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Abstract: Objectives: Short-chain fatty acids (SCFAs), the main metabolites released from the gut
microbiota, are altered during hypertension and obesity. SCFAs play a beneficial role in the car-
diovascular system. However, the effect of SCFAs on cerebrovascular endothelial cells is yet to be
uncovered. In this study, we use brain endothelial cells to investigate the in vitro effect of SCFAs
on heme oxygenase 2 (HO-2) and mitochondrial function after angiotensin II (Ang-II) treatment.
Methods: Brain human microvascular endothelial cells were treated with Ang-II (500 nM for 24 h)
in the presence and absence of an SCFAs cocktail (1 µM; acetate, propionate, and butyrate) and/or
HO-2 inhibitor (SnPP 5 µM). At the end of the treatment, HO-2, endothelial markers (p-eNOS
and NO production), inflammatory markers (TNFα, NFκB-p50, and -p65), calcium homeostasis,
mitochondrial membrane potential, mitochondrial ROS and H2O2, and mitochondrial respiration
were determined in all groups of treated cells. Key Results: Our data showed that SCFAs rescued
HO-2 after Ang-II treatment. Additionally, SCFAs rescued Ang-II-induced eNOS reduction and
mitochondrial membrane potential impairment and mitochondrial respiration damage. On the other
hand, SCFAs reduced Ang-II-induced inflammation, calcium dysregulation, mitochondrial ROS, and
H2O2. All of the beneficial effects of SCFAs on endothelial cells and mitochondrial function occurred
through HO-2. Conclusions: SCFAs treatment restored endothelial cells and mitochondrial function
following Ang-II-induced oxidative stress. SCFAs exert these beneficial effects by acting on HO-2.
Our results are opening the door for more studies to investigate the effect the of SCFAs/HO-2 axis on
hypertension and obesity-induced cerebrovascular diseases.

Keywords: mitochondrial dysfunction; heme oxygenase 2; SCFAs; brain endothelial cells

1. Introduction

Mitochondria play an important role in cellular respiration, cell death, the regulation
of innate immunity, and calcium homeostasis, and are crucial in regulating brain microvas-
cular function and cerebral blood flow [1,2]. Interestingly, the mitochondria-mediated
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vascular tone in cerebral arteries is disrupted during hypertension [3] and obesity [4]. Thus,
the direct or indirect regulation of mitochondria function during hypertension might prove
to be an effective treatment in the prevention of cerebrovascular diseases.

Short-chain fatty acids (SCFAs) are the main metabolites produced by the fermentation
of dietary fibers by the colonic microbiota. SCFAs play a key role in regulating mitochon-
drial function and levels are known to be reduced during hypertension [5]. They also play
an important role in regulating obesity [6]. The effects of SCFAs are not restricted to the
intestine, as they are small molecules that can diffuse through gut enterocytes, enter blood
circulation, and participate in peripheral tissue metabolism [7]. In the systemic circulation,
SCFAs affect energy homeostasis and metabolism by regulating mitochondrial functions
and dynamics in brown adipocytes, liver, and skeletal muscle via G protein-coupled recep-
tor (GPR) 41, GPR 43, and the free fatty acid receptor (FFAR) [8]. While SCFAs are known
to cross the blood–brain barrier and affect the central nervous system [9], little is known
about their effect on cerebral blood flow (CBF) and brain microvascular function. Brain
microvascular endothelial cells (BMEC) are known to express the SCFAs receptors GPR
41, GPR 43, and FFAR, indicating that SCFAs might be involved in BMEC activity and
mitochondrial function [10].

