
Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

Shi Yin,
Hebei Agricultural University, China

REVIEWED BY

Ying Zhu,
Xi’an University of Architecture and
Technology, China
Zerouali Bilel,
University of Chlef, Algeria

*CORRESPONDENCE

Huiping Wang

wanghuiping@xaufe.edu.cn

RECEIVED 20 June 2023

ACCEPTED 08 August 2023

PUBLISHED 01 September 2023

CITATION

Wang H and Liu P (2023) Characteristics of
China’s digital economy network and its
impact on carbon emissions.
Front. Ecol. Evol. 11:1243360.
doi: 10.3389/fevo.2023.1243360

COPYRIGHT

© 2023 Wang and Liu. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 01 September 2023

DOI 10.3389/fevo.2023.1243360
Characteristics of China’s digital
economy network and its impact
on carbon emissions

Huiping Wang* and Peiling Liu

Resource Environment and Regional Economic Research Center, Xi’an University of Finance and
Economics, Xi’an, China
Accurately grasping the correlation of digital economy between cities is an

important foundation for scientifically formulating regional coordinated

development strategies, and also an important entry point for achieving the

goal of “carbon peaking and carbon neutrality”. Using data for 248 cities in China

from 2011 to 2019, social network analysis is conducted to examine the overall

and individual characteristics of the digital economy network (DEN), and the

effects of the DEN’s central characteristics on carbon emissions are empirically

assessed. Research conclusions include the following: first, the digital economy

of these 248 cities in China exhibits a clear spatial network structure, but the

overall network structure is relatively loose, with fewer connections between

cities, representative of the initial form of the network. Second, the Yangtze River

Delta Urban Agglomeration, as represented by Wuxi, Suzhou, and Nanjing,

occupies a core position in the network. Only 35 cities fulfil an intermediary

role, influencing the connections between other cities. More than 40% of cities

are strongly connected with nondirect partners. Third, the improvement in the

central position of the DEN significantly increases carbon emissions, but the

direction and intensity exhibit high heterogeneity with differences in resource

endowment and population size. Fourth, the central characteristics of the DEN

indirectly promote carbon emissions by increasing energy consumption. These

research findings complement the existing research on the relationship between

DEN and carbon emissions, providing valuable policy implications for

governments and scholars.

KEYWORDS

digital economy, carbon emissions, social network analysis, network characteristics,
central position
1 Introduction

The negative effects of climate change, such as the frequent occurrence of extreme

weather and glacier melting events, have become increasingly apparent on a global scale.

Carbon emissions are considered the main culprit driving climate change, and the

continuous increase in carbon emissions in recent years has raised concerns worldwide

(Song et al., 2023). Therefore, reducing carbon emissions, building a low-carbon society,
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and promoting sustainable economic development have become a

consensus among global governments (Chen et al., 2023). Based on

the data in the “BP World Energy Statistics Yearbook”, China’s

carbon emissions accounted for approximately 33% of global

emissions in 2021, ranking first in the world (BP, 2022).

Therefore, the Chinese government has proposed to strive to

achieve a carbon peak in 2030 and carbon neutrality by 2060

(Yang et al., 2022). This is an inevitable choice for China to

address its prominent resource and environmental constraints

and achieve sustainable economic development. Ecological

priority and green low-carbon strategies comprise the foundation

for China’s future high-quality development.

Meanwhile, China’s digital economy is rapidly growing. As a new

type of economy, the digital economy relies heavily on information

networks and data resources, which can improve the economic

efficiency and optimize the economic structure (Ozturk and Ullah,

2022; Guo et al., 2023). Based on the research of the Chinese

Academy of Information and Communications Technology

(China), the scale of China’s digital economy reached 39.2 trillion

yuan in 2020, accounting for 38.6% of its GDP. As a new engine of

national economic prosperity, China’s digital economy has emerged

as a key driving force for its economic development, which has

attracted unprecedented attention (Han and Jiang, 2022; Wang et al.,

2022). At present, the integration of the digital economy and the real

economy is accelerating, and new-generation digital technologies

such as big data, artificial intelligence and blockchain continue to

promote all-round transformation of China’s economy into new

production, new management and new lifestyle patterns such as

digital industrialization and digital governance. Of course, traditional

physical enterprises can also use digital technology to optimize their

industrial layout and make more accurate investment decisions

(Dong et al., 2023).

With deep integration and application innovation of

digitalization in the fields of resource and tenvironment, digital

technology has gained a great deal of attention as a means of

achieving carbon neutrality (Yu et al., 2022; Wang et al., 2023).

There has been a controversy in academia regarding how the digital

economy impacts carbon emissions. On the one hand, the digital

economy has significantly restrained carbon emissions. Digitalization

could facilitate enterprise management transformation, realize

accurate monitoring, measurement and prediction of carbon

emissions, help to scientifically plan the energy consumption

structure and improve the energy efficiency to directly reduce

carbon emissions (Wang and Shao, 2023). The digital economy

promotes the sharing of innovative technology and knowledge

between enterprises, thereby reducing search costs (Tang et al.,

2022). As part of the digital economy, innovative resources and

factors are directed towards high-productivity industries, and the

resource allocations are optimized (Ren et al., 2021). By effectively

integrating various resources, a whole digital industry chain can be

constructed to reduce carbon emissions in all links (Amuso et al.,

2020). Therefore, the innovation and technological progress in the

digital economy can reduce carbon emissions (Cheng et al., 2023). On

the institutional side, corruption can be combated and tax

compliance can be strengthened through digitalization for low-
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carbon economic development (Fanea-Ivanovici et al., 2019). On

the other hand, carbon emissions may increase as a result of the

digital economy. For instance, when the digital economy is in its

infancy, the large-scale construction of digital infrastructure and

rapid growth in internet penetration will inevitably increase power

and energy consumption levels, thus increasing carbon emissions

(Salahuddin and Alam, 2016; Li et al., 2020; Hao Y. et al., 2022). The

increase in the demand and supply of information and technology-

intensive products is usually positively correlated with energy

consumption, leading to an increase in carbon emissions. Internet

development has increased energy consumption through economic

growth (Ren et al., 2021). The upgrading and adoption of digital

technology and the construction of data centers can result in the

consumption of more resources and increase carbon emissions

(Dong K.Y. et al., 2022). Expanding investment in digital

equipment and infrastructure, as well as digitizing traditional

industries, will promote pollutant emissions and energy

consumption (Wang et al., 2022). In China, the rapid increase in

transportation demand due to online shopping and delivery

industries has exacerbated carbon emissions (Chen et al., 2020).

China’s bitcoin blockchain generates 13.05 billion tons (MT) of CO2

each year (Jiang et al., 2021). There are also end-user devices, such as

smartphones, whose power emissions are the most important

contributors (Ruiz et al., 2022). In summary, the digital economy

cannot be greenized, and its development should slow down. Other

scholars believe that the development of China’s digital economy is

still at the stage of transition from the embryonic stage to the early

stage, and the impacts of the different stages of development of digital

technology on carbon emissions vary (Hao Y. et al., 2022). Therefore,

there exists an inverted U-shaped relationship between the two

(Zhang W. et al., 2022).

