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ABSTRACT 
 

A lot of nonparametric estimators of the number of unrecorded species after partial sampling of an 
assemblage of species, have been proposed in the literature. Unfortunately, these different types of 
estimators provides substantially divergent predictions. While empirical comparisons have failed to 
consistently select in favour of one among all these estimators, a new approach, based on more 
theoretical ground, has proven that among three of the most commonly used nonparametric 
estimators, Chao, Jackknife-1 and Jackknife-2, the latter was the best choice in most cases while 
Chao or Jackknife-1 should preferably be restricted to samplings approaching completeness. Here, 
I propose an alternative approach, aiming also at discriminating between the same three estimators 
on the basis of another theoretical argument: The necessary compliance with the required “rule of 
additivity”, according to which, if an assemblage of species is made of several, distinct groups of 
species, the estimation of species richness for the whole assemblage should be exactly the sum of 
the estimations of richness for each group of species. Referring to this rule of additivity, the 
Jackknife series of estimators (and in particular Jackknife-2 when samples remain far from 
completeness), proves, once again, being satisfactory in full generality. This strengthens the 
estimators of the Jackknife series as being particularly appropriate to evaluate, in most cases, the 
number of unrecorded species of a partially sampled assemblage and the corresponding total 
species richness of the assemblage. 

Method Article  
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1. INTRODUCTION 
 
Incomplete species samplings are deemed to 
become increasingly frequent in the future [1]. 
This is, in particular, a consequence of 
biodiversity surveys being progressively more 
and more dedicated to animals (or plants) groups 
which usually give rise to assemblages of 
numerous species represented by individuals of 
small sizes, more or less hard to detect in the 
field (such as, for example, assemblages of 
small- or micro-invertebrates).  
 
Incomplete samples (resulting from under 
sampling) immediately raise the questions of: 
 

- What would be the total species richness 
of the assemblage, that is the expected 
number of recorded species if the sampling 
was ideally complete; 

- What would be the extrapolated shape of 
the so called “Species Accumulation 
Curve”, beyond the currently achieved 
sample-size, that is the expected kinetic of 
discovery of new species with sampling 
growing beyond its present size [2]. 

 
Both questions are of importance and thus 
prompted researchers to propose a series of 
expressions for both the nonparametric 
estimation of total species richness (review in 
[3,4]) and the extrapolation of the Species 
Accumulation Curve (review in [5]). Accordingly, 
the issue, now, is rather to select among the 
varied reported propositions of estimators, since, 
unfortunately, each of them provides a 
substantially different result [6]. A considerable 
amount of work has been devoted to test 
comparatively these different types of estimators, 
mainly on an empirical basis [7-13]. But, as might 
be expected, no consensus emerged from these 
studies. This is because, in fact, each kind of 
estimator may provide a centered, unbiased 
prediction in a very specific case only: when the 
species abundance distribution within the 
sampled assemblage of species has a particular 
kind of shape, that is, in turn, a specific shape for 
the Species Accumulation Curve, specific to 
each type of estimator [3,13,14-16]. Thus, finally, 
these empirical approaches hardly help to 
disclose information of any general value. 
   
Accordingly, a more appropriate approach might 
consist in addressing the issue from a less 

empirical, more theoretical point of view, thus 
providing results of more general applicability 
and soundness. 
  
A guide of choice was thus derived in this 
perspective, build on a purely theoretical basis, 
defining which type of nonparametric estimator, 
among the most commonly used, is able to 
provide the less biased estimations and under 
which conditions. Although very simple to use in 
practice, this guide was developed following a 
rather long mathematical development [17,18]. 
 
Hereafter, I derive quite independently, an 
alternative theoretical argumentation, finally 
leading to similar selective guidance, but 
involving a much simpler and concise 
mathematical demonstration. 
 
