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Aim. To investigate optochin-resistant viridans group streptococci (VGS) strains isolated from the sputum sample of adult
patients with different clinical symptoms. Materials and Methods. Optochin-resistant VGS isolates were identified by matrix-
assisted laser desorption jonization time of flight mass spectrometry (MALDI-TOF MS). recA sequencing was used to confirm
identified isolates at the genus level by MALDI-TOF MS. Finding. We identified 79% of tested isolates (148/187) at the species-
level identification using the MALDI-TOF MS tool. We identified that the most common species isolated from sputum specimens
were S. oralis (44.9%) followed by S. mitis (25.7%), S. infantis (9.1%), S. parasanguinis (7.5%), S. peroris (3.7%), S. anginosus (2.7%),
and S. sanguinis (2.1%). Discussion. The S. oralis strains were majority of optochin-resistant VGS isolates obtained from sputum of
adult patients in Jakarta, Indonesia. MALDI-TOF MS showed potential for the rapid identification tool to identify optochin-
resistant VGS isolates. Although there were discrepancies in identifying isolates at the genus/species level, the performance could
be improved by expanding its database.

1. Introduction

The high-level similarities between Streptococcus pneumo-
niae, a human pathogen, and viridans group Streptococci
(VGS), particularly within the nonpneumococcal mitis
group including Streptococcus mitis, Streptococcus oralis, and
Streptococcus pseudopneumoniae, often cause difficulties in
species discrimination [1, 2]. In clinical laboratory testing,
conventional tests such as optochin sensitivity and bile
solubility are still applied as key identifications for
S. pneumoniae isolates [3]. However, some S. pneumoniae
isolates were reported as optochin resistant in different
geographical regions [4].

The VGS, a group of catalase-negative, Gram-positive
Cocci, are a heterogeneous group of bacterium and con-
sidered to be normal flora of the oropharyngeal, urogenital,
and gastrointestinal microbiota [5]. Classification of VGS
has been challenging due to variability and overlap of their
microbial characteristics [6]. This bacteria group includes a
diverse range of organisms within the genus Streptococcus
and can be characterized by green coloration on a blood agar
plate [7]. Currently, VGS are classified into six major groups:
the S. mutans group, S. salivarius group, S. anginosus group,
S. mitis group, S. sanguinis group, and S. bovis group [5, 8].
The pathogenicity of VGS ranges from opportunistic
pathogens causing mild disease such as S. mutans that
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strongly correlates with dental caries development, and
S. mitis, S. oralis, and S. sanguinis are taking roles in infective
endocarditis [8].

Specific and accurate species-level identification of VGS
is one of the important factors in patient clinical manage-
ment and is also important for understanding their path-
ogenicity and virulence [1, 9]. Matrix-assisted laser
desorption ionization time of flight mass spectrometry
(MALDI-TOF MS) has become an indispensable tool for
clinical microbiology laboratories and shown to be a po-
tential alternative for organism identification with a rapid
and cost-saving method for VGS identification [2, 5, 9].
Previously, we reported that thirteen S. pneumoniae
(pneumococcus) strains were susceptible to the optochin test
and one hundred and eighty-nine of alpha haemolytic
nonpneumococcus strains were resistant to the optochin test
from the sputum of adult patients with nonspecific clinical
symptoms in Jakarta, Indonesia [10]. In this study, we in-
vestigate further nonpneumococcus strains from adult pa-
tients for optochin-resistant VGS identification by the
MALDI-TOF MS.

2. Methods

2.1. Streptococcus Group Collection. The Streptococcus group
isolates were archived isolates obtained from sputum
samples of adult patients with different clinical symptoms
aged 18-87 years in Jakarta, Indonesia [10]. The patient
clinical symptoms are tuberculosis (n=51), community
acquired pneumonia/healthcare-associated ~pneumonia
(n=17), SIDA/AIDS (=10), diabetes mellitus (n=06),
pneumonia sepsis (n=3), pneumonia (#n =2), other symp-
toms (n=66), and missing data (n=32). The sputum
samples were inoculated onto blood agar plates supple-
mented with 5mg/L of gentamicin and were incubated at
37°C in 5% CO, for 18-24h. All isolates that are alpha-
hemolytic, resistant to optochin disk (ethylhydrocupreine
hydrochloride), and insoluble in bile were included in this
study [10].