Recently, social network analysis (SNA) method has been

widely used in population mobility, urban spatial structure,

international trade, technological innovation and other fields

(Norbutas and Corten, 2018; Hamilton et al., 2019; Yu and Ma,

2020; Zhang et al., 2020; Leng et al., 2021; Meng et al., 2021). In

addition, the SNA method has been applied in the fields of

environment and energy to reveal the spatial correlation

characteristics of environmental change, such as carbon emissions

(Bai et al., 2020; Shen et al., 2020), pollution control (Su and Yu,

2019), energy consumption (Liu et al., 2020; Wang and Liu, 2023),

natural gas consumption (Bu et al., 2020; Li and Li, 2022), weather

and market information networks (Simon et al., 2021), tourism

economy (Gan et al., 2021), and so on. Among them, research on

carbon emission network in a certain region is relatively common,

such as OECD countries, as well as provinces, cities, and urban

agglomerations in China. Moreover, scholars have further analyzed

the technology spillover effects of environmental regulation on

carbon emission network based on the characteristics of network

structure (Jiang and Ma, 2021). At the same time, some scholars

have also used SNA method for research on the digital economy.

For example, Chen and Zhu (2021) used data from China’s top 500

new economy enterprises to study the impact of China’s digital

economy on urban network structure. Tang et al. (2021) used data

from 2004 to 2019 to study the network structure characteristics of
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the digital economy at the provincial level in China. Zhong et al.

(2022) used data from 30 provinces in China from 2010 to 2019 to

study the relationship between digital economy and its network

structure characteristics, as well as carbon emissions decoupling.

However, in general, SNA is seldom used in the field of digital

economy, and there is no research on digital economy network

(DEN) of prefecture-level city and urban agglomerations in China.

As mentioned earlier, existing literatures have examined the

relationship between the digital economy and carbon emissions

through different methods, laying the foundation for subsequent

research. However, most literature currently does not consider the

impact of the network structure characteristics of the digital economy

on carbon emissions. The SNA method has unique advantages, as it

can not only directly reflect association features, but also intuitively and

concisely reveal association features by constructing spatial association

network (Jiang and Ma, 2021). The application of this method in

environmental economics is still relatively small, which provides an

opportunity for this study. In summary, there is no unified opinion

about how the digital economy affects carbon emissions in academia. In

addition, due to the large-scale construction of digital infrastructure

and rapid development of the digital economy, interconnection

between different regions is becoming increasingly frequent and

pronounced, so a spatial network of the digital economy has been

formed nationwide. Therefore, what are the specific characteristics of

this DEN? What is the relationship between DEN and carbon

emissions? Few researchers have addressed these issues. This paper

aims to sort out and answer the above two core questions, which can

not only clarify the structural characteristics of the digital economy

network, but also help us to comprehensively understand the impact of

DEN on carbon emissions from a spatial perspective, thereby helping

cities to develop the digital economy in a targeted manner and

formulate collaborative emission reduction policies. Carbon

emissions and energy consumption are largely attributed to cities,

which form the backbone of the digital economy strategy (Dong and Li,

2022). Compared to those at the provincial level, the characteristics of

the DEN and its relationship with carbon emissions can be explored

more carefully at the city level, which is more conducive to realizing

regional collaborative carbon emission reduction (Wang et al., 2022).

Therefore, in this paper, SNA is used to explore the DEN and its impact

on carbon emissions in 248 cities in China. Here are the

main contributions:
Fron
1. Based on relational data and the network perspective, a

corrected gravity model is adopted to construct a DEN of

248 cities in China, and the structural morphology of the DEN

is more comprehensively revealed from the perspective of

cities, thus enriching the quantitative analysis of the DEN.

This helps to have a clear understanding of the evolution

process of the digital economy network and provides a new

research perspective for future research.

2. Through the three indicators of the degree centrality,

betweenness centrality and eigenvector centrality, the

status and role of cities in the DEN are determined, and

the above three indicators are adopted as explanatory

variables to examine the impact of the DEN’s central

characteristics on carbon emissions. This helps to
tiers in Ecology and Evolution 03
accurately identify the impact mechanism of DEN’s

central characteristics on carbon emissions, reveal their

long-term dynamic relationship.

3. According to the differences in natural resource endowment

and urban scale between the sample cities, the heterogeneity of

the effect of the DEN’s central characteristics on carbon

emissions is examined, and the impact mechanism is

investigated with energy consumption as an intermediary

variable. This helps to develop carbon reduction policies

tailored to local conditions and characteristics.
The rest of this paper is organized as follows. Section 2

introduces the methods and materials, and the results and

discussion are presented in Section 3. Section 4 provides a

discussion. The conclusions and policy implications are outlined

in Section 5.
2 Materials and methods

2.1 Study area

Cities with an average regional GDP in the top 90% of China

from 2011 to 2019 are chosen in this study. As shown in Figure 1,

color denotes the study area, and white denotes the nonstudy area.

Most of the cities selected are located to the east of the Hu Line,

where the population accounts for more than 90% of the total

population of China, with excellent infrastructure construction,

convenient transportation, a more developed economy and a

favorable foundation for digital economy development.
2.2 Gravity model

The traditional gravity model calculates gravity based on the

mass and distance between two objects, but does not consider the

correlation between research objects and the bidirectional and

asymmetric nature of regional economic factors, and needs to be

improved (Dong and Li, 2022). The revised gravity model utilizes

cross-sectional data to describe spatial correlation evolution, and

combines factors such as geographic distance, economic

development, and population to describe regional connection

strength. Choosing a gravity model to create a spatial correlation

network has advantages in describing inter regional relationships

and spatial dynamic evolution trends (Kuik et al., 2019; Hao Y.

et al., 2022). This paper draws inspiration from the research ideas of

Fan and Xiao (2021) and modifies the gravity model as follows:

Yij = kij

ffiffiffiffiffiffiffiffiffi
PiTiGi

3
p ffiffiffiffiffiffiffiffiffi

PjTjGj
3
p

M2
ij

kij =
Ti

Ti+Tj

Mij =
Dij

pgdpi−pgdpj

(1)

where Yij is the digital economic gravity between cities i and j, Pi
and Pj are the populations of cities i and j, respectively. Gi and Gj are
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the regional GDPs of cities i and j, respectively. Ti and Tj are the

digital economic indicators of cities i and j, respectively. Dij is the

geographical distance between cities i and j. pgdpi and pgdpj are the

per capita GDPs of cities i and j, respectively. Moreover, kij is the

weighted proportion coefficient of the digital economy index

between cities i and j.

According to the revised gravity matrix, the correlation matrix

between cities can be calculated. To facilitate description, the

correlation matrix is binarized to form a new matrix I. As

expressed in equation (2), Ai is the average value of each row in

the matrix Yij.

I = (iij) =
1 Yij ≥ Ai

0 Yij < Ai

(
(2)
2.3 Network characteristic indicators

2.3.1 Overall network characteristics indicator
We use the network density to describe the overall

characteristics of the DEN. The higher the network density, the

closer the relationship of the digital economy between cities is.

Network density can be obtained as follows:

D =
o
n

i=1
o
n

j=1
d(ki, kj)

n(n − 1)
(3)

where n is the number of nodes, and d(ki, kj) is the number of

relationships between nodes ki and kj.
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2.3.2 Individual network characteristic indicator
The degree centrality refers to the degree of direct correlation

between a city and other cities. A higher value suggests that city i is

more connected to other cities in the DEN, i.e., the city is at the

center of the network. This index can be calculated with equation

(4), where n is the number of cities directly associated with a given

city and N is the number of cities.

Degi =
n

N − 1
(4)

Betweenness centrality is a measure of a city’s control over other

cities. The higher the value, the more city i is located at a controlling

position within the network and plays a bridging or intermediary

role. As expressed in equation (5), gjk(i) is the number of shortest

correlation paths between cities i and j, and gjk is the number of all

shortest correlation paths between cities j and k, with k ≠ j ≠ i and

j < k.

