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Abstract 
This paper is concerned with the following fourth-order three-point boun-

dary value problem 
( ) ( ) ( )( ) [ ]
( ) ( ) ( ) ( )

4 , , 0,1 ,

0 0 1 0,

u t f t u t t

u u u uη

 = ∈

′ ′′ ′′′= = = =

, where  

3 32 2 4 ,1
3

η
 + −

∈  
 

, we discuss the existence of positive solutions to the 

above problem by applying to the fixed point theory in cones and iterative 
technique.  
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1. Introduction 

Boundary value problems (BVPs for short) of fourth-order ordinary differential 
equations have received much attention due to their striking applications in en-
gineering, physics, material mechanics, fluid mechanics and so on. Many au-
thors have studied the existence of single or multiple positive solutions to some 
fourth-order BVPs by using Banach contraction theorem, Guo-Krasnosel’skii fixed 
point theorem, Leray-Schauder nonlinear alterative, fixed point index theory in 
cones, monotone iterative technique, the method or upper and lower solutions, 
degree theory, critical point theorems in conical shells and so forth see [1] [2] [3] 
[4] [5]. 
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However, it is necessary to point out that, in most of the existing literature, 
the Green’s function involved is nonnegative, which is an important condition in 
the study of positive solutions of BVPs. 

Recently, there have been some works on positive solutions for second-order 
or third-order BVPs when the corresponding Green’s functions are sign-changing. 
For example, Gao, Zhang and Ma [6] studied the following second-order peri-
odic BVP with sign-changing Green’s function  

( ) ( ) ( ) [ ]

( ) ( ) ( ) ( )

21 , 0,2 ,
2

0 2 , 0 2 ,

u t g t f u t

u u u u

ε λ π
  ′′ + + = ∈ 

π


 

 ′ = π′=

 

where 10
2

ε< < , [ ]: 0,2g Rπ →  is continuous, [ ]: 0,f R+∞ →  is continuous  

and 0λ >  is a parameter. The main tool used was the Leray-Schauder fixed 
point theorem. In 2013 [7], by applying iterative technique, Sun and Zhao dis-
cussed the existence of monotone positive for the following third-order three-point 
BVP with sign-changing Green’s function  

( ) ( )( ) [ ]
( ) ( ) ( )

, , 0,1 ,

0 1 0.

u t f t u t t

u u uη

 ′′′ = ∈

′ ′′= = =

 

Motivated and inspired by the above-mentioned works, in this paper, we are 
concerned with the following fourth-order three-point BVP with sign-changing 
Green’s function  

( ) ( ) ( )( ) [ ]
( ) ( ) ( ) ( )

4 , , 0,1 ,

0 0 1 0.

u t f t u t t

u u u uη

 = ∈

′ ′′ ′′′= = = =

               (1.1) 

We will study as follows: calculating the corresponding Green function; stud-
ying the properties of Green function; constructing the proper cone; defining the 
proper operator; by applying iterative technique, we obtain the existence of the 
positive solution for the above problem. 

Theorem 1.1. Let E be a Banach space and let K be a cone in E. Assume that 

1Ω  and 2Ω  are bounded open subsets of E such that 10∈Ω , 1 2Ω ⊂Ω , and 
let ( )2 1: \T K K∩ Ω Ω →  be a completely continuous operator such that ei-
ther; 

1) Tu u≤  for 1u K∈ ∩∂Ω  and Tu u≥  for 2u K∈ ∩∂Ω  or 
2) Tu u≥  for 1u K∈ ∩∂Ω  and Tu u≤  for 2u K∈ ∩∂Ω . 
Then T has a fixed point in ( )2 1\K ∩ Ω Ω .  

