-continuous margins. Anal. Methods Accid. Res. 2021, 31, 100162. [CrossRef]

50. Lee, C.; Saccomanno, F.; Hellinga, B. Analysis of crash precursors on instrumented freeways. Transp. Res. Rec. 2002, 1784, 1–8.
[CrossRef]

51. Yu, R.; Wang, X.; Yang, K.; Abdel-Aty, M. Crash risk analysis for Shanghai urban expressways: A Bayesian semi-parametric
modeling approach. Accid. Anal. Prev. 2016, 95, 495–502. [CrossRef]

52. Xiao, J. SVM and KNN ensemble learning for traffic incident detection. Phys. A Stat. Mech. Its Appl. 2019, 517, 29–35. [CrossRef]
53. Qu, Y.; Lin, Z.; Li, H.; Zhang, X. Feature recognition of urban road traffic accidents based on GA-XGBoost in the context of big

data. IEEE Access 2019, 7, 170106–170115. [CrossRef]
54. Zhu, W.; Wu, J.; Fu, T.; Wang, J.; Zhang, J.; Shangguan, Q. Dynamic prediction of traffic incident duration on urban expressways:

A deep learning approach based on LSTM and MLP. J. Intell. Connect. Veh. 2021, 4, 80–91. [CrossRef]
55. Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310.

[CrossRef]
56. Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for

performance evaluation. In Proceedings of the Australasian joint conference on artificial intelligence, Hobart, Australia, 4–8
December 2006; pp. 1015–1021.

57. Han, H.; Guo, X.; Yu, H. Variable selection using mean decrease accuracy and mean decrease gini based on random forest. In
Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (Icsess), Beijing, China,
26–28 August 2016; pp. 219–224.

http://dx.doi.org/10.14569/IJACSA.2018.090648
http://dx.doi.org/10.1016/j.trc.2015.10.008
http://dx.doi.org/10.1016/j.aap.2012.05.011
http://dx.doi.org/10.1016/j.aap.2021.106159
http://dx.doi.org/10.1016/j.aap.2017.11.018
http://dx.doi.org/10.1007/s10260-021-00567-5
http://dx.doi.org/10.1016/j.ssci.2013.10.012
http://dx.doi.org/10.1109/ACCESS.2020.3023961
http://dx.doi.org/10.1016/j.aap.2019.105405
http://dx.doi.org/10.23919/JCC.2022.02.017
http://dx.doi.org/10.1016/j.icte.2021.11.004
http://dx.doi.org/10.1109/TITS.2022.3155613
http://dx.doi.org/10.1016/j.aap.2018.04.022
http://www.ncbi.nlm.nih.gov/pubmed/29727862
http://dx.doi.org/10.1016/j.aap.2020.105610
http://www.ncbi.nlm.nih.gov/pubmed/32559659
http://dx.doi.org/10.1177/0361198120925063
http://dx.doi.org/10.1109/TITS.2019.2946001
http://dx.doi.org/10.1680/jtran.19.00066
http://dx.doi.org/10.1016/j.aap.2018.09.017
http://www.ncbi.nlm.nih.gov/pubmed/30293598
http://dx.doi.org/10.1016/j.amar.2021.100162
http://dx.doi.org/10.3141/1784-01
http://dx.doi.org/10.1016/j.aap.2015.11.029
http://dx.doi.org/10.1016/j.physa.2018.10.060
http://dx.doi.org/10.1109/ACCESS.2019.2952655
http://dx.doi.org/10.1108/JICV-03-2021-0004
http://dx.doi.org/10.1109/TKDE.2005.50


Electronics 2024, 13, 625 21 of 21

58. Parsa, A.B.; Taghipour, H.; Derrible, S.; Mohammadian, A.K. Real-time accident detection: Coping with imbalanced data. Accid.
Anal. Prev. 2019, 129, 202–210. [CrossRef]

59. Abou Elassad, Z.E.; Mousannif, H.; Al Moatassime, H. A proactive decision support system for predicting traffic crash events: A
critical analysis of imbalanced class distribution. Knowl.-Based Syst. 2020, 205, 106314. [CrossRef]

60. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

61. Elamrani Abou Elassad, Z.; Mousannif, H.; Al Moatassime, H. Class-imbalanced crash prediction based on real-time traffic and
weather data: A driving simulator study. Traffic Inj. Prev. 2020, 21, 201–208. [CrossRef] [PubMed]

62. Mehrannia, P.; Bagi, S.S.G.; Moshiri, B.; Al-Basir, O.A. Deep representation of imbalanced spatio-temporal traffic flow data for
traffic accident detection. IET Intell. Transp. Syst. 2023, 17, 606–619. [CrossRef]

63. Man, C.K.; Quddus, M.; Theofilatos, A. Transfer learning for spatio-temporal transferability of real-time crash prediction models.
Accid. Anal. Prev. 2022, 165, 106511. [CrossRef]

64. Zhang, Y.; Wang, H.; Zhang, D.; Wang, D. Deeprisk: A deep transfer learning approach to migratable traffic risk estimation
in intelligent transportation using social sensing. In Proceedings of the 2019 15th International Conference on Distributed
Computing in Sensor Systems (DCOSS), Santorini, Greece, 29–31 May 2019; pp. 123–130.

65. Gürbüz, H.; Buyruk, S. Improvement of safe stopping distance and accident risk coefficient based on active driver sight field on
real road conditions. IET Intell. Transp. Syst. 2019, 13, 1843–1850. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.aap.2019.05.014
http://dx.doi.org/10.1016/j.knosys.2020.106314
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1080/15389588.2020.1723794
http://www.ncbi.nlm.nih.gov/pubmed/32125890
http://dx.doi.org/10.1049/itr2.12287
http://dx.doi.org/10.1016/j.aap.2021.106511
http://dx.doi.org/10.1049/iet-its.2019.0322

	Introduction
	Background
	Identification of Risk Events
	Real-Time Traffic Risk Identification and Prediction Methods
	Data Source
	Feature Selection
	Classification Model


	Data Preparation
	Trajectory Dataset
	Identification of Risk and Non-Risk Events
	MTTC-Based Risk Event Identification
	Risk Event and Non-Risk Event Extraction

	Traffic Flow Features and Inter-Vehicle Kinematic Feature Extraction
	Temporal Range
	Feature Variable Extraction


	Methodology
	Results and Discussion
	Variable Importance
	Risk Identification Model
	Risk Prediction Model

	Conclusions
	AppendixA
	References