Heme oxygenase (HO) enzymes, the rate-limiting enzymes in the breakdown of heme,
are critical for maintaining cellular homeostasis [11]. Two isoforms have been reported
to date: HO-1 and HO-2. The HO-1 isoform has been extensively studied in endothelial
cells and other tissues mainly because of its ability to respond to cellular stresses such as
nitric oxide donors, oxidative damage, hypoxia, and others [12]. Numerous studies have
reported that HO-1 translocates to the mitochondria and regulates mitochondrial function.
Indeed, HO-1 acts through calcium channels (such as the Mitochondrial Calcium Uniporter
channel) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha
to regulate mitochondrial biogenesis, oxygen consumption, adenosine triphosphate (ATP)
production, and electron transport chain activity to produce cytoprotective effects [13,14].
By contrast, due to its constitutive nature, the focus on HO-2 has been limited. Never-
theless, its abundance in endothelial cells, particularly in the brain, has pointed toward
the potential relevance of HO-2 involvement in brain vascular function [15]. Thus, the
relationship between HO-1 and mitochondrial function is well-documented; however, less
is known about the involvement of HO-2 in mitochondrial function, especially in brain
endothelial cells. Recently, a study showed that similar to HO-1, HO-2 can translocate
to the mitochondria [16]. However, the study did not offer a molecular mechanism for
this translocation.

Our preliminary data showed that during oxidative stress conditions, SCFAs are not
only able to rescue HO-2 activity but also restore mitochondrial function through HO-2
signaling pathways. The outcome of this study will open the door for the identification
of novel targets for the prevention and/or treatment of cerebrovascular events during
hypertension and obesity.

2. Materials and Methods
2.1. Reagents

The SCFAs cocktail components of sodium acetate (#S2889), sodium butyrate (#303410),
and sodium propionate (#P5436) were obtained from Sigma-Aldrich. HO-2 inhibitor, tin
protoporphyrin IX (chloride), and (#16375) were purchased from Cayman Chemical. An-
giotensin II (Ang-II, #A2900) was obtained from Sigma. Tetramethylrhodamine methyl
ester (TMRM, #T668) was purchased from Molecular Probes. MitoSOX Red (#D1168), Mito-
Tracker Green FM (#M7514), and 4,5-Diaminofluorescein diacetate (DAF2-DA; #D23844)
were obtained from ThermoFisher, Waltham, MA, USA; Nomega-Nitro-L-arginine (L-NNA,
#ab141312) and sodium nitroprusside (SNP, #S-0501) were purchased from Abcam and
Sigma, respectively. MitoTEMPO (#SML0737) and Rotenone (#R8875) were purchased
from Sigma-Aldrich. Human brain microvascular endothelial cells (HBMECs, #1000) and
Endothelial Cell Medium (ECM) supplemented with growth factors (#1001) were obtained



Antioxidants 2023, 12, 160 3 of 14

from ScienCell. The following antibodies were obtained from Cell Signaling Technology
and used for immunoblotting: anti-phosphorylated (p-) endothelial nitric oxide synthase
(eNOS) (#9571), anti-total (t-) eNOS (#9572), and anti-GAPDH (#2178). The anti-HO-2
antibody (#ADI-OSA-200-D) was purchased from Enzo.

2.2. Endothelial Cell Culture

Primary HBMECs were grown in endothelial cell medium (ECM) at 37 ◦C and 5%
CO2 and used at passages 3–5. At confluency, cells were treated with angiotensin (Ang)
-II (500 nM for 24 h) in the presence or absence of a cocktail of SCFAs (sodium acetate,
sodium butyrate, and sodium propionate) at a dose of 1 µM for 24 h. For HO-2 inhibition,
HBMECs were treated with 5 µM tin protoporphyrin IX in dimethylformamide (DMF) for
24 h. Control cells were treated with DMF.

2.3. Heme Oxygenase Activity Assay

Heme oxygenase activity was analyzed using a commercially available bilirubin assay
according to the manufacturer’s instructions (MyBioSource). Briefly, following treatments,
HBMECs were harvested, homogenized in cold PBS, and centrifuged at 10,000× g for
10 min at 4 ºC. After centrifugation, the supernatant containing the whole-cell proteins was
quantified using the BCA assay (ThermoFisher) and processed for the bilirubin assay kit.
The relative activity was quantified using a generated standard curve.