Beti =

2o
n

j
o
n

k

njk(i)

n2 − 3n + 2

njk(i) =
gjk(i)

gjk
(5)

The eigenvector centrality reflects the ability of city i to indirectly

affect other cities. The higher the value, the greater the ability of city i to

indirectly affect other cities. As expressed in equation (6), g = [gij] is the

adjacency matrix of the network, and l−1
1 is the largest characteristic

value of the matrix g module, which is the unit root.

Eig = l−1
1 gx (6)
FIGURE 1

Spatial distribution of the degree centrality in 2019.
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2.4 Econometric model

To explore how the DEN’s central characteristics affect carbon

emissions, the following econometrical model is constructed:

CEit = a0 + a1Cenit + a2Contit + mi + nt + ϵit (7)

where i denotes the city, t denotes the time, CEit denotes the

carbon emissions, and Cenit denotes the central characteristics of

the DEN, including the degree centrality (Deg), betweenness

centrality (Bet) and eigenvector centrality (Eig). Conit denotes the

control variables, and ϵit is the random disturbance term.

Additional to the total effect expressed in equation (7), the

DEN’s central characteristics may indirectly impact carbon

emissions through intermediary mechanisms. According to

literature analysis, energy consumption may play an intermediary

role, and the following intermediary effect model can be established:

ECit = b0 + b1Cenit + b2Contit + mi + nt + ϵit

CEit = g0 + g1Cenit + g2ECit + g3Contit + mi + nt + ϵit
(8)

where ECit is energy consumption, and the other variables are

defined the same as those in equation (7).
2.5 Variable description

Digital economy (DE): Scholars at home and abroad have

proposed different statistical indicators and measurement

methods for the digital economy. However, there is currently no

unified evaluation index system (Zhang et al., 2023). In this paper,

the method of Zhang W. et al. (2022) is used to calculate the digital

economy index. The specific indicators include the number of

internet broadband access users, computer services and software

industry practitioners, the total telecommunications business per

capita, the number of mobile phone users, and the digital inclusive

financial index. The composite index value can be obtained by

principal component analysis.

Carbon emissions (CE): At present, there are two main methods

to measure carbon emissions: one is the departmental accounting

method, and the other is the apparent emission accounting method.

The carbon emission data in this paper are retrieved from the

Carbon Emission Accounts and Databases (CEADs) of Tsinghua

University in China, which has been widely used in existing

research because of its importance.

The IPAT model measures the impacts of socioeconomic factors

on the environment from demographic, economic and technological

perspectives. Therefore, to avoid deviation in the empirical test results

caused by the omission of important explanatory variables, referring to

relevant research, the industrial structure, population, government

intervention, openness and environmental regulation are chosen as

control variables in this study. The specific indicators are as follows: the

industrial structure (IS) is expressed by the proportion of the added

value of the tertiary industry in the GDP. The energy consumption of

tertiary industry is relatively low, so increasing the proportion of

tertiary industry is considered to be an important way to reduce

carbon emissions (Xue et al., 2022). The population (Por) is
Frontiers in Ecology and Evolution 05
expressed in terms of the population per square kilometre. Generally

speaking, the denser the population, the more economic activities, and

the greater the carbon emissions. Government intervention (Gov) is

measured by the share of the general public budget expenditure in the

GDP. Achieving economic growth is an important task for local

governments, which may lead to local governments sacrificing some

environmental benefits for economic benefits, thereby increasing

carbon emissions (Lan et al., 2021). Openness (Open) is expressed as

the proportion of the total import and export trade to the GDP. Due to

environmental policy restrictions in developed countries, multinational

corporations tend to shift high energy consuming and polluting

industries to developing countries, resulting in a “pollution paradise”

effect and increasing carbon emissions in developing countries (Zhao

et al., 2022). Environmental regulation (ER) is expressed by the sulfur

dioxide removal rate. Environmental regulation is considered one of

the important ways to reduce carbon dioxide (Wang and Zhang, 2022).

The energy consumption (EC) is expressed by the proportion of the

total electricity consumption of each city to the household registration

population. The rise of the early digital economy industry, such as

online shopping, e-commerce live streaming, and virtual games, led to

an increase in energy consumption, thereby exacerbating carbon

emissions (Hao X. et al., 2022).
2.6 Data sources

To ensure the continuity and availability of the sample data,

combined with the adjustment of administrative divisions and

missing data, as well as the computing power constraints of

UCINET software, 248 cities in China are selected as samples.

The index data mainly comes from the China Urban Statistical

Yearbook and the urban statistical yearbook, and any missing values

are supplemented by linear imputation. The distance between cities

is expressed in terms of the geographic distance.
3 Results and discussion

3.1 Overall network characteristics
of the DEN

The network density is adopted to describe the overall

characteristics of the DEN to reveal the closeness between cities

within the network. Because the sample comprises 248 cities in

China, the maximum number of associations is 248 × (248 − 1) =

61,256. The network density is calculated in UCINET, and the

results are shown in Figure 2. In the network, the number of links

over time is higher than 8,000. Except for 2013 and 2018, the

network density varied between 0.14 and 0.17. Among them, the

network density in 2013 was the lowest, at only 0.1317. The possible

reason is that global industrial production and trade were weak in

2013, international financial markets continued to fluctuate, and the

links of the digital economy between Chinese cities were hampered

by the continued downturn in the overall economy. However, since

2014, big data was incorporated into the central government work

report, so the network density rebounded to 0.1618. From 2014 to
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2019, the network density showed a spiral upward trend, reaching

the highest value of 0.1706 in 2019. Generally, in addition to the

downward trend from 2011 to 2013, the network density showed an

upward trend from 2013 to 2019. In short, the number of digital

associations between Chinese cities was relatively sparse, and the

network structure was relatively loose.
3.2 Individual characteristics of the DEN

3.2.1 Dynamic distribution characteristics
According to equations (4), (5) and (6), the three indicators of

the degree centrality, betweenness centrality and eigenvector
Frontiers in Ecology and Evolution 06
centrality of the DEN in each city are calculated. Figure 3 shows

the kernel density of the degree centrality from 2011 to 2019, with

the abscissa representing the degree centrality and the ordinate

representing the kernel density. The kernel density of the degree

centrality showed a right-sided distribution. This suggests that the

cities involved in the digital economy were mainly concentrated in a

few cities, while most cities possessed fewer partners to connect

with. From 2011 to 2019, the distribution of the degree centrality

did not significantly change.

Figure 4 shows the kernel density of the betweenness centrality

from 2011 to 2019. The kernel density of the betweenness centrality

revealed a right-sided distribution. This shows that in the DEN,

betweenness centrality of most cities was very low, and only a few
FIGURE 2

Association relationships and network density from 2011 to 2019.
FIGURE 3

Kernel density of the degree centrality.
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cities exhibited very high values. Over time, the peak kernel density

declined, indicating that the number of cities with a low degree

centrality decreased, suggesting that the number of cities with

mediating effects increased. From 2011 to 2019, the distribution

of betweenness centrality did not significantly change.

Figure 5 shows the kernel density of the eigenvector centrality

during 2011–2019. The kernel density of the eigenvector centrality

shows a right-sided distribution. This indicates that most cities in

the network attained notable indirect impact capabilities, while only

a small number of cities attained relatively low indirect impact

capabilities. Moreover, over time, the kernel density increased,

indicating that cities tended to enhance their indirect influence.