2. REMINDING OF THE MAIN RESULTS 

OBTAINED ACCORDING TO THE 
ORIGINAL DERIVATION  

 
Consider the sampling of an assemblage of 
species with sample size N0 (N0 observed 
individuals) and containing R(N0) recorded 
species among which a number f1 are recorded 
only once and a number f2 are recorded only 
twice. The expected number ∆ of species missed 
by the sampling (and thus the total species 
richness of the assemblage R(N0)+∆) may be 
conveniently estimated using one of several 
types of nonparametric estimators, among which 
the following three are most commonly used:  
 
Chao with ∆ = f1

2/(2f2), Jackknife-1 with ∆ = f1
 

and  Jackkknife-2 with ∆ = 2f1 – f2. 
 
Now, a specific mathematical relationship 
(equation A1.1 in Appendix A1) constrains the 
expression of any theoretically possible Species 
Accumulation Curve (S.A.C.). As a consequence 
[18], each type of estimators is associated to a 
particular type of S.A.C. Accordingly, the 
expressions of the Species Accumulation Curves 
R(N) associated to the estimators Jackknife-1, 
Jackkknife-2 and Chao are respectively as 
follows, according to [18]: 
 

R(N) = (R(N0) + f1) – f1.N0/N                       (1) 
 
R(N) = (R(N0) + 2f1 – f2) – (3f1 – 2f2).N0/N – 
(f2 – f1).N0

2/N²                                             (2) 
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R(N) = (R(N0) + f1

2/(2f2)).(1– exp([Ln((f1
2/(2f2))/ 

(R(N0) + f1
2/(2f2)))](N/N0)))                             (3) 

 
with R(N) as the number of recorded species 
when the sample reaches size N (N > N0). 
 

3. AN ALTERNATIVE, INDEPENDENT 
DERIVATION OF THE (SAME) GUIDE 
OF CHOICE, BASED ON THE 
COMPLIANCE WITH THE ‘RULE OF 
ADDITIVITY’ 

 
Consider an assemblage of species that 
encompass several “mutually exclusive” 
categories (that is categories that share no 
species in common; for example taxonomic 
categories such as, genus, families, orders, 
etc…). A sample ‘A’ of this assemblage gathers 
the sub-samples ‘a1’, ‘a2’,…, ‘ax’, corresponding 
to each of the categories separately. If the 
sample A is incomplete, an estimation of the 
number M of missing species may be 
conveniently obtained using one among the three 
cited nonparametric estimators, Chao, Jackknife 
-1 or Jackknife -2.  Now, the same procedure 
may be implemented for the separate 
estimations of the numbers m1, m2,…, mx, of 
missing species in each of the sub-samples a1, 
a2,.., ax. 
 
All those species that escape recording in one or 
the other sub-samples a1, a2, ..., ax are evidently 
constitutive of the set of species that are missed 
by the whole sample A, so that the sum Σx mx of 
the numbers m1, m2, …, mx, should coincide 
exactly with the estimation M of the number of 
missing species for the whole sample, that is:   
 

M = Σx mx                                                    (4) 
 
Once more, this relationship holds true only for 
“mutually exclusive” categories that share no 
species in common. 
 
Now, in fact, all nonparametric estimators of the 
number of missing species may not equally 
satisfy this compulsory “rule of additivity”, as 
shown below. 
 
3.1 Jackknife Estimators JK-1 and JK-2 
 
It may be immediately recognized that both 
Jackknife estimators considered here (Jackknife-
1 with ∆ = f1

 and Jackknife-2 with ∆ = 2f1 – f2) 
always satisfy the required rule of additivity 
stated by equation (4). This is the obvious 
consequence of the expressions of these 

estimators as a linear combination of f1 and f2.  
Yet, although being a necessary condition, the 
compliance with the rule of additivity may not be 
sufficient. A second constraint comes from the 
obvious fact that the number of missing species 
is expected to decrease monotonically with 
increasing sample size. 
 