2.4. Protein Expression

Western blot analysis for HO-2, t- and p-eNOS was performed in cell lysates as previ-
ously described [17,18]. Briefly, the cells were harvested, lysed in RIPA buffer supplemented
with proteinase and phosphatase inhibitors, and then sonicated using a sonicator. After
centrifugation for 10 min at 10,000 rpm, the total protein was quantified using the BCA
assay and 20 ug of protein per sample were loaded into SDS-PAGE gels. The proteins were
then transferred to PVDF membranes, incubated in 5% milk, and incubated with primary
antibodies for HO-2 (1:1000 dilution), total- and phosphorylated eNOS (1:1000 dilution).
GAPDH (1:5000) was used as a loading control.

2.5. Measurement of Ca2+ Uptake by Mitochondria

Ratiometric measurements of [Ca2+] in mitochondria were performed in HBMECs using
mitochondrial Ca2+ adenovirus (mt)Pericam (Ad-mtPericam), as previously described [19].
Pericam fluorescence was detected using a customized Nikon Eclipse Ti2 inverted light
microscope. Pericam was excited at 405 nm and 480 nm, and its emission was recorded
at 535 nm. Real-time Pericam fluorescence ratios were recorded before and after platelet-
derived growth factor (PDGF) was added (20 ng/mL) and were quantified using ImageJ.
The summary data represent the average difference in basal mitochondrial [Ca2+].

2.6. Measurement of Cytosolic Ca2+

Calcium release into the cytosol was measured, as previously described [20]. Briefly,
pretreated primary HBMECs were loaded with 20 µM Fluo-4 for 15 min. Cells were then
washed with isotonic buffer and the assay was performed in a buffer solution. Fluo-4
fluorescence was determined using a fluorescence microscope.

2.7. Measurement of Mitochondrial ROS Production

Mitochondrial ROS production was measured in live cultured HBMECs using the
dihydroethidium derivative MitoSOX Red. Following treatments, cultured cells were
rinsed in warm HBSS buffer and then loaded with MitoSOX Red (5 µM) and MitoTracker
Green FM (1 µM) [21] diluted in HBSS buffer for 20 min at 37 ◦C. The cells were then rinsed
in warm HBSS buffer, imaged using a fluorescence microscope, and analyzed using NIH
ImageJ. The data are presented as the ratio of integrated density MitoSOX Red signal to
MitoTracker Green FM signal. Cells were treated with Rotenone (1 µM) for 1 h and were
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used as a positive control. Other cultured HBMECs were pretreated with a mitochondrial
ROS scavenger (mitoTEMPO, 10 µM) in the absence or presence of Ang-II. The cells were
then washed and loaded with MitoTracker and MitoSOX following the same protocol
as above.

2.8. Measurement of Cellular Hydrogen Peroxide

To assess the H2O2 release in response to Ang-II in the presence or absence of SCFAs,
extracellular H2O2 levels were measured using the fluorescent probe Amplex Red (Molecu-
lar Probes, ThermoFisher) [22] following the manufacturer’s instructions. Briefly, following
treatment, cultured HBMECs were exposed to Amplex Red (2 mmol/L) diluted in the
appropriate buffer. The supernatant was then collected and a volume of 100 µl was loaded
into a 96-well plate and fluorescence was measured relative to standard controls generated
by serial dilutions of H2O2 on a spectrophotometer using excitation and emission levels of
490 nm and 585 nm, respectively. To correct for background fluorescence, measurements
were compared to a no-H2O2 control. All fluorescence values were normalized to the total
protein from each dish using a BCA protein assay.

2.9. Quantification of Nitric Oxide

Nitric Oxide (NO) levels were measured using the fluorescent probe DAF2-DA
(Sigma) [23]. Following treatments, cultured HBMECs were washed with warm DPBS and
then incubated with a fluorescent nitric oxide probe and DAF2-DA (5 µM in ECM medium)
for 60 min. The HBMECs were then rinsed and imaged under a fluorescence microscope. To
induce NO release, HBMECs were exposed to PDGF (20 ng/mL) + glutamine (1 µM) [24].
Continuous imaging was performed for 10 min following stimulation. For the negative
control measurements, the cells were subjected to LNNA for 30 min, then washed, and then
assayed for NO production following the same protocol as above. For the positive control
measurements, the DAF2-DA-loaded cells were stimulated with sodium nitroprusside
(SNP). The amount of NO produced is expressed as fluorescence intensity normalized to
that at baseline.