3.2.2 Spatial distribution characteristics
Table 1 reports the ranking of the top ten individual network

indicators of the various cities in 2011, 2014, 2017 and 2019. From

the perspective of the degree centrality, there was a slight change in

the top ten cities from 2011 to 2019, with Wuxi, Suzhou, Dongying,

and Ordos mostly ranking in the top five. From a geographical

perspective, over the past four years, eastern cities accounted for

70% or more of the top ten cities, with only Ordos and Baotou

occurring four times in the west and Daqing occurring only once in

the northeast. From the ranking of the betweenness centrality, the

situation was relatively similar to the ranking of the degree

centrality, with southern cities, as represented by Wuxi and

Suzhou, gradually becoming the main cities of the correlation.

From the perspective of the geographical location, the proportion

of cities in the eastern region in the top ten showed a steady upward

trend, from 6 in 2011 to 8 in 2019, indicating an absolute leading

position. The number of cities in the central region remained at 2

per year, while that in the western region still showed a decreasing

trend year by year, with only 2 cities in the northeast emerging in

2011. From the ranking of the eigenvector centrality, Wuxi ranked
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first for 3 years, while Suzhou and Nanjing ranked in the top 5 for 4

years, indicating that these three cities attained strong indirect

connections with other cities within the association network.

From the perspective of the geographical location, the eastern

cities still showed an increasing trend year by year, and the

proportion of the top ten cities reached 90% in 2019, while the

number of top-ranked cities in the other three major regions still

showed a decreasing trend year by year. Overall, eastern cities

occupied an unshakable leading position in the network.

In addition, the spatial distribution characteristics of the degree

centrality, betweenness centrality, and eigenvector centrality in 2019

are shown in Figures 1, 6, and 7, respectively. In Figure 1, the degree

centrality is divided into four levels, from low to high, namely, green,

yellow, orange, and red. In this network, most cities in the Yangtze

River Delta region were red, rendering it the region with the highest

degree centrality. The overall color gradually changed from red to green

from east to west, indicating a decrease in the degree centrality. The

inland region, represented by Ordos, was marked in red. The average

degree centrality of the 248 cities was 62.08, with 64 cities attaining

values greater than the average. The sum of these values accounted for

46.60% of the total value of the 248 cities. Among the cities above the

average, there were 36, 16, and 12 cities in the eastern, central, and

western regions, accounting for 42.86%, 20.78%, and 19.67% of all cities

in each region, respectively. The number of cities in Northeast China

was 26, and their degree centrality was less than the average, indicating

that the northeastern cities occurred less frequently in the top and

attained lower participation rates in the DEN. At the same time, 54

cities attained a degree centrality of less than 40, accounting for only

11.3% of their total value. Among them, there were 9, 26, 13, and 5

cities in the northeastern, eastern, central, and western regions,

respectively. The sum of the degree centrality of the top ten cities

accounted for 13.2% of the total value, while the sum of the degree

centrality of the last ten cities accounted for 1.9% of the total value,
FIGURE 4

Kernel density of the betweenness centrality.
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indicating a more severe division between the two levels. This also

indicates that the digital economy industry must be further

strengthened, and the connections between cities must be

further deepened.

As shown in Figure 6, the betweenness centrality could also be

divided into four levels, namely, green, yellow, orange, and red, from

low to high. In the network, most cities in the Yangtze River Delta

region were still red, indicating the area with the highest values of the

betweenness centrality. Overall, except for the Yangtze River Delta

region and some inland cities, most areas in the figure were green.

Compared to those depicted in Figure 1, the green areas increased.

Inland regions, as represented by Changsha and Wuhan, were shown

in red in the figure. The average value of the betweenness centrality

among the 248 cities was 94.03, and 35 cities attained values above the

average, accounting for 79.22% of the total value of the 248 cities. This

indicates that in the network, 35 cities occupied an intermediary or

bridge position. Among the cities with values above the average, the

numbers of cities in the eastern, central, and western regions were 25, 7,

and 3, respectively, accounting for 29.76%, 9.09%, and 4.92%,

respectively, of all cities in each region. The betweenness centrality of

the cities in northeastern China was on average lower than the mean.

This indicates that eastern cities still dominated, while the intermediary

position of cities in the central and western China regions greatly

declined, and the participation rate of northeastern cities remained

relatively low. Moreover, out of 176 cities, only 11.84% attained a

betweenness centrality less than 40, with 24, 48, 57, and 47 cities in the

northeastern, eastern, central, and western regions, respectively. The

sum of the betweenness centrality of the top ten cities accounted for

44.97% of the total value, while the sum of the betweenness centrality of

the bottom ten cities accounted for only 0.11%, indicating a more

serious two-level differentiation than that of the degree centrality. This

also indicates that eastern cities, as represented by Wuxi, Suzhou,

Nanjing, Shenzhen, and Changzhou, occupied the key resource
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elements for the digital economy development in most parts of

China, exerting notable control over the flow of resource elements

for digital economy development in other cities and becoming critical

nodes for the connections among other cities, fulfilling an intermediary

or bridge role.

As shown in Figure 7, the eigenvector centrality could still be

divided into four levels, from low to high, namely, green, yellow,

orange, and red. Overall, in the network, the Yangtze River Delta region

was still marked in red, which was the area with the highest eigenvector

centrality. The average value of the eigenvector centrality of the 248

cities was 8.29, with 83 cities attaining a value greater than the average,

and the cumulative sum of the eigenvector centrality of these cities

accounted for 47.09% of the total value of the 248 cities. This indicates

that more than 40% of the cities in the network indirectly influence

nondirectly connected cities. Among the cities with values greater than

the average, the number of cities in the eastern, central, and western

regions was 35, 26, and 22, respectively, accounting for 41.67%, 33.77%,

and 36.06%, respectively, of the total number of cities in each region.

The cities in the northeast region attained an eigenvector centrality

lower than the average. In addition, the sum of the eigenvector

centrality of the top ten cities accounted for 9.74% of the total value,

while the sum of the eigenvector centrality of the bottom ten cities

accounted for 1.6% of the total value. This indicates that some cities in

the central and western regions, although not directly connected to

many cities, exhibited a strong ability to indirectly influence other cities.
3.3 The impact of the DEN on
carbon emissions

3.3.1 Descriptive statistics
In this paper, the degree centrality, betweenness centrality, and

eigenvector centrality of the DEN are selected as factors influencing
FIGURE 5

Kernel density of the eigenvector centrality.
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carbon emissions for empirical analysis. Descriptive statistics for

each variable are shown in Table 2, with both the explanatory and

response variables logarithmically transformed.

To examine the relationship between the characteristics of the

DEN and carbon emissions mentioned above, a trend analysis,
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scatter plots, and regression curves are employed, as shown in

Figure 8. All three indicators showed a significant positive

correlation with carbon emissions, indicating an overall

increasing trend of carbon emissions as the central characteristics

of the increase in each city.
TABLE 1 Top 10 cities with their central characteristics.