2. Preliminaries 

In this paper, we always assume that [ ] [ ) [ ): 0,1 0, 0,f × +∞ → +∞  is continuous 
and satisfies the following conditions; 

(H1) for each [ )0,x∈ +∞ , the mapping ( ),t f t x  is decreasing; 
(H2) for each [ ]0,1t∈ , the mapping ( ),x f t x  is increasing. 
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Lemma 2.1. [8] Let ( )0,1η∈ . Then for any given y X∈ , the BVP  
( ) ( ) ( ) [ ]
( ) ( ) ( ) ( )

4 , 0,1 ,

0 0 1 0

u t y t t

u u u uη

 = ∈

′ ′′ ′′′= = = =

 

has a unique solution  

( ) ( ) ( ) [ ]1

0
, d , 0,1 ,u t G t s y s s t= ∈∫  

where  

( )

( )( ) { }

( ) ( )
( ) { }

2 3 3

3 3

3

3 1 1 , min , ,
3 3 , ,1,

1 , ,6

1 , , .

t t s s s t
s s s t t s

G t s
t s s s t

s s t

η
η

η

η

 − + − ≤
 − + − ≤ ≤

=  − − − < ≤
− − >

         (2.1) 

Lemma 2.2. Green’s function defined by (2.1) ( ),G t s  has the following 
properties; 

1) ( ), 0G t s ≥  for ( ) [ ] [ ], 0,1 0,t s η∈ ×  and ( ), 0G t s ≤  for  

( ) [ ] ( ], 0,1 ,1t s η∈ × . 

2) ( ) [ ]{ }
3 23 3 1: max , : , 0,1

6 6
M G t s t s η η η− +

= ∈ = < .  

Proof. Since (1) is obvious, we only prove (2). If [ ]0,s η∈ , then we have  

( ) [ ]{ } ( )
3 2 3 23 3 3 3max , : 0,1 0, ,

6 6
s s sG t s t G s η η η− + − +

∈ = = ≤  

( ) [ ]{ } ( )min , : 0,1 1, 0;G t s t G s∈ = =  

If ( ],1s η∈ ,  

( ) [ ]{ } ( )max , : 0,1 1, 0,G t s t G s∈ = =  

( ) [ ]{ } ( ) ( ) ( )3 31 1
min , : 0,1 , ,

6 6
s

G t s t G s s
η− −

∈ = = − −  

which together with the 
3 32 2 4 ,1

3
η

 + −
∈  
 

 implies that  

( ) ( ) [ ]{ } ( )33 2 2 313 3 3 3 1max , : , 0,1 max , .
6 6 6 6

G t s t s
ηη η η η η η −− + − + ∈ = = < 

  
 

 
Let [ ]0,1X C=  be equipped with the norm 

[ ]
( )

0,1
max
t

u u t
∈

=  and  

( ) [ ]{ }: is nonnegative and decreasing on 0,1 .P u X u t= ∈  

Then it is easy to check that X is a Banach space and P is a cone in X. 
Introduce an order relation   in X by defining u v  if and only if  

v u P− ∈ , we define an operator T on P by  

( )( ) ( ) ( )( ) [ ]1

0
= , , d 0, , 0,1 .Tu t G t s f s u s s u P t≥ ∈ ∈∫  

Of course, if u is a fixed point of T in P, then u is a decreasing nongetative so-
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lution of BVP (1.1). Besides, because of 
3 32 2 4 1

3 3
η + −
> >  and literature  

[8], ( )( ) 0Tu t ≥  for u P∈  and ( ) ( ) 0Tu t′ ≤ , so :T P P→ . More, it follows 
from known textbook results, for example see proposition [4], that :T P P→  
is completely continuous. 

In the following sections and f satisfies the following conditions; 
(H3) there exists positive constant r such that ( )0, 6f r r≤ ; 

(H4) there exists two positive constant ,σ µ  and 
( )

3

32 1
σησµ

η
≤

−
 such that  

( ) ( ) ( ) ( )2 1 2 1 2 1 1 2, , ,0 1,0 .u u f t u f t u u u t u u rσ µ− ≤ − ≤ − ≤ ≤ ≤ ≤ ≤  

Note; 0σ > , ( )0,1η∈ , 
( )

3

32 1
ση σ

η
>

−
 if and only if 

3 32 2 4 ,1
3

η
 + −

∈  
 

. 