2.10. Quantitative Real Time PCR

Total RNA from cultured cells was extracted using the RNeasy kit (Qiagen) follow-
ing the manufacturer’s instructions. Quantitative real-time PCR was performed using
a ViiA 7 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) with the
SuperScript III Platinum SYBR Green One-Step qRT-PCR Kit (Invitrogen). The following
primers purchased from Integrated DNA Technologies were used: vascular cell adhe-
sion molecule 1 (VCAM1) (NM_001078.4) forward 5′- TGA CGA TGA CGT GTG CCA
GT-3′, reverse 5′- GCT GTC GGT TCC CAT TGT CT-3′; nuclear factor-κB (NFκB) sub-
unit p50 (NM_001382626.1) forward 5′- TGGACAGCAAATCCGCCCTG-3′, reverse 5′-
TGTTGTAATGAGTCGTCATCCT-3′; NFκB subunit p65 (NM_001382626.1) forward 5′-
AGGCAAGGAATAATGCTGTCCTG -3′, reverse 5′- ATCATTCTCTAGTGTCTGGTTGG -3′;
ribosomal RNA 18S (NR_003278.3) forward 5′- CCCTATCAACTTTCGATGGTAGTCG -3′,
reverse 5′-CCAATGGATCCTCGTTAAAGGATTT -3′, tumor necrosis factor-alpha (TNFα)
(NM_000594.4) forward 5′-CACTAAGAATTCAAACTGGGGC-3′, TNFα reverse 5′- GAG-
GAAGGCCTAAGGTCCAC -3′. Ribosomal RNA 18S was used as an internal gene control.

2.11. Bioenergetics by Seahorse

For experiments in the Seahorse XF analyzer (Seahorse Bioscience), HBMECs were
plated into 96-well Seahorse V3 PET plates at a density of 50,000 per well 24 h before
the treatment. HBMECs were then washed and equilibrated in Seahorse assay medium
containing 25 mM glucose, 1 mM pyruvate, and 2 mM L-Glutamine, and subjected to
different treatments of Ang-II, SCFAs, and/or HO-2 inhibitor, as indicated above. At 18 h
post-treatment, a mitochondrial stress test was performed in a Seahorse Bioscience XF96
analyzer with sequential additions of oligomycin A, FCCP, and antimycin/rotenone at 1,
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1.5, and 2 µM each, respectively. The ATP-dependent oxygen consumption rate (OCR) was
calculated by subtracting the OCR after the addition of oligomycin A from the baseline OCR
and the basal extracellular acidification rate (ECAR) was measured prior to the addition
of glucose.

2.12. Statistical Analysis

Data are expressed as mean ± SEM and were analyzed using GraphPad Prism 9.0
software. All data sets were analyzed for normality and equal variance. Kruskal–Wallis test
and Dunn’s post hoc test were used for data sets where normal distribution could not be
assumed. Two-tailed unpaired Student’s t-test and one-way ANOVA, followed by Tukey’s
multiple comparison tests, were used for data sets with normal distribution. Two-way
ANOVA followed by Tukey’s multiple comparison tests were used for grouped data sets.
A p-value <0.05 was considered significant.

3. Results
3.1. SCFAs Reverse Ang-II-Induced Downregulation of HO-2

To examine whether SCFAs regulate HO-2 during Ang-II treatments, we analyzed
the HO-2 expression level and activity in HBMECs subjected to Ang-II in the presence
or absence of SCFAs. Decreased levels of HO-2 expression were observed in HBMECs
following Ang-II treatment compared to the vehicle (Figure 1A,B). Interestingly, in the
presence of SCFAs, HBMECs exhibit fully restored HO-2 expression when compared to
vehicle-treated cells (Figure 1A,B). Next, we tested the activity of HO-2 by measuring the
bilirubin levels. Ang-II significantly decreased bilirubin levels which were recovered with
SCFAs co-treatment (Figure 1C,D). These results suggest that SCFAs exert a regulatory
effect on HO-2 expression and activity.
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Figure 1. SCFAs rescue HO-2 after Ang-II treatment. Immunoblots (A), quantifications (B), and
bilirubin assay (C,D) showing that the Ang-II-induced reduction in HO-2 protein expression and
activity in brain microvascular endothelial cells was rescued by the SCFAs/HO-2 axis. * p < 0.05;
** p < 0.01; *** p < 0.001. N = 3–4. SCFAs: short-chain fatty acids; Ang II: angiotensin II; and HO-2 I:
heme oxygenase 2 inhibitor.