 
 

Fig. 1. Evolution, with growing sample size N, 
of the estimated number of missing species 
according to Jackknife-1 and to Jackknife-2 

(survey of gall-inducing Diptera in “Parc 
National des Ecrins” (see section 5)  

According to Jackknife-2, the estimated number of 
missing species monotonically decreases with growing 
sample size, as relevantly expected. By contrast, the 

estimated number of missing species according to 
Jackknife-1 (= f1) would begin to increase, pass 
through a maximum and finally monotonically 

decrease with growing sampling size. While such an 
increasing stage, at first, is correct for the number f1 of 

species recorded once (to which Jackknife -1 is 
identified), it is of course quite unsatisfying for an 
estimation of the number of missing species and 

Jackknife-1 is thus disqualified for this reason 
 

This is not constantly the case, however, for the 
number f1 of species recorded once, all along 
progressive sampling: with growing sampling 
size, f1 begins, at first, to increase, then pass 
through a maximum before finally decreasing 
monotonically: illustrative example at Fig. 1.  
Thus Jackknife-1 (= f1) cannot be satisfactory in 
all circumstances. In fact, using Jackknife-1 is 
inadequate for most incomplete samples, that is, 
as long as samplings still not approach 
completeness. More precisely, using Jackknife-1 
remains inadequate as long as the ratio f1/f2 
(which is monotonically decreasing with growing 
sample size and level of sample completeness) 
remains larger than 1: in such case, Jackknife-2 
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is to be preferred while Jackknife-1 is to be 
retained only when f1/f2 falls below 1. It should be 
noted that limiting the use of Jackknife-1 to 
higher levels of completeness only is an option 
already suggested by Brose et al. [19], at least 
for the specific types of species abundance 
distributions they studied (without indication 
given, however, relative to the threshold value of 
the ratio f1/f2). 
 
Nota: Alternatively, Chao estimator may also be 
considered (as is Jackknife-1) for higher levels of 
completeness [18]. Yet, contrary to Jackknife-1, 
Chao does not comply with the rule of additivity, 
as shown below. This should preclude using 
Chao estimator in any circumstance. But, in fact, 
the deviation of Chao estimator from the rule of 
additivity is progressively vanishing when 
samples approach completeness, as 
demonstrated in next section. Accordingly, using 
Chao estimator in the specific case when f1/f2 < 
0.6 (and Jackknife-2 when f1/f2 > 0.6), as 
proposed previously [18], does not violate 
appreciably the prescribed rule of additivity. Such 
a narrowly restricted range of applicability of 
Chao estimator, was already pointed by several 
authors [6,16,20-23], on (semi-) empirical basis. 
 

3.2 Chao Estimator 
 
Because its expression is not linearly dependent 
upon f1 and f2 (contrary to the Jackknife 
estimators), the Chao estimator generally does 
not comply with the prescribed rule of additivity. 
A particular condition only allows Chao estimator 
to respect the rule of additivity however: when 
the ratio f1/f2 happens to take a same value – say 
k – for each of the sub-samples. Then, Chao 
estimator becomes: ∆ = f1

2/(2f2) = ½ k f1 for each 
of the sub-samples. Under this very specific 
condition, Chao complies with the additivity rule: 
 

Σx mx  =  Σx (½ k f1x )  =  ½ k Σx (f1x )  =  M 
 
since the number of species recorded once in the 
whole sample equals the sum Σx (f1x ) of the 
numbers of species recorded once in each of the 
sub-samples (the latter being mutually exclusive 
in terms of species identities, as already 
pointed). The rule of additivity is then satisfied by 
Chao estimator only when the ratio f1/f2 takes the 
same value for all the sub-samples (and the 
whole sample). 
 
Now, as the ratio f1/f2 provides a relevant 
appreciation of the degree of sampling 
completeness (as already mentioned), this 
identity of the ratios f1/f2 between all the sub-

samples means that all of them should show the 
same degree of completeness. In turn, this 
common degree of completeness for the whole 
sample and for all the sub-samples implies an 
even distribution of species abundances within 
the whole sampled assemblage (N.B.: when 
samplings approach completeness, unevenness 
among abundances of still unrecorded species 
progressively vanishes).  
 