2.2. Sample Preparation. All isolates were subcultured on a
tryptone soya agar plate with 5% sheep blood and then
incubated overnight at 37°C with 5% CO, [10]. A single
colony of overnight pure growth bacteria was spotted to the
MSP 96 ground plate (Bruker Daltonik, Germany) using a
sterile toothpick and air dried in room temperature for
approximately 5 minutes as a direct method sample prep-
aration. The dried spots were then mixed with 1 L matrix
(saturated solution of wa-cyano-4-hydroxycinnamic acid/
HCCA in 50% acetonitrile and 2.5% trifluoroacetic acid
(TFA)). The solution was air dried in room temperature for
approximately 10 mins. Standard protein extraction method
was used to confirm the isolates with MALDI-TOF iden-
tification score <2.000 [11]. A 2.0 McFarland of bacterial
suspension was made in 300 yL of water and then mixed
with 900 uL of ethanol. The suspension was homogenised
and centrifuged at 20000 x g for 2 minutes. The supernatant
was removed, and the pellet was dried at 55°C for
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30 minutes. The dried pellet was resuspended in 50 uL of
acetonitrile followed by centrifugation at 20000 x g for 2
minutes. A 1 yL supernatant was spotted to the ground plate
and air dried for 10 mins in room temperature. Then, 1 yL of
matrix was added to the same spot as in the direct colony
method as described above.

2.3. MALDI-TOF-MS-Based Identification. The isolates were
identified using Microflex MALDI-TOF (Bruker Daltonik,
Germany) and flexControl version 3.4 software as previously
described [2, 12]. Isolate identification was performed from
spectrum acquisition was conducted in the positive linear
mode with laser frequency at 60 Hz. Mass range started at
2.000-20.000 Da. Each voltage from ion source 1 and ion
source 2 was set at 20 kV and 18.5 kV. Bacterial test standard
protein was included in every test as instrument calibration.
Automatic identification started after the spectra result was
moved to Biotyper RTC software. The identification criteria
were based on the similarity level, shown by the logarithmic
score of isolates and database spectra prior to instructions by
the manufacturer as follows: score <1.700 indicated isolates
were not reliably identified; isolates with score 1.700-1.999
indicated identification accuracy up to the genus level; and
isolates with score >2.000-3.000 indicated isolates accurately
identified up to the species level. Mass spectra analysis was
conducted using flexAnalysis software. All obtained spectra
were saved in flexControl before undergoing the calibration,
smoothing, and baseline subtraction process on flexAnalysis
MBT-Standard, prior to the manufacturer’s recommendation.

2.4. recA Sequencing Identification. The recA sequencing tool
was used to confirm all identified isolates at the genus level by
MALDI-TOEF MS [13]. We performed recA gene amplification
and sequencing using forward primer [5'-GCCTTYATC-
GATGCBCARCA-3'] and reverse primer [5-GTTTC
CGGRTTDCCRAACAT-3'] with the GoTaq Green Master-
mix [13]. The obtained sequences were compared to the recA
gene sequences database in NCBI GenBank and analysed using
BLAST alignment (http://www.ncbi.nlm.nih.gov/blast) and
MEGA-6 software. The obtained sequences with similarity
>96% on published sequences in GenBank were assigned as
cutoff for species identification.