3.2. SCFAs Improve Ang-II-Induced Endothelial Dysfunction by Regulating HO-2

To assess the effect of SCFAs on the Ang-II-induced endothelial dysfunction in vitro,
HBMECs were exposed to Ang-II in the presence or absence of SCFAs, and the endothelial
function markers were evaluated. A significant reduction in phosphorylated eNOS levels
(Figure 2A,B) and NO production (Figure 2C) and an increased level of VCAM1 (Figure 2D)
were observed in Ang-II-treated cells compared to the vehicle. These effects were fully
reversed in the presence of SCFAs (Figure 2). Interestingly, pharmacological inhibition
of HO-2 using an HO-2 inhibitor (HO-2 I, SnPP 5 µM) annulled the beneficial effects of
SCFAs in vitro (Figure 2). These data indicate that the SCFAs reverse the Ang-II-induced
endothelial dysfunction via an HO-2-mediated pathway.
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Figure 2. SCFAs rescue Ang-II-induced eNOS reduction through HO-2. Immunoblots (A) and
quantification (B), NO production assay (C), and qPCR for VCAM1 (D) showing that the Ang-II-
induced reductions in eNOS expression and NO production and increased VCAM1 expression in
brain microvascular endothelial cells were reversed by the SCFAs/HO-2 axis. * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001. N = 3–7. SCFAs: short-chain fatty acids; Ang II: angiotensin II; HO-2 I:
heme oxygenase 2 inhibitor; eNOS: nitric oxide synthase; NO: nitric oxide; and VCAM1: vascular cell
adhesion molecule.

3.3. SCFAs Reduce Ang-II-Induced Endothelial Inflammation by Regulating HO-2

Inflammation plays a detrimental role in regulating ECs and blood flow [25,26]. Along
the same lines, the present study showed that HBMECs subjected to Ang-II displayed
higher expression levels of TNFα, NFκB-p50, and NFκB-p65 (Figure 3) compared to vehicle-
treated HBMECs. Similarly, co-treatment with SCFAs prevented the increase in these
inflammatory markers, an effect that is abolished by the presence of the HO-2 inhibitor,
indicating an intermediatory role of HO-2 in the SCFAs-mediated effect (Figure 3).
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Figure 3. SCFAs reduce Ang-II-induced inflammation by mediating HO-2. qPCR for TNFα (A),
p50 (B), and p65 (C) showing that the Ang-II-induced increases in these inflammatory markers in
brain microvascular endothelial cells were reversed by the SCFAs/HO-2 axis. **** p < 0.0001. N = 7–8.
SCFAs: short-chain fatty acids; Ang II: angiotensin II; HO-2 I: heme oxygenase 2 inhibitor; TNFα:
tumor necrosis factor-alpha; and p50 and p65: NF-κB subunits.