Degree centrality

1 2 3 4 5 6 7 8 9 10

2011 Dongying Ordos Wuxi Suzhou Baotou Daqing Tianjin Nanjing Changzhou Qingdao

2014 Ordos Dongying Suzhou Wuxi Tianjin Nanjing Changzhou Zhenjiang Wuhan Changsha

2017 Suzhou Wuxi Dongying Changzhou Ordos Nanjing Changsha Wuhan Zhenjiang Hangzhou

2019 Wuxi Suzhou Nanjing Changzhou Wuhan Shanghai Hangzhou Ningbo Changsha Nantong

Betweenness centrality

1 2 3 4 5 6 7 8 9 10

2011 Dongying Ordos Wuxi Suzhou Baotou Daqing Tianjin Qingdao Nanjing Dalian

2014 Ordos Dongying Suzhou Wuxi Tianjin Changsha Changzhou Nanjing Baotou Wuhan

2017 Suzhou Wuxi Dongying Ordos Changsha Changzhou Nanjing Wuhan Hangzhou Zhenjiang

2019 Wuxi Suzhou Nanjing Wuhan Shenzhen Changzhou Changsha Hangzhou Shanghai Ningbo

Eigenvec centrality

1 2 3 4 5 6 7 8 9 10

2011 Wuxi Dongying Ordos Suzhou Nanjing Baotou Changzhou Shanghai Daqing Tianjin

2014 Dongying Ordos Suzhou Wuxi Nanjing Tianjin Changzhou Zhenjiang Wuhan Changsha

2017 Wuxi Suzhou Dongying Changzhou Nanjing Ordos Zhenjiang Hangzhou Yangzhou Wuhan

2019 Wuxi Suzhou Nanjing Changzhou Shanghai Hangzhou Wuhan Nantong Ningbo Yangzhou
fro
FIGURE 6

Spatial distribution of the betweenness centrality in 2019.
ntiersin.org

https://doi.org/10.3389/fevo.2023.1243360
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wang and Liu 10.3389/fevo.2023.1243360
3.3.2 Baseline regression results
A two-way fixed effects regression model with city and year

fixed effects is employed, and the results are shown in Table 3.

Columns (1), (2), and (3) represent the regression results with Deg,

Bet, and Eig as independent variables, which are the same in

Tables 4, 5 and 6. After controlling for a range of factors that

affect carbon emissions, the regression coefficients of the degree

centrality, betweenness centrality, and eigenvector centrality are all

significantly positive, indicating that the enhancement in the central

characteristics in each city increase carbon emissions. Specifically,

for each 1% increase in the degree centrality, betweenness centrality,

and eigenvector centrality, carbon emissions increase by 0.275%,

0.086%, and 0.298%, respectively. Possible reasons include China’s

digital economy occurring at its early stages of development, relying

primarily on investment in human capital and technology research
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and development, rather than on the large-scale input of ecological

resources such as coal, oil, and forest products, as in traditional

manufacturing industries. However, the hardware manufacturing

needed, such as electronic components, equipment, and production

of entire machines, occurs in high-energy-consumption areas,

which increases carbon emissions. In addition, in cities with high

centrality, the digital economy imposes a strong clustering effect,

and the storage, transmission, and processing of data all require

support from data centers. This often results in intense investment

in equipment facilities in small spaces, such as large data centers or

supercomputers, which consume large amounts of electricity,

resulting in increased carbon emissions.

According to the control variables, the regression coefficients of

the industrial structure are significantly negative in all three models,

indicating that an increase in the proportion of the tertiary industry
TABLE 2 Descriptive statistics of the variables.

Variable N Mean p50 SD Min Max

CE 2,232 2.702 2.676 0.474 1.193 4.140

Deg 2,232 3.892 3.807 0.521 2.079 5.485

Bet 2,232 3.073 2.804 1.521 −2.040 7.785

Eig 2,232 −2.934 −2.937 0.406 −4.605 −1.677

EC 2,232 3.300 3.320 0.479 1.725 4.663

IS 2,232 0.479 0.481 0.095 0.117 0.893

Por 2,232 2.554 2.612 0.368 0.001 3.423

ER 2,232 0.617 0.375 2.208 −6.973 15.590

Gov 2,232 0.180 0.166 0.070 0.044 0.572

Open 2,232 −0.451 −0.073 1.282 −15.18 2.491
FIGURE 7

Spatial distribution of the eigenvector centrality in 2019.
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can suppress carbon emissions. The regression coefficient of the

population is significantly positive at the 1% level, indicating that

population expansion may lead to an increase in the number of

production and life activities, thereby increasing carbon emissions.
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The regression coefficient of government intervention is

significantly negative, showing that government intervention can

effectively suppress carbon emissions. The reason may be that under

the constraint of the dual carbon targets, local governments allocate

more fiscal expenditure to carbon reduction. The coefficient of

openness is significantly negative, and the high openness degree of

cities to the outside world can be more conducive to local

enterprises learning and utilizing advanced foreign technology,

thereby promoting energy conservation and emission reduction.

3.3.3 Robustness test
Robustness tests are conducted using three methods. First,

carbon emissions are replaced with per capita carbon emissions.

As shown in columns (1) to (3) of Table 4, the coefficients of the

three central indicators are significantly positive, with only slight

changes in numerical magnitude and no changes in direction. The

test results are consistent with the previous conclusions, indicating

the robustness of the study. Second, the entropy method is applied

to recalculate the digital economy index, and the degree centrality,

betweenness centrality, and eigenvector centrality are recalculated

based on equations (4) to (6). As shown in columns (4) to (6) of

Table 4, the direction of the coefficients of the three central

indicators do not change, which is consistent with the previous

analysis. Third, parameter estimation is performed using the

generalized method of moments (GMM) to address potential

endogeneity issues between the central characteristics and carbon

emissions, as well as the possibility of omitted variables. The lagged

one-period centrality characteristics are used as instrumental

variables, and a two-step GMM is employed for regression, as

shown in columns (7) to (9) of Table 4. The results indicate that

both AR(1) and AR(2) conform with the assumption of no

autocorrelation in the error term, and the Hansen test confirms

the validity of the instrumental variable used in the estimation.
TABLE 3 Baseline regression results.

Variable (1) (2) (3)

Deg
0.275***
(8.86)

Bet
0.086***
(8.33)

Eig
0.298***
(7.04)

IS
−0.453**
(−2.15)

−0.408*
(−1.92)

−0.432*
(−1.95)

Por
0.252***
(3.51)

0.270***
(3.78)

0.259***
(3.43)

Er
0.010
(1.40)

0.010
(1.35)

0.009
(1.21)

Gov
−3.130***
(−9.85)

−3.204***
(−9.86)

−3.358***
(−10.20)

Trade
−0.023**
(−2.01)

−0.025**
(−2.15)

−0.030**
(−2.31)

Cons
2.398***
(7.76)

3.171***
(10.84)

4.423***
(13.76)

Year fe Yes Yes Yes

City fe Yes Yes Yes

N 2232 2232 2232

R-squared 0.681 0.677 0.660
t-statistics in parentheses. *: p< 0.10, **: p< 0.05, ***: p< 0.01.
FIGURE 8

Scatter plots.
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Thus, the above tests demonstrate the validity of using the two-step

GMM. The direction of the coefficients of the three central

indicators remain consistent with that in the previous research.

3.3.4 Heterogeneity testing
3.3.4.1 Heterogeneity of resource endowment

According to the natural resource endowment of each city, the

sample are divided into nonresource-based cities and resource-

based cities, and parameter estimates are conducted separately. As

presented in Table 5, in the nonresource-based cities, the regression

coefficients of the degree centrality, betweenness centrality, and

eigenvector centrality are all significantly positive at the 1% level. In

the resource-based cities, the regression coefficients of degree

centrality and betweenness centrality are significantly positive at

the 10% and 5% levels, respectively, and the eigenvector centrality is

not significant. This indicates that the indirect impact ability of the

resource-based cities in the network does not promote

carbon emissions.