Lemma 2.3. Let { }:rP u P u r= ∈ ≤ . Then : r rT P P→ .  
Proof. Let ru P∈ , then  

( ) [ ]0 , 0,1 ,u s r s≤ ≤ ∈  

which together with the conditions (H1) - (H3) and (2) of Lemma 2.2, we get  

( )( ) ( ) ( )( )
( ) ( )( )
( ) ( )

[ ]

1

0
1

0
1

0

, , d

, , d

, 0, d

6
, 0,1 ,

Tu t G t s f s u s s

G t s f s u s s

G t s f r s

Mr
r t

=

≤

≤

≤

≤ ∈

∫

∫

∫  

this indicates Tu r≤ , in view of Tu P∈ . Hence : r rT P P→ .  

3. Main Results 

Theorem 3.1. If we construct a iterative sequence 1n nv Tv+ = , 0,1,2,n =  , 
where ( )0 0v t ≡ , for [ ]0,1t∈ , then { } 1n n

v ∞

=
 converges to *v  in X and *v  is a 

decreasing positive solution of BVP (1.1).  
Proof. In view of 0 rv P∈  and : r rT P P→  imply n rv P∈ , 1,2,n =  , there-

fore { } 1n n
v ∞

=
 is a bounded set. Because of T is completely continuous operator, 

set { } 1n n
v ∞

=
 is relatively compact. 

By introduce prove  

0 1 2 1 1 .n n nv v v v v v− +         

First, it is obvious that 1 0 1v v v P− = ∈ , which shows that 0 1v v . Next, we 
assume that 1k kv v−  . Then it follows from (H2), we have  

( ) ( )

( ) ( ) ( ) ( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

1

1

10

1

,
, , d

,
, , d
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k kt

v t v t

Tv t Tv t
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f s v s f s v s s
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G t s

f s v s f s v s s
t

η

+

−

−

−

′ ′−

′ ′= −

∂
 = − ∂

∂
 + − ∂

∫

∫
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( ) ( )( ) ( )( )
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t
k k
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s st f s v s f s v s s

t f s v s f s v s s
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η

η
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−

−

−

∂
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 − − 

≤ ∈

∫

∫

∫

 

It follows from (H2) and (H4) that  

( ) ( )

( ) ( ) ( ) ( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )
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1

1
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Tv t Tv t

G t s
f s v s f s v s s
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t

η

η

+

−

−

−

−

′ ′−

′ ′= −

∂
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( ) ( )( ) ( )( ){
( ) ( )( ) ( )( ) }

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

2
10

2
1

2 2
1 10

1 2 2
0

1 2 , , d
2

, , d

1 2 d d
2

2 d d
2

k k

t
k k

t
k k k k

tk k

s st f s v s f s v s s

t s f s v s f s v s s

s st v s v s s t s v s v s s

v v
s st s t s s

η

η

η

η

η

η

σ µ

η η
σ µ

−

−

− −

−

 = − − 

 + − − 

   ≤ − − + − −   

−  ≤ − + −  

∫

∫

∫ ∫

∫ ∫

 

( ) ( ) ( ) ( )
( ) ( ) ( )

[ ]

31 2 3

31 3

3
6

2 1
6

0, ,1 .

k k

k k

v v
t t

v v

t

η η
µ η σ η η

η η
µ η ση

η

−

−

−  = − + − + 

−  ≤ − − 

≤ ∈

 

hence, 

( ) ( ) [ ]1 0, 0,1 ,k kv t v t t−′ ′− ∈  

that is 

( ) ( ) ( ) ( )
( ) ( )( ) ( )( )
[ ]

1 1

1
10

1 1

1, , , d

0, 0,1 ,

k k k k

k k

v t v t v v

G s f s v s f s v s s

t

+ +

−

− ≥ −

 = − 
= ∈

∫  

which indicates that 1k kv v + . Thus, we have shown that 1, 1,2,n nv v n+ =  . 
Since { } 1n n

v ∞

=
 is relatively compact and monotone, there exist a *

rv P∈ . Such 
that ( )* 0nv v n− → →∞  which together with the continuity of T and the fact 
that 1n nv Tv+ = , 0,1,2,n =   implies that * *v Tv= . This indicates that *v  is an 
increasing nonnegative solution of (1.1). Moreover in view of ( ),0 0f t ≡/ ,  

[ ]0,1t∈ , we know that zero function is not a solution of (1.1), which shows that 
*v  is a positive solution of (1.1).  
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