3.4. The SCFAs/HO-2 Axis Regulates Calcium Homeostasis in Mitochondria from Cerebral ECs

HO-2 activity is closely regulated by cellular calcium during neuronal activity [27].
To test whether this relationship exists between the SCFAs/HO-2 axis and mitochondrial
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calcium homeostasis, we evaluated the cytosolic and mitochondrial calcium levels following
exposure to Ang-II and in the presence or absence of SCFAs. At one-day post-Ang-II
treatment, HBMECs exhibited increased cytosolic and mitochondrial Ca2+ levels compared
to vehicle-treated cells (Figure 4). Interestingly, SCFAs co-treatment normalized both
cytosolic and mitochondrial Ca2+ levels, an effect that was abolished in the presence of
HO-2 I (Figure 4).
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Figure 4. SCFAs reduce Ang-II-induced Ca2+ increase by mediating HO-2. Cytosolic Ca2+ at
baseline (A), at peak (B), and mitochondrial Ca2+ (C) showing that Ang-II-induced increases in Ca2+,
in brain microvascular endothelial cells were reversed by the SCFAs/HO-2 axis. * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001. N = 3–5. SCFAs: short-chain fatty acids; Ang II; angiotensin II; HO-2 I:
heme oxygenase 2 inhibitor; and FURA 2AM and Pericam: Ca2+ trackers.

3.5. SCFAs Normalized Mitochondrial Membrane Potential by Mediating HO-2 following
Ang-II Treatment

Mitochondria utilize the electrochemical potential across their inner membrane (∆Ψm)
to stimulate mitochondrial Ca2+ entry and promote mtROS production, in part, by OXPHOS
activity stimulation. In the current study, we investigated whether the activation of the
SCFAs/HO-2 axis influenced ∆Ψm following Ang-II treatment. Our data, using the TMRM
fluorescence, showed that ∆Ψm was hyperpolarized following Ang-II treatment. While
the treatment with only SCFAs was able to preserve membrane potential, the combination
with HO-2 I abolished this effect (Figure 5).

3.6. The SCFAs/HO-2 Axis Regulates Mitochondrial ROS, H2O2 and Mitochondrial Function

HO-2 has been shown to possess an antioxidant effect in the cerebrovascular endothe-
lium [28]. To test whether SCFAs will prevent Ang-II-induced mitochondrial oxidative
stress via the HO-2 pathway, we measured mitochondrial (mt)ROS production and its
byproduct, cellular H2O2. Ang-II treatment increased the level of Mito-SOX fluorescence
intensity, indicating higher mitochondrial ROS production; the co-treatment with SCFAs
abolished Ang-II-induced mtROS, whereas the presence of HO-I annulled the positive
effect of the SCFAs (Figure 6A). Since most of the ROS produced by mitochondria are
rapidly converted to H2O2 by manganese superoxide dismutase (MnSOD), we measured
the levels of H2O2 in cultured HBMECs using the Amplex Red assay. The results showed
that the treatment with SCFAs reduced the H2O2 levels induced by the Ang-II treatment
(Figure 6B). This effect was abolished in the presence of the HO-2 inhibitor.
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Figure 5. SCFAs rescued Ang-II-induced membrane potential damage by mediating HO-2.
TMRM fluorescence integrated density (A) and representative images (B) showing that Ang-II-
induced membrane potential hypopolarization in brain microvascular endothelial cells was reversed
by the SCFAs/HO-2 axis. * p < 0.05; ** p < 0.01; **** p < 0.0001. N = 3–5. SCFAs: short-chain fatty acids;
Ang II: angiotensin II; HO-2 I: heme oxygenase 2 inhibitor; and TMRM: Tetramethyl rhodamine,
Methyl Ester, Perchlorate.
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toSOX fluorescence integrated density (A) and H2O2 production (B) showing that Ang-II-induced
increases in mitochondrial oxidative stress in brain microvascular endothelial cells were reversed by
the SCFAs/HO-2 axis. *** p < 0.001; **** p < 0.0001. N = 3–5. SCFAs: short-chain fatty acids; Ang II:
angiotensin II; HO-2 I: heme oxygenase 2 inhibitor; mitoSOX: dye for mitochondrial superoxide; and
H2O2: hydrogen peroxide.