Interestingly, this constraint of abundance 
evenness is exactly the same argued 
independently [24,25] as the necessary condition 
for Chao expression being able to provide 
unbiased estimates. Thus, the condition ensuring 
the compliance of Chao expression with the rule 
of additivity on the one hand, and the condition 
for Chao providing unbiased estimations on the 
other hand, are indeed identical. Satisfactorily 
enough, both requirements are thus mutually 
consistent. 
 
Now, what happens in full generality, i.e. when 
the ratios f1/f2 are substantially different between 
the sub-samples, so that Chao estimator can no 
longer satisfy the rule of additivity? In this 
general context, the Chao estimator deviates 
more or less from what is prescribed by the rule 
of additivity. More precisely (see Appendix A2 for 
a demonstration), the degree of deviation (i) 
increases with the difference between the ratios 
f1/f2 of each of the sub-samples and (ii) 
decreases with the difference between the 
values of f1 for each of the sub-samples. 
 
This is exemplified quantitatively, in Table 1 and 
Fig. 2, considering, for simplicity, the case when 
only two categories of species are involved in the 
whole sample (mathematics behind Table 1 and 
Fig. 2 is provided at Appendix A2 (i) & (ii)). 
 
Note that the improved version “i-Chao” [24] of 
Chao estimator, involving f3, f4 in addition:  
 
∆ = f1

2/(2f2) + [f3/(4f4)] x MAX{f1 - (f2.f3)/(2f4), 0} 
does not comply substantially better with the 
required rule of additivity, for the same reason of 
non-linearity of the expression of i-Chao in terms 
of f1, f2, f3, f4. An illustrative example is provided 
at section 5. 
 
4. THE RULE OF ADDITIVITY AND THE 

EXTRAPOLATION OF THE SPECIES 
ACCUMULATION CURVE  

 
As already mentioned in section 2, a specific 
shape for the extrapolated Species Accumulation 
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Curve is associated to each type of 
nonparametric estimator [18]. The expressions            
of the Species Accumulation Curves respectively 
associated to Jackknife-1, Jackknife-2 and                    
Chao estimators are given by equations (1)                          
(2) and (3) respectively. It is immediately 
apparent that the Species Accumulation                    
Curves associated to Jackknife-1 and Jackknife-
2 both respect the rule of additivity in full 

generality, while, on the contrary, the Species 
Accumulation Curve associated to Chao 
estimator generally does not satisfy the rule                        
of additivity, except in the very particular                           
case when the all the sub-samples happen                          
to have reached the same degree of                      
sampling completeness (as already pointed 
independently for the estimator itself, see    
section 3.2).  

 
Table 1. Relative deviation of Chao estimates from the rule of additivity (M = Σx mx) for a 
sample A encompassing two sub-samples {G and H}, wi th numbers {g 1, h1} of species 

recorded once and {g 2, h2} of species recorded twice respectively 
 

    α = max of (g1/g2) / (h1/h2) or (h1/h2) / (g1/g2)  
    1 2 3 4 5 6 7 8 9 10 
β = max of g1/h1 
or h1/g1 

1 0 12 29 44 57 68 78 87 94 101 
2 0 11 26 40 52 63 73 81 88 95 
3 0 9 22 35 46 56 65 73 80 86 
4 0 8 19 31 41 50 58 66 73 79 
5 0 7 17 27 36 45 53 60 66 72 
6 0 6 15 24 33 41 48 55 61 66 
7 0 5 14 22 30 37 44 50 56 61 
8 0 5 12 20 27 34 41 46 52 57 
9 0 4 11 18 25 32 38 43 48 53 
10 0 4 10 17 23 29 35 40 45 50 

The relative gap between the Chao estimate M of the number of missing species for the whole sample A and the 
sum of Chao estimates m and m’ for the sub-samples G and H is  D = |M - (m+m’)|/ ½ (M+(m+m’))  in %. I t is 

studied against the ratios α = (g1/g2)/(h1/h2) and β = (g1/h1) 
 