3.3.4.2 Heterogeneity of urban scale

Based on the population size, cities are classified as large, mid-

size, and small to examine the heterogeneity of urban scale, as listed
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in Table 6. The results indicate that in medium-sized cities, the

degree centrality, betweenness centrality, and eigenvector centrality

are all unrelated to carbon emissions. In large cities, the coefficients

of the three central indicators are significantly positive at the 1%

level. In small cities, the coefficients of degree centrality and

betweenness centrality are significant at the 5% and 10% levels,

respectively, while the eigenvector centrality is not significant. In

med-size cities, the coefficients of three central indicators are not

significant. This suggests that in large cities, enhancing the

centrality character can exert a positive promoting effect on

carbon emissions. Notably, increasing the digital economic

connections and enhancing the intermediation and indirect

impacts can also increase carbon emissions in local areas. In

small cities, the city’s indirect impact ability does not promote an

increase in carbon emissions during digital economic activities. In

med-size cities, the increase in central location has no impact on

carbon emissions.
3.3.4.3 Quantile regression

Quantile regression analysis is further employed to investigate

the impact of the DEN’s central characteristics on carbon emissions

under different quantile conditions. Parameters are estimated at
TABLE 4 Robustness test.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)

Deg
1.895***
(6.33)

0.267***
(8.39)

0.022***
(2.61)

Bet
0.599***
(6.53)

0.084***
(7.92)

0.007**
(2.47)

Eig
1.907***
(4.37)

0.287***
(6.27)

0.017**
(1.96)

IS
4.222***
(3.18)

4.542***
(3.39)

4.310***
(2.98)

−0.490**
(−2.31)

−0.449**
(−2.09)

−0.455**
(−2.05)

−0.147**
(−2.30)

−0.141**
(−2.23)

−0.138**
(−2.19)

Por
0.079
(0.13)

0.204
(0.34)

0.161
(0.26)

0.263***
(3.62)

0.281***
(3.90)

0.273***
(3.58)

0.004
(0.26)

0.005
(0.34)

0.008
(0.53)

Er
0.094
(0.82)

0.093
(0.81)

0.087
(0.73)

0.010
(1.38)

0.010
(1.37)

0.009
(1.21)

0.000
(0.31)

0.000
(0.20)

0.000
(0.01)

Gov
−10.438***
(−4.91)

−10.934***
(−5.09)

−12.020***
(−5.32)

−3.107***
(−9.71)

−3.187***
(−9.76)

−3.335***
(−10.07)

−0.410***
(−3.71)

−0.411***
(−3.62)

−0.388***
(−3.64)

Trade
−0.559***
(−3.19)

−0.572***
(−3.24)

−0.611***
(−3.31)

−0.024**
(−1.97)

−0.025**
(−2.09)

−0.031**
(−2.31)

−0.008***
(−2.82)

−0.008***
(−2.79)

−0.009***
(−3.02)

Cons
−4.208
(−1.33)

1.089
(0.39)

9.354***
(3.44)

2.006***
(8.19)

2.747***
(12.04)

3.885***
(13.77)

0.326***
(3.81)

0.380***
(3.83)

0.418***
(3.66)

Year fe Yes Yes Yes Yes Yes Yes Yes Yes Yes

City fe Yes Yes Yes Yes Yes Yes Yes Yes Yes

R-squared 0.574 0.569 0.538 0.679 0.674 0.656

L.CE
0.906***
(45.45)

0.908***
(45.09)

0.915***
(50.61)

AR(1) 0.002 0.002 0.002

AR(2) 0.723 0.717 0.716

Hansen test 218.23 (0.32) 219.55 (0.30) 217.62 (0.33)
f

t-statistics in parentheses. *: p< 0.10, **: p< 0.05, ***: p< 0.01.
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quantile levels of 0.1, 0.25, 0.5, 0.75, and 0.9, as shown in Tables 7–9.

At the different quantile levels, the direction of the coefficients of the

degree centrality, betweenness centrality, and eigenvector centrality

on carbon emissions are completely consistent, and all pass the

significance test of 1%, consistent with the previous conclusion. The

regression coefficient values increase from 0.259 to 0.371, from

0.086 to 0.125, and from 0.259 to 0.271, respectively, indicating that

the promoting effects of the degree centrality, betweenness

centrality, and eigenvector centrality on carbon emissions increase

with increasing carbon emissions.
3.3.5 Mediation effect analysis
With the use of energy consumption as an intermediary

variable, the regression results based on equation (8) are

presented in Table 10. Columns (1), (3), and (5) show that the

regression coefficients of the degree centrality, betweenness

centrality, and eigenvector centrality are significantly positive.

This indicates that the increased centrality characteristics of the

various cities led to an increase in energy consumption. This may be

due to the rise in industries at the early stages of the digital

economy, such as online shopping, e-commerce live streaming,

and virtual gaming, which contribute to an increased energy

consumption. Moreover, columns (2), (4), and (6) show that after

controlling for network central characteristics, energy consumption

impose a positive promoting effect on carbon emissions, indicating

that energy consumption plays a partial intermediary effect.
Frontiers in Ecology and Evolution 13
To verify the intermediary effect, a bootstrap test is also

employed with 500, 800, and 1,000 random samples with

replacement, and the results are shown in Table 11. Among the

500, 800, and 1,000 testing samples, the 95% confidence intervals do

not contain 0. This indicates that the increase in the central

characteristics of cities led to an increase in energy consumption

and carbon emissions. Table 12 shows the results of the Sobel test

for the mediating effect, with a Z statistic greater than 0.97, which

indicates that the null hypothesis can be rejected and that energy

consumption plays a mediating role between the DEN’s central

characteristics and carbon emissions. The indirect effects account

for 0.117, 0.035, and 0.112, while the direct effects account for 0.186,

0.051, and 0.186, respectively, and the proportions of the mediating

effect are 38.60%, 40.50%, and 37.70%, respectively.
4 Discussion

This paper takes 248 cities in China as samples, aiming to

explore the overall and individual characteristics of DEN at the city

level, as well as the impact of the central characteristics of DEN on

carbon emissions.

First, this paper uses a modified gravity model to discover that

the digital economy of 248 cities in China exhibits a clear spatial

correlation network structure. Although in recent years, China’s

digital economy has developed rapidly, compared to developed

countries, China’s development is still in a relatively early stage
TABLE 5 Regression results under the heterogeneity of resource endowment.

Variable Non-resource-based Resource-based

Deg
0.295***
(8.54)

0.120*
(1.74)

Bet
0.091***
(7.72)

0.042**
(2.05)

Eig
0.327***
(6.73)

0.078
(0.96)

IS
−0.478
(−1.60)

−0.451
(−1.50)

−0.547*
(−1.72)

−0.046
(−0.13)

−0.017
(−0.05)

−0.017
(−0.05)

Por
0.316***
(3.06)

0.338***
(3.21)

0.342***
(3.08)

0.046
(0.40)

0.057
(0.51)

0.057
(0.51)

Er
0.010
(0.95)

0.009
(0.80)

0.011
(0.97)

0.012
(1.14)

0.012
(1.16)

0.012
(1.16)

Gov
−3.400***
(−7.58)

−3.502***
(−7.58)

−3.706***
(−8.05)

−2.331***
(−4.65)

−2.354***
(−4.63)

−2.354***
(−4.63)

Trade
−0.020*
(−1.77)

−0.023**
(−1.99)

−0.027**
(−2.05)

−0.097**
(−2.09)

−0.091**
(−1.99)

−0.091**
(−1.99)

Cons
2.137***
(4.95)

2.982***
(6.98)

4.310***
(9.23)

2.112***
(4.84)

2.406***
(5.92)

2.406***
(5.92)

Year fe YES YES YES YES YES YES

City fe YES YES YES YES YES YES

N 1422 1422 1422 810 810 810

R-squared 0.729 0.721 0.708 0.631 0.633 0.633
t-statistics in parentheses. *: p< 0.10, **: p< 0.05, ***: p< 0.01.
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(Zhong et al., 2017). Moreover, according to the calculation results

of the overall network density, the network is in the early stages of

development and the relationships between cities are relatively

loose, which is the same conclusion as Chen and Zhu (2021). In

terms of individual network structure characteristics, some coastal
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cities in the eastern and southern regions occupy a leading position

in the network, while cities in the western and northeastern regions

are on the edge of the network, with severe two-level differentiation.