3. Results

In this study, MALDI-TOF MS identified 79% (148/187)
isolates with score value ranging from >2.000-3.000, indi-
cating the highly probable species identification result. The
majority identified species was S. oralis (50.7%), followed by
S. mitis (31.1%), S. parasanguinis (9.5%), S. anginosus (3.4%),
S. sanguinis (2.7%), S. peroris (2.0%), and S. pseudopneumoniae
(0.7%) (Table 1). Meanwhile, we observed that 21% (39/187) of
optochin-resistant VGS isolates were identified at the genus
level (ID score value: 1.700-1.999) with majority isolates
identified as S. oralis (38.5%) followed by S. mitis (23.1%),
S. peroris (20.5%), S. pneumoniae (12.8%), S. parasanguinis
(2.6%), and S. infantis (2.6%) (Table 2). The identification
scores obtained from the isolates extracted using the standard
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TaBLE 1: MALDI-TOF MS identification for viridans group Streptococcus strains isolates from sputum samples of adult patients.

. MALDI-TOF MS identification
Species

Secure to highly probable species®, n(%) Probable genus#, n (%)

S. infantis 0 1(2.6)

S. anginosus 5 (3.4) 0

S. mitis 46 (31.1) 9 (23.1)

S. oralis 75 (50.7) 15 (38.5)

S. parasanguinis 14 (9.5) 1(2.6)

S. peroris 3 (2.0) 8 (20.5)

S. pseudopneumoniae 1(0.7) 0

S. sanguinis 4( 0

S. pneumoniae 0 5(12.8)

*Score values higher than 1.99. #Score values between 1.7 and 1.99.

TaBLE 2: Comparison of samples identified by MALDI-TOF with score 1.700-1.999 and recA sequence analysis.

Identification methods

Isolate MALDI-TOF MS (ID score value) recA sequencing (similarity score, %)
RIN 002 S. infantis (1.942) S. infantis (96)
RIN-176 S. mitis (1.837) S. infantis (93)
RIN 289 S. mitis (1.881) S. infantis (99)
RIN 106 S. mitis (1.902) S. infantis (96)
RIN 230 S. mitis (1.903) S. mitis (98)
RIN-267 S. mitis (1.908) S. mitis (94)
RIN 241 S. mitis (1.918) S. oralis (96)
RIN-155 S. mitis (1.931) S. infantis (95)
RIN-206 S. mitis (1.940) S. infantis/oralis (95)
RIN 248 S. mitis (1.993) S. infantis (98)
RIN-327 S. oralis (1.75) S. infantis (93)
RIN 312 S. oralis (1.797) S. infantis (99)
RIN 096 S. oralis (1.833) S. infantis (96)
RIN-112 S. oralis (1.834) S. infantis/oralis (95)
RIN 215 S. oralis (1.860) S. infantis (97)
RIN 335 S. oralis (1.887) S. infantis (95)
RIN-221 S. oralis (1.898) S. oralis (94)
RIN-114 S. oralis (1.899) S. oralis (94)
RIN-089 S. oralis (1.900) S. oralis (95)
RIN-132 S. oralis (1.917) S. peroris (94)
RIN 129 S. oralis (1.943) S. oralis (99)
RIN 083 S. oralis (1.945) S. oralis (97)
RIN 208 S. oralis (1.947) S. pneumoniae (97)
RIN 025 S. oralis (1.951) ND

RIN 082 S. oralis (1.977) S. oralis (97)
RIN-253 S. parasanguinis (1.845) Streptococcus sp. i-G2 (96)
RIN-296 S. peroris (1.751) S. peroris (94)
RIN-062 S. peroris (1.775) S. infantis (93)
RIN-352 S. peroris (1.877) S. oralis (93)
RIN-113 S. peroris (1.884) S. infantis (95)
RIN 052 S. peroris (1.926) S. infantis (99)
RIN-188 S. peroris (1.928) S. infantis (94)
RIN 190 S. peroris (1.943) S. infantis (97)
RIN-142 S. peroris (1.997) S. peroris (95)
RIN 022 S. pneumoniae (1.834) ND*

RIN 345 S. pneumoniae (1.848) S. oralis (96)
RIN 092 S. pneumoniae (1.865) S. infantis (97)
RIN 320 S. pneumoniae (1.896) ND
RIN-226 S. pneumoniae (1.899) S. peroris (95)

*ND =not done.



protein extraction method showed no significant difference
with those using the direct colony method with the score
ranging from 1.600-1.900 (data not shown).