 
 

Fig. 2. Relative deviation of Chao estimates from t he rule of additivity (M = Σx mx) for a sample 
A encompassing two sub-samples G and H with numbers  {g 1, g2} and {h 1, h2} of species 

recorded once and twice respectively 
The relative gap between the Chao estimate M of the number of missing species for A and the sum of Chao 
estimates m and m’ for G and H is D = |M - (m+m’)|/ ½ (M+(m+m’)) in %. It is studied against the ratios α = 

(g1/g2)/(h1/h2) and β = (g1/h1) 
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This leads to the same severe limitations of use 
of Chao estimator as that already mentioned 
above for the estimation of the number of 
missing species in an incomplete sample. 
 
5. AN ILLUSTRATIVE EXAMPLE: THE 

SAMPLING OF GALL-INDUCING 
ALPINE FAUNA, JOINTLY INVOLVING 
FOUR ORDERS OF ARTHROPODS 

 
As an illustrative example, I consider a partial 
survey of the gall-inducing arthropods fauna 
performed in the “Parc National des Ecrins”, in 
French Alps (see [26] for a full taxonomic list of 
the Ro = 337 recorded species and details of 
localisations of the No = 147 surveyed sites). 
Four orders of gall-inducing arthropods are 
mainly involved in the survey.  
 
Table 2 provides the numbers Ro (=R(No)) of 
recorded species and the numbers f1, f2, f3, f4 of 
species recorded respectively 1, 2, 3, 4 times at 
the end of sampling for each of the four orders 
and for all the four orders considered together.  
Then, Table 3 provides a comparison between 
the estimated numbers of missing species 
according to Chao, i-Chao, Jackknife-1 and 
Jackknife-2 estimators. 
 

Table 2. The numbers Ro (=R(No)) of 
recorded species and the numbers f 1, f2, f3, f4 

of species recorded respectively 1, 2, 3, 4 
times (i) for each of the four orders Acaria, 
Hemiptera, Diptera, Hymnoptera, and (ii) for 

all these four orders considered together 
 
P.N. Ecrins  Ro f1 f2 f3 f4 
Acaria 128 45 17 11 9 
Hemiptera 47 9 9 4 1 
Diptera 118 38 14 10 11 
Hymenoptera 44 6 8 9 5 
all 4 orders 337 98 48 34 26 

 

6. DISCUSSION: THE PRACTICAL 
IMPORTANCE OF SELECTING THE 
MORE APPROPRIATE NON-
PARAMETRIC ESTIMATOR, 
ENABLING A RELIABLE EXTRA-
POLATION OF THE SPECIES 
ACCUMULATION CURVE 

 
The practical importance of a reliable 
extrapolation of total species richness and the 
additional sampling efforts required to improve 
the current level of sampling completeness is 
conveniently highlighted by considering in more 
details the illustrative example above. 

Table 3. Estimating the number of missing 
species in a partial sampling of gall-inducing 

arthropods (“Parc National des Ecrins”) 
according to three nonparametric estimators: 
Chao, i-Chao [24], Jackknife-1 and Jackknife-
2. The sampling encompasses four orders of 

arthropods: Acaria Thrombidiidae, 
Hemiptera, Diptera, Hymenoptera 

 
P.N. Ecrins Chao  iChao  JK-1  JK-2  
Acaria 60 70 45 73 
Hemiptera 5 5 9 9 
Diptera 52 59 38 62 
Hymenoptera 2 2 6 4 
all 4 orders 100 122 98 148 
sum on 4 
orders 

119 136 98 148 

deviation 19 14 0 0 
 
6.1 Estimation of the Total Species 

Richness 
 
Table 4 provides, for each of the four orders and 
for the whole survey (all four orders together): 
 

(i) The estimations of the total species 
richness S, according to the three 
nonparametric estimators Jackknife-2, 
Jackknife-1, Chao; 

(ii) The corresponding degrees of 
completeness R(No)/S (%)  

 
Substantial disagreements occur between the 
three estimators regarding the prediction of total 
species richness of the sampled assemblage 
and the associated evaluation of the level of 
completeness of samplings. 
 