Therefore, the conclusion is drawn that the network spatial pattern

is dense in the east and sparse in the west. This conclusion is
TABLE 6 Regression results under the heterogeneity of urban scale.

Variable
(1)

large
(2)
Mid

(3)
Small

(4)
large

(5)
Mid

(6)
Small

(7)
large

(8)
Mid

(9)
Small

Deg
0.245***
(7.09)

0.014
(0.32)

0.155**
(2.00)

Bet
0.082***
(6.92)

0.004
(0.33)

0.047*
(1.80)

Eig
0.260***
(5.53)

−0.019
(−0.35)

0.090
(1.13)

IS
−0.796***
(−2.83)

0.680*
(1.86)

0.457
(1.51)

−0.802***
(−2.84)

0.681*
(1.87)

0.507
(1.65)

−0.785**
(−2.49)

0.694*
(1.89)

0.440
(1.39)

Por
0.165
(1.04)

−0.145
(0.199)

−0.012
(0.903)

0.171
(1.08)

−0.144
(−1.29)

−0.005
(−0.05)

0.129
(0.66)

−0.147
(−1.30)

−0.012
(−0.12)

Er
0.006
(0.56)

0.018**
(2.34)

0.005
(0.65)

0.006
(0.55)

0.018**
(2.34)

0.005
(0.63)

0.005
(0.46)

0.018**
(2.37)

0.005
(0.62)

Gov
−2.693***
(−5.11)

−1.419***
(−3.01)

−1.799***
(−4.46)

−2.717***
(−5.18)

−1.425***
(−3.02)

−1.791***
(−4.38)

−3.163***
(−5.44)

−1.363***
(−2.90)

−1.769***
(−4.30)

Trade
−0.021***
(−2.69)

−0.017
(−1.16)

0.026**
(2.26)

−0.021***
(−2.68)

−0.017
(−1.15)

0.025**
(2.23)

−0.028***
(−3.15)

−0.018
(−1.20)

0.027**
(2.25)

Cons
2.931***
(5.11)

2.429***
(5.78)

1.684***
(4.20)

3.639***
(6.26)

2.468***
(6.16)

2.091***
(6.60)

4.916***
(6.43)

2.412***
(5.48)

2.564***
(6.10)

Year fe YES YES YES YES YES YES YES YES YES

City fe YES YES YES YES YES YES YES YES YES

N 720 774 738 720 774 738 720 774 738

R-squared 0.773 0.620 0.397 0.771 0.620 0.396 0.741 0.620 0.387
fr
t-statistics in parentheses. *: p< 0.10, **: p< 0.05, ***: p< 0.01.
TABLE 7 Quantile regression results of the degree centrality.

Variable q10 q25 q50 q75 q90

Deg
0.259***
(10.43)

0.263***
(13.72)

0.289***
(16.97)

0.290***
(16.50)

0.371***
(12.44)

IS
−1.069***
(−7.77)

−0.988***
(−8.98)

−1.339***
(−10.37)

−1.661***
(−15.16)

−1.721***
(−11.19)

Por
0.0914***
(3.34)

0.105***
(3.42)

0.0779*
(1.84)

0.0405
(1.46)

0.0560*
(1.85)

ER
0.00875
(1.31)

0.0199***
(5.89)

0.0119***
(3.05)

0.0141**
(2.24)

0.0233***
(4.70)

Gov
−4.244***
(−16.90)

−4.024***
(−18.96)

−3.464***
(−15.88)

−3.284***
(−19.95)

−3.091***
(−12.04)

Trade
0.018
(1.24)

0.002
(0.16)

−0.019*
(−1.87)

−0.017**
(−2.37)

−0.001
(−0.94)

Cons
2.320***
(14.48)

2.361***
(18.17)

2.635***
(14.58)

3.082***
(23.86)

2.903***
(16.27)

N 2232 2232 2232 2232 2232
t-statistics in parentheses. *: p< 0.10, **: p< 0.05, ***: p< 0.01.
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consistent with previous research findings (Chen and Zhu, 2021;

Tang et al., 2021).

Second, scholars have not reached a consensus on the

relationship between the digital economy and carbon emissions.

Possible reasons include the lack of unified calculation and

measurement methods for the digital economy as a new form of

economy, and the lack of consensus on the scope of the digital

economy industry. For example, should the carbon emissions

generated from the production of digital economy infrastructure

be included in the carbon emissions of the digital economy

industry? Which country should the carbon emissions generated

by the digital economy industry transferred from developed

countries to developing countries belong to? From the conclusion

drawn in this paper, it can be seen that the improvement in the
Frontiers in Ecology and Evolution 15
central position of the DEN significantly increases carbon

emissions. This viewpoint is basically consistent with previous

conclusions (Dong F. et al., 2022; Zhang L. et al., 2022; Zhou

et al., 2022). Some scholars believe that there is an inverted U-

shaped relationship between the digital economy and carbon

emissions (Li and Wang, 2022), so whether there is a nonlinear

relationship between the center position of the DEN and carbon

emissions needs further research in the future. However, due to the

early formation of China’s DEN, the relationship between the

structural characteristics of the DEN and carbon emissions is also

credible on the left side of the inverted U-shaped curve.

Finally, the central characteristics of the DEN indirectly

promote carbon emissions by increasing energy consumption. Yu

and Zhu (2023) also reached the same conclusion in their study
TABLE 8 Quantile regression results of the betweenness centrality.

Variable q10 q25 q50 q75 q90

Bet
0.086***
(9.48)

0.082***
(12.99)

0.096***
(15.30)

0.097***
(18.68)

0.125***
(11.44)

IS
−0.944***
(−6.97)

−0.905***
(−9.11)

−1.333***
(−10.15)

−1.720***
(−17.94)

−1.571***
(−11.32)

Por
0.114***
(4.44)

0.133***
(5.73)

0.088**
(2.11)

0.054
(1.53)

0.099***
(2.46)

ER
0.005
(0.71)

0.020***
(5.44)

0.009***
(2.55)

0.011**
(2.13)

0.016***
(3.32)

Gov
−4.438***
(−17.39)

−4.200***
(−21.88)

−3.617***
(−16.64)

−3.406***
(−23.14)

−2.947***
(−11.30)

Trade
0.022*
(1.87)

0.009
(0.79)

−0.016
(−1.47)

−0.014**
(−2.01)

−0.012
(−1.06)

Cons
2.984***
(21.66)

3.055***
(31.34)

3.465***
(19.67)

3.937***
(29.80)

3.759***
(25.58)

N 2232 2232 2232 2232 2232
t-statistics in parentheses. *: p< 0.10, **: p< 0.05, ***: p< 0.01.
TABLE 9 Quantile regression results of the eigenvector centrality.