3.7. SCFAs Rescued Ang-II-Induced Mitochondrial Respiration Damage by Mediating HO-2

The same pattern was observed in oxygen consumption using a Seahorse stress
test (Figure 7A). While a decreased oxygen consumption rate (OCR) was observed in
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the presence of Ang-II, HBMECs exhibited an increased extracellular acidification rate
(ECAR) following Ang-II treatments (Figure 7B), indicating a metabolic switch to glycol-
ysis. This phenotype was reversed in the presence of SCFAs. Treatment with the HO-2
inhibitor abolished the beneficial effect of SCFAs on OCR levels following Ang-II treat-
ments (Figure 7). Interestingly, the ECAR levels completely declined in the presence of the
HO-2 inhibitor indicating other cytosolic pathways where HO-2 potentially participate to
maintain metabolic activity.
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Figure 7. SCFAs rescued Ang-II-induced mitochondrial respiration impairment. OCR (A,C) and
ECAR (B,D) show that Ang-II-induced changes in OCR and ECAR in brain microvascular endothelial
cells were reversed by the SCFAs/HO-2 axis. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
N = 50,000 cells per well/four different experiments. SCFAs: short-chain fatty acids; Ang II: an-
giotensin II; HO-2 I: heme oxygenase 2 inhibitor; OCR: oxygen consumption rates; ECAR: extracellular
acidification rate.

4. Discussion

Overall, this study showed that HO-2 expression and activity are altered during cellu-
lar stress. Additionally, the reduction in HO-2 expression and activity in cerebrovascular
endothelial cells causes mitochondrial and endothelial dysfunction. SCFAs were able to
restore the level of HO-2 and therefore rescued the mitochondrial and endothelial function.

The relationship between HO-1 and Ang-II-induced hypertension has been well
documented in the literature [29]. Indeed, HO-1 levels significantly decreased in response
to Ang-II, and HO-1 overexpression reversed the detrimental effect of Ang-II on vascular
function and blood pressure [29,30]. However, little is known about the relationship
between Ang-II and HO-2. HO-2 possesses cytoprotective effects due to its antioxidant,
antiapoptotic, and anti-inflammatory effects [15]. Here, we showed evidence that Ang-II
was able to reduce the level and activity of HO-2 in primary HBMECs. The current data
demonstrate that HO-2 plays an important role in regulating HMBEC function during
hypertensive conditions.
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Hypertension is associated with reduced levels of SCFAs [31,32]. While several studies
demonstrated the protective role of SCFAs during hypertension, via normalizing blood
pressure and vascular reactivity [32–34], it remains difficult to dissect whether the effect of
SCFAs on vascular endothelial cells was direct or a consequence of blood pressure reduction.
Although there are studies that provide convincing evidence that SCFAs, through a direct
or indirect mechanism, can activate HO-1 [35], there have been no studies to date that have
evaluated the effect of SCFAs on HO-2. In the present study, we evaluated the direct effect
of SCFAs on HBMECs treated with Ang-II in vitro. SCFAs supplementation was able to
recover HO-2 expression and activity following Ang-II treatment. Since HO-2 is involved
in many cytoprotective pathways [15], we speculate that SCFAs, by acting on HO-2, will
positively impact cellular function under stress.

Typically, Ang-II induces endothelial dysfunction by reducing NO and increasing
the proinflammatory markers and adhesion molecules [36]. Our data are in accordance
with these observations since we showed a reduction in NO production and an increase in
inflammatory markers and adhesion molecules in HBMECs following Ang-II exposure. Co-
treatment with SCFAs reversed these effects. The beneficial effect of SCFAs on endothelial
function such as the increase in NO production [36], anti-inflammatory effects [37,38], and
the reduction in adhesion molecules [39] is very well established. However, the exact
mechanism by which SCFAs exert this beneficial effect, especially in HBMECs is lacking.
In the present study, we have evidence that SCFAs’ beneficial effects on HBMECs were
achieved through HO-2. The outcome of the study and the data are a proof of concept that
the SCFAs/HO-2 axis is a key determinant of endothelial function.

The relationship between HO-1 and mitochondrial function is well-documented [13,14].
However, little is known about the relationship between HO-2 and mitochondrial function,
especially in cerebrovascular endothelial cells. A recent study showed that similar to HO-1,
HO-2 can translocate to the mitochondria [16]. However, the role of HO-2 in the mitochon-
dria remains largely unknown. The present data shows that HO-2 is a key component for
mitochondrial function as it regulates mitochondrial Ca2+ homeostasis, membrane potential,
mitochondrial ROS, H2O2, and oxygen consumption. Furthermore, SCFAs are known to
regulate mitochondrial function in the gut [40], lymphoblastoid cells [41], hepatocytes [42],
beta cells [5], and adipose tissue [43]. Nonetheless, the relationship between SCFAs and
cerebrovascular endothelial cells is not known, and our data revealed a novel mechanism by
which SCFAs regulate mitochondrial function in HBMECs. Our studies demonstrated that
SCFAs, by increasing HO-2, improve mitochondrial function during stress, such as exposure
to Ang-II.