6.2 Estimation of the Additional Sampling 

Efforts Required to Reach a Given 
Increment of Sampling Completeness 

 
The extrapolations of the Species Accumulation 
Curve associated to each of the three 
nonparametric estimators Jackknife-2, Jackknife-
1, Chao, are plotted at Figs. 3 to 6, for the four 
main orders of gall-inducing arthropods. These 
graphic representations highlight, in each case, 
the additional sampling effort that would be 
required to achieve any given increment of the 
number of recorded species. Extrapolations 
associated to Jackknife-1, Jackknife-2 and Chao 
are computed according to equations (1) (2) and 
(3) respectively. Here, the extrapolation 
associated to Jackknife-2 is selected as the less 
biased, since f1/f2 remains largely higher than 0.6 
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in all cases. Besides, a rigorously unbiased 
extrapolation may also be computed, but limited 
to a restricted range of additional sampling effort, 

no more than 60% of the originally realised effort 
(procedure of unbiased extrapolation derived in 
[17]).   

                   
Table 4. Estimates of the total species richness S according to the three nonparametric 

estimators Jackknife-2, Jackknife-1, Chao and the c orresponding degrees of completeness 
Ro/S (%) 

 
P.N. Ecrins S JK-2 S JK-1 S Chao Ro/SJK2 

according to 
JK-2 

Ro/SJK1 
according to 
JK-1 

Ro/SChao 
according to 
Chao 

Acaria 201 173 188 64% 74% 68% 
Hemiptera 56 56 52 84% 84% 90% 
Diptera 180 156 170 66% 76% 69% 
Hymenoptera 48 50 46 92% 88% 96% 
all 4 orders 485 435 437 69% 77% 77% 
The numbers, Ro (= R(No)) of currently recorded species : Acaria Ro = 128, Hemiptera Ro = 47, Diptera Ro = 

118, Hymenoptera Ro = 44, all four orders together Ro = 337 
 

 
 

 

  
 

Figs. 3-6. Extrapolations of the species accumulati on curve associated to each of the three 
nonparametric estimators Jackknife-2, Jackknife-1, Chao and also, a limited, unbiased 

extrapolation (see text for details) 
The black dot corresponds to the realised sampling {Ro, No = 147} beyond which the Species Accumulation 

Curve is extrapolated 
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Table 5. The predicted additional sampling effort ( in % of the already performed sampling 
effort No = 147 sites) required for expecting 80 % and 90 % sampling completeness, according 

to the extrapolations of the Species Accumulation C urve respectively associated to each of 
the three nonparametric estimators Jackknife-2, Jac kknife-1, Chao 

 
P.N. Ecrins  80% 

JK-2 
80%  
JK-1 

80% 
Chao 

90% 
JK-2 

90%  
JK-1 

90% 
Chao 

Acaria + 121% + 29% + 41% + 380% + 170% + 43% 
Hemiptera - - - + 58% + 58% 0% 
Diptera + 110% + 20% + 36% + 349% + 138% + 90% 
Hymenoptera - - - - - - 
all 4 orders + 73% + 12% + 9% + 280% + 124% + 56% 

 
Derived from this graphic data, Table 5 provides 
the predicted additional sampling efforts (in % of 
the already performed sampling effort No = 147 
sites) required to reach 80% and 90% levels of 
sampling completeness. Each of the four orders 
are considered separately and also altogether for 
the whole inventory. In each case, the required 
additional sampling effort is computed according 
to each of the three types of extrapolation 
(associated to the three estimators Jackknife-2, 
Jackknife-1, Chao). Predicted extra-sampling 
efforts differ very strikingly according to the 
selected estimator, thus demonstrating how 
critical is the choice of the appropriate type of 
estimator (and its associated extrapolation). 
 