Variable q10 q25 q50 q75 q90

Eig
0.259***
(6.11)

0.258***
(8.48)

0.273***
(9.84)

0.260***
(10.11)

0.271***
(6.94)

IS
−1.105***
(−7.52)

−1.030***
(−7.71)

−1.460***
(−9.46)

−1.853***
(−15.57)

−1.721***
(−11.64)

Por
0.050
(1.33)

0.097***
(3.03)

0.074*
(1.74)

0.038
(1.05)

0.110***
(3.00)

ER
0.007
(0.76)

0.019***
(4.42)

0.012***
(2.72)

0.010**
(1.96)

0.013*
(1.83)

Gov
−4.703***
(−15.03)

−4.221***
(−21.37)

−3.747***
(−15.74)

−3.727***
(−19.92)

−3.508***
(−17.69)

Trade
0.018
(1.19)

−0.002
(−0.14)

−0.035***
(−3.78)

−0.030***
(−4.38)

−0.016
(−1.08)

Cons
4.278***
(21.81)

4.206***
(28.94)

4.661***
(20.60)

5.153***
(37.08)

5.095***
(30.18)

N 2232 2232 2232 2232 2232
t-statistics in parentheses. *: p< 0.10, **: p< 0.05, ***: p< 0.01.
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introducing energy intensity as a mediator variable. But this

conclusion is still valid at the beginning of the development of

China’s DEN. As the development of digital economy in various

cities in China becomes more mature, the effectiveness of regional

collaborative development is truly reflected, and the network

structure of digital economy is more reasonable, leading to

improved energy efficiency and possibly reducing carbon emissions.
5 Conclusion and implications

This paper first uses the SNA method and the Panel data of 248

cities in China from 2011 to 2019 to study the structural

characteristics of the DEN from a more microscopic urban

perspective, filling the gap in existing research. Second, we

describe the overall and individual characteristics of DEN, and
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combine the SNA method with the traditional econometric

methods to explore the impact of the central characteristics of

DEN on carbon emissions. Finally, from the perspective of

relationship, we propose policy recommendations for the

coordinated development of the digital economy to local

governments to explore a clearer path of emission reduction. The

results are as follows:

First, between 2011 and 2019, the overall structure of China’s

DEN was relatively loose, with few connections. However, over

time, the overall network density showed an upward trend. In terms

of individual network characteristics, cities in the Yangtze River

Delta region, as represented by Wuxi, Suzhou, and Nanjing,

occupied a core position in the DEN. Only 35 cities played an

intermediary role, affecting the connection between other cities, and

more than 40% of cities attained strong relationships with

nonconnected partners.
TABLE 10 Intermediary effect test.

Variable
(1)
EC

(2)
CE

(3)
EC

(4)
CE

(5)
EC

(6)
CE

Deg
0.183***
(6.03)

0.158***
(7.82)

Bet
0.054***
(5.38)

0.051***
(7.63)

Eig
0.171***
(4.10)

0.185***
(6.96)

EC
0.637***
(20.77)

0.643***
(20.85)

0.661***
(21.32)

Is
0.822***
(4.05)

−0.977***
(−6.51)

0.847***
(4.12)

−0.953***
(−6.36)

0.825***
(3.94)

−0.978***
(−6.37)

Por
−0.069
(−0.93)

0.297***
(6.56)

−0.054
(−0.73)

0.307***
(6.83)

−0.058
(−0.76)

0.299***
(6.40)

ER
0.007
(0.93)

0.006
(1.29)

0.007
(0.91)

0.006
(1.24)

0.006
(0.81)

0.005
(1.15)

Gov
−2.529***
(−8.53)

−1.518***
(−6.83)

−2.583***
(−8.65)

−1.541***
(−6.83)

−2.682***
(−8.98)

−1.581***
(−7.02)

Trade
−0.073***
(−3.84)

0.023***
(4.44)

−0.075***
(−3.91)

0.023***
(4.35)

−0.079***
(−3.94)

0.022***
(4.20)

Cons
2.786***
(9.97)

−0.023
(−0.12)

3.293***
(12.94)

0.382**
(2.09)

3.997***
(14.42)

1.058***
(5.05)

Year fe Yes Yes Yes Yes Yes Yes

City fe Yes Yes Yes Yes Yes Yes

N 2232 2232 2232 2232 2232 2232

R-squared 0.647 0.827 0.643 0.827 0.633 0.823
t-statistics in parentheses. *: p< 0.10, **: p< 0.05, ***: p< 0.01.
TABLE 11 Bootstrap test.

Deg Bet Eig

500 [0.1652, 0.2072] [0.0562, 0.0716] [0.1815, 0.2364]

800 [0.1650, 0.2074] [0.0566, 0.0712] [0.1816, 0.2364]

1,000 [0.1644, 0.2080] [0.0566, 0.0712] [0.1823, 0.2357]
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Second, empirical research suggests that due to the formative

stage of China’s DEN, the central characteristics of each city in the

network, such as the degree centrality, betweenness centrality, and

eigenvector centrality, impose a positive promoting effect on carbon

emissions. Moreover, this research conclusion remains significant

through explanatory variable replacement, explained variable

replacement, and GMM regression.

Third, the heterogeneity tests of endowment resources indicate that

the central characteristics of the DEN promote carbon emissions in the

nonresource-based cities. In the resource-based cities, the eigenvector

centrality exerts no effect on carbon emissions. The heterogeneity tests

of urban scale indicate that increasing the central characteristics of large

cities could promote carbon emissions in large cities. In small cities,

increasing the degree centrality and betweenness centrality can

promote carbon emissions. But In med-size cities, the increase in

central location has no impact on carbon emissions. The quantile

regression results show that the promotion effect of the network central

characteristics on carbon emissions can continuously increase with

increasing carbon emissions. According to the influencing

mechanisms, the DEN’s central characteristics can promote carbon

emissions through energy consumption.

Here are some policy recommendations based on the

findings above:

First, the digital transformation of various industries should be

accelerated so thatmore regions and industries canbe integrated into the

DEN. Each city should create a digital industry developmentmodel that

is in line with its own characteristics based on its unique situation. For

example, core cities such asWuxi, Suzhou, andNanjing should strive to

implementnewtechnologies in thedigital economy, continue to leverage

their strengths and influences, explore new directions for the digital

economy industry, and drive the development of the digital economy in

other cities in China. Cities situated at the edge of the network should

combine their specific local conditions, increase exchanges with core

cities, actively learn from the experience and advanced technology of

digital economyindustrydevelopment, andconstantly explorenewways

to assist local digital economy development.

Second, the initial formation of the DEN increases carbon

emissions, so it is particularly important to reasonably allocate

resources and formulate suitable plans for long-term development

of the digital industry in local areas. Therefore, local governments

should focus on making rational decisions, creating effective

connections in the digital economy, optimizing digital economic

relationships, and avoiding blindly expanding the digital economy

industry, which leads to waste of digital economy resources and

increased carbon emissions.
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Third, we should focus on developing the digital economy in

resource-based cities, prioritizing the exploration of business models

that synergistically combine the digital economy and carbon emission

reduction. At the same time, we should actively utilize the intermediary

role of nonresource-based cities in the network and form regional

alliances with resource-based cities to explore development models. In

the expansion process, both large and small cities should guide the

green and low-carbon development of the digital industry, focusing on

supporting the development of green and low-carbon digital

technology, promoting effective integration of existing digital

resources, accelerating optimization of industrial structures, and

reducing carbon emissions resulting from the digital economy.

Fourth, while developing the digital economy, cities should actively

promote green and energy-saving technologies, improve the energy

efficiency of digitization and industrialization processes, promote a

change in the energy consumption structure, and reduce the digital

economy’s dependence on traditional energy sources. In addition,

during the construction of digital infrastructure, countermeasures

such as green information and communication technology

infrastructure should be implemented to avoid excessive carbon

emissions originating from communication base stations, data

centers, and other facilities.
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