We identified 11 optochin-resistant VGS isolates (30.6%)
at the genus level by the MALDI-TOF MS tool matched with
the results from recA sequencing confirmation. S. oralis
isolates were the most common matched isolates between
MALDI-TOF MS and recA sequencing tools (six strains),
followed by S. mitis and S. peroris (two strains each) and
S. infantis (one strain). In this study, we observed that only
one optochin-resistant VGS isolate was identified at the
genus level by the MALDI-TOF MS tool (Table 1). After recA
sequencing confirmation, 17 optochin-resistant VGS iso-
lated at the genus level by the MALDI-TOF MS tool were
identified as S. infantis (Table 2).

In total, we identified that the optochin-resistant VGS
species isolated from sputum samples were S. oralis (44.9%)
followed by S. mitis (25.7%), S. infantis (9.1%), S. parasanguinis
(7.5%), S. peroris (3.7%), S. anginosus (2.7%), S. sanguinis
(2.1%), and others (2.7%). S. oralis isolates were found to be
higher in patients with age between 19 and 60 years compared
to patients aged above 60 years (Figure 1). Meanwhile,
S. infantis and S. parasanguinis were more often isolated from
older patients than young patients. We also observed that
S. oralis were more often isolated from sputum specimens of
adult patients with community-acquired pneumonia/health-
care-associated pneumonia (64.7%) and tuberculosis (39.2%)
symptoms (Figure 2).

4. Discussion

In this study, we found that S. oralis and S. mitis were the
major common optochin-resistant VGS isolates (70.6%)
obtained from the sputum samples. The prevalence of
S. mitis and S. oralis in this study was higher compared to
other previous studies. Maeda et al. reported that the
prevalence of S. mitis and S. oralis isolates from the sputum
samples of adult patients with cystic fibrosis was 19% and
11%, respectively [14]. Meanwhile, the S. anginosus group
(38.8%) and S. mitis (22.8%) group were the most common
VGS species isolated from bloodstream infection detected by
MALDI-TOF MS identification [15]. From oncologic pa-
tients, almost half of the VGS isolated from the blood culture
was S. mitis isolates (46.5%) followed by S. anginosus (32.6%)
and S. sanguinis (16.3%) by MALDI-TOF MS [6]. Oral
streptococci isolates were reported as the most detected
isolates from bronchoalveolar lavage fluid specimens ob-
tained from pneumonia patients [16]. The oral streptococci
isolates were all members of the S. mutans and S. mitis
groups, the S. salivarius group, and the S. anginosus group
except for S. pneumoniae [16]. S. mitis and S. oralis were
significantly remaining species to be isolated from blood-
stream isolates from neutropenic patients using the sodA
gene detection [17].

In this study, we identified one isolate as S. infantis (2.6%)
at the genus level. However, more S. infantis (9.1%) were
identified from all optochin-resistant VGS isolates at the genus
level by the MALDI-TOF MS tool after recA sequencing
confirmation. Zbinden A et al. reported that the A 313-bp part
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of recA was selected on the basis of variability within the S. mitis
group, showing <95.8% interspecies homology [13]. We found
amismatched pair of S. pneumoniae and S. infantis identified at
the genus level by both MALDI-TOF MS and recA sequencing
tools. This discrepancy was possibly due to high similarities in
the molecular and proteomic profile of the mitis group in-
cluding S. mitis and S. oralis, thus presenting a challenge to
correctly identify species using DNA- or protein-based iden-
tification methods [2, 18]. The peak analysis and most updated
Bruker database may improve the correct species identification
[19]. In conclusion, the S. oralis and S. mitis were the pre-
dominant VGS isolates obtained from sputum of adult patients
in Jakarta, Indonesia. MALDI-TOF MS showed potential for
rapid identification to identify non-Streptococcus pneumoniae
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isolates. Although there were discrepancies in identifying
isolates at the genus/species level, the performance could be
improved by expanding its database.
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