7. CONCLUSION 
 
Among three of the most commonly used 
nonparametric estimators of total species 
richness, Chao, Jackknife-1, Jackknife-2, only 
the two Jackknife estimators comply with the 
required “rule of additivity” (Table 3). Among the 
latter, Jackknife-2 is preferred in general, while 
Jackknife-1 may be used only when samples are 
approaching completeness (section 3.1). 
Interestingly, Jackknife-2 has already been 
selected, quite independently, according to 
another strong theoretical argument: having an 
associated Species Accumulation Curve 
complying better than the two other estimators 
with a general mathematical relationship 
constraining the theoretical expressions of all 
Species Accumulation Curves [18]. 
 
Besides, as already pointed above, selecting 
Jackknife-2 (or Jackknife estimators of higher 
order) in general (i.e. apart from closely 
approaching sampling completeness, when 
extrapolation becomes of lesser interest) is in 
agreement with the general policy suggested 
successively by Brose et al. [19] and Reese et al. 
[27] on semi-empirical basis and also pointed by 
several authors on empirical basis [6,16,20-23].  

Our own argumentations, fully established on 
theoretical grounds, thus provide a still more 
solid basis to the propositions of the preceding 
authors, i.e., the general relevance of Jackknife 
estimators (and their associated expressions for 
the extrapolation of the Species Accumulation 
Curve), while Chao and i-Chao estimators should 
preferably be restricted to the particular context 
already mentioned. 
 
The illustrative examples provided above are 
representative of the importance of the issues 
involved by the extrapolation of species 
accumulation beyond incompletely achieved 
samplings: disagreements are very substantial, 
indeed, between the estimations of the number 
of missing species provided by each of the three 
estimators considered here (Tables 3 and 4). Still 
more important are the discrepancies between 
the predicted additional sampling efforts that are 
required for a given increase of sampling 
completeness, considering the extrapolations 
respectively associated to each of the three 
estimators (Table 5).  
 
Thus, selecting the appropriate (less biased) type 
of estimator of the number of missing species 
(and of total species richness) and, by the way, 
selecting the more reliable extrapolation of the 
Species Accumulation Curve, are of prime 
importance. Since no reliable procedure of 
selection in this respect has ever been efficiently 
developed on an empirical basis, the need for a 
rational guidance based on a solid theoretical 
basis is obvious, as argued here. 
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APPENDIX 
 
A1 – A general mathematical constraint applying to the expression of any theoretical Species 
Accumulation Curve (in practice, to any ‘rarefied’  Species Accumulation Curve) 
 
A relationship of general validity (detailed derivation provided in [17, 20]) links: 
 

- on the one hand, the series of numbers, fx(N), of those species respectively recorded x-times 
in a sample of size N and, 

- on the other hand, the successive derivatives, ∂xR(N)/∂N
x, of the theoretical expression of the 

Species Accumulation Curve  R(N), where R(N) is the number of recorded species in the 
sample of size N: 

 
 [∂xR(N)/∂N

x]  =  (-1)(x-1) fx(N) /CN, x   ≈   (– 1)(x-1) (x!/Nx) fx(N)
                                                      (A1.1) 

 
Note that the curve associated to Jackknife-2 satisfies equation (A1.1) for both x =1 and x = 2 (first 
and second derivatives), while Jackknife-1 complies only with equation (A1.1) only for x = 1 (first 
derivative only), as demonstrated previously [18]. This is the reason why Jackknife-1 may provide a 
valid estimation within a restricted range only, i.e. when sample has reach a level of completeness not 
so far from completeness. 
 
A2 - Derivation of the degree of deviation of Chao estimator from what is prescribed by the 
rule of additivity 
 
The demonstration is conducted for an assemblage of species encompassing two mutually excluding 
categories of species, so that the whole sampling may relevantly be divided in two, well identified and 
separated sub-samples. The demonstration may easily be extended to any number of categories. 
 
Let {g1, g2} and {h1, h2} be the numbers of species recorded once and twice respectively in each of the 
two sub-samples a1 & a2 under consideration. 
 