Fecal SCFA levels were shown to play an important role in reducing the body weight
of high-fat diet-induced obese mice (HFD) [6]. Additionally, treatment with exogenous
acetate, propionate, or butyrate has been shown to prevent weight gain in HFD mice and
overweight humans [44,45]. These findings provide insights into new targeting mech-
anisms of SCFAs, which may be important for preventing or treating obesity-induced
cerebrovascular diseases.

Our study has shed light on a new pathway by which SCFAs could affect mitochondrial
function in HBMECs during stress through the regulation of HO-2. SCFAs are known
to be affected by hypertension [46] and neuropathological diseases such as Alzheimer’s
disease [47]. Thus, examining this mechanism in vivo using a disease model known to
produce gut dysbiosis-induced alteration in SCFAs levels, such as hypertension or obesity,
will support a translational pipeline connecting SCFAs to cerebrovascular function.

Clinical significance: In recent years, there has been a growing body of evidence
supporting the role of gut bacteria, which plays a pivotal part in the regulation of the onset
and progression of cerebrovascular diseases. Benakis et al. demonstrated that gut dysbiosis
occurs in several animal models of ischemic stroke. Specifically, their studies exhibit that
gut microbiota can regulate neuroinflammatory responses and thereby influence brain
recovery [48]. The data from this study highlights the delicate play between the brain
and gut microbiome following acute brain injury. Additionally, Xiong et al. highlight the
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taxonomic and functional bacteria changes between patients with intraparenchymal hem-
orrhage compared to healthy individuals [49]. This data strongly supports the hypothesis
that gut microbiota is a target of intracerebral hemorrhage-induced systemic alteration.
Consequently, gut dysbiosis could have a substantial impact on the outcome of intrac-
erebral hemorrhages and establishes the connection between gut microbiome health and
cerebrovascular perfusion. Furthermore, the gut microbiota has been shown to contribute
to cerebral small vessel disease [50], and the pathophysiology of cranial aneurysms by
modulating inflammation [51]. It is important to note that gut microbiota (gut dysbiosis)
has not only been linked to several cerebrovascular conditions such as ischemic stroke, in-
tracerebral hemorrhage, intracranial aneurysm, and cerebral microvascular disease but also
to diseases that impact the cerebrovascular physiology such as obesity and hypertension.
Although the influence of gut microbiota on obesity and hypertension has been extensively
studied, less is known about the effect of gut dysbiosis on obesity-induced cerebrovascular
diseases. The gut microbiota communicates with the brain through its metabolites. Sev-
eral studies have shown that bacterial metabolite profiles were altered in patients with
various brain diseases [52]. SCFAs are gut microbiota-derived metabolites that regulate
the gut–brain axis and are speculated to impact the cerebrovascular physiology following
gut dysbiosis. It has been shown that SCFA are involved in neurodegenerative diseases
including Alzheimer’s [53], Autism [54], and Parkinson’s [55]. Additionally, SCFAs show
effectiveness in improving post-stroke recovery via an immunological mechanism [56]. The
exact mechanism by which SCFAs affect cerebrovascular physiology is yet to be determined.
In our in vitro study, we elucidate a potential mechanism by which SCFA could influence
cerebrovascular physiology. We show that SCFA was able to restore the level of HO-2 and
therefore rescue the cerebral mitochondrial and endothelial function. Extrapolating this
data to an in vivo model of cerebrovascular disease is of great clinical significance since it
could be a key step in developing novel therapeutic targets to treat central nervous diseases.
Furthermore, our results provide a framework for molecular studies to better characterize
the molecular mechanisms of SCFAs.
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