(i) Deriving the condition ensuring no deviation, so that  the estimated number of missing 
species in the whole sample equals the sum of the numbers of missing species in each of 
sub-samples 

 
The estimated numbers m and m’ of missing species in each of the two sub-samples a1 & a2 are: 
 

m = g1
2/(2g2)    m’ = h1

2/(2h2) 
 
and the estimated number M of missing species in the whole sample A is: 
 

M = (g1+h1)
2/(2(g2+h2)) 

 
With k1 = g1/h1 and k2 = g2/h2, it comes: 

 
M = (h1

2/h2).(k1+1)2/(2(k2+1)) ; 
 

m = (h1
2/h2).(k1

2/(2 k2)) 
 
Accordingly, the additivity rule, M = m+m’, leads to: 
 

(k1+1)2/(2(k2+1)) = ½ (k1
2/k2 + 1),  that is: k1

2 + 2 k1 +1 = k1
2+ k2+ k1

2/k2 +1, which yields: 
 

2 k1 =  k2+ k1
2/k2 and thus: (k1 – k2)

2 = 0 
 
Therefore, the condition for Chao estimator respecting the required additivity rule is: 
 

g1/h1 = g2/h2, or, as well: g1/g2 = h1/h2 
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(ii) Evaluating the difference between the estimated number of missing species in the whole 
sampling and the sum of the numbers of missing species in each of sub-samplings (for Table 
1 and Fig. 2) 

 
Let {g1, g2} and {h1, h2} be the numbers of species recorded once and twice, for each of the two 
considered sub-samples. In full generality, the sub-samples will generally differ in this respect. In the 
following, these difference are conveniently quantified by the ratios α = (g1/g2)/(h1/h2) and β = g1/h1.    
Then: 
 

M = (h1
2/(2 h2)(1+ β)2/(1+ β/α) 

m + m’ = (h1
2/(2 h2)(1+ β.α).   Then: 

 
M – (m+m’)  =  (h1

2/(2 h2)[(1+ β)2/(1+ β/α) – (1+ β.α)]  
M – (m+m’)  =  (h1

2/(2 h2)[(1+ β2 +2β –1 – β.α – β/α – β2)/(1+ β/α)] 
M – (m+m’)  =  (h1

2/(2 h2)[(2β – β.α – β/α)/(1+ β/α)] 
 
Likewise: 
 
M + (m+m’) = (h1

2/(2 h2)[(2 + 2β2 +2β + β.α + β/α)/(1+ β/α)] 
And, accordingly, the relative difference D = |M–(m+m’)|/[½ (M+(m+m’))]  
between M and (m+m’), considered in Table 1 and Fig. 2, is given by the following expression: 
D  =  |M–(m+m’)|/[½ (M+(m+m’))]   =   (4β – 2β.α – 2β/α)/(2 + 2β2 +2β + β.α + β/α). 
 
A3 - Estimation of the evolutions of f 1 and f 2 (and thus of Jackknife-1 and Jackknife-2) with 
sample size N 
 
According to [17,18]: 
 

R(N) = (R(N0) + 2f1 – f2) – (3f1 – 2f2) N0/N – (f2 – f1) N0
2/N²                                                (A3-1) 

 
f1(N) =  N.∂R(N)/∂N                                                                                                            (A3-2) 
     
f2(N) =   – ½N².∂2R(N)/∂N2                                                                                                 (A3-3) 

 
It follows: 

 
f1(N) =  N.∂R(N)/∂N  = (3f1 – 2f2) N0/N + 2(f2 – f1) N0

2/N2                                                   (A3-4) 
 

f2(N) =  – ½N².∂2R(N)/∂N2  = (3f1 – 2f2) N0/N + 3(f2 – f1) N0
2/N2                                          (A3-5) 

 
JK-2 (N) = 2f1(N) – f2(N) = (3f1 – 2f2) N0/N + (f2 – f1) N0

2/N2                                               (A3-6) 
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