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1. Introduction

Over the past decade, site-resolved fluorescence imaging 
of atoms in optical lattices has become an essential tool for 
researchers working in ultracold atomic physics and quantum 
simulation [1]. The adoption of this powerful technique has 
been driven by improvements in both high-resolution imaging 
systems and computational techniques for identifying atoms 
separated by distances close to or below the diffraction-limited 
resolution [2, 3]. The task of site-resolved imaging consists 

of two distinct parts: (1) building an imaging system which 
is able to detect multiple fluorescence photons scattered by 
each atom in an optical lattice, and (2) analyzing the recorded 
image in order to determine whether or not each lattice site 
is occupied by an atom. This is both an experimental chal-
lenge, constructing a high resolution microscope, and a com-
putational one, devising an algorithm to reliably reconstruct 
the underlying lattice occupation from the recorded image. 
At present, the range of species that can be imaged remains 
limited by the need to continuously cool atoms during fluores-
cence imaging. In the vast majority of existing site-resolved 
imaging experiments, atoms are pinned in place by a deep 
lattice and continuously laser-cooled during imaging [3–10]. 
In this case the distribution of bright pixels in a fluorescence 

Measurement Science and Technology

Deep learning-assisted classification  
of site-resolved quantum gas microscope 
images

Lewis R B Picard1 , Manfred J Mark2,3 , Francesca Ferlaino2,3 
and Rick van Bijnen2,4  

1 Department of Physics, Harvard University, Cambridge, MA 02138, United States of America
2 Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 
Innsbruck, Austria
3 Institut für Experimentalphysik und Zentrum für Quantenoptik, Universität Innsbruck, 6020 Innsbruck, 
Austria
4 Center for Quantum Physics, University of Innsbruck, Austria

E-mail: lewispicard@g.harvard.edu

Received 16 April 2019, revised 29 August 2019
Accepted for publication 16 September 2019
Published 5 November 2019

Abstract
We present a novel method for the analysis of quantum gas microscope images, which uses 
deep learning to improve the fidelity with which lattice sites can be classified as occupied 
or unoccupied. Our method is especially suited to addressing the case of imaging without 
continuous cooling, in which the accuracy of existing threshold-based reconstruction methods 
is limited by atom motion and low photon counts. We devise two neural network architectures 
which are both able to improve upon the fidelity of threshold-based methods, following 
training on large data sets of simulated images. We evaluate these methods on simulations of a 
free-space erbium quantum gas microscope, and a noncooled ytterbium microscope in which 
atoms are pinned in a deep lattice during imaging. In some conditions we see reductions of up 
to a factor of two in the reconstruction error rate, representing a significant step forward in our 
efforts to implement high fidelity noncooled site-resolved imaging.
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image ideally results only from the point-spread function 
(PSF) of the imaging system. Imaging without cooling limits 
the number of photons which can be detected from each atom, 
which gets rapidly heated up and displaced from its original 
position by scattering of the imaging light. This heating 
reduces the fidelity of traditional threshold-based reconstruc-
tion methods. Here, we propose a novel method of analyzing 
fluorescence images of atoms in optical lattices using deep 
learning, in order to improve the performance of imaging 
without continuous cooling.

The most widely used method for reconstruction of the lat-
tice occupation pattern in existing experiments requires first 
deconvoluting each image with the known PSF of the imaging 
system. This PSF can be determined experimentally by aver-
aging raw images of many isolated atoms, or calculated based 
on known optical parameters of the imaging system [2–9]. 
Deconvolution allows a single value of the light intensity to 
be determined for each lattice site. The distribution of light 
intensities will generally consist of two distinct peaks corre-
sponding to occupied and unoccupied sites, as illustrated in 
figure 1(a). The degree of overlap of the histogram peaks is 
determined both by the background noise level and the overlap 
of point-spread functions of atoms on neighbouring sites. The 
bimodal distribution is eventually washed out entirely for high 
noise levels and/or for atom separations significantly below 
the width of the point spread function of the imaging system. 
Taking a large enough sample of lattice sites allows the esti-
mation of the underlying distribution, from which a single 
threshold value can be derived which can be used to classify 
the occupation of all sites [4–6, 11]. Some variations on this 
basic method exist, such as determining the occupation by 
minimizing the difference between a real image and a recon-
struction generated through convolution with the PSF [3], but 
the experimental requirements remain similar. More recent 
work on parametric deconvolution, described in [12], has 
shown that a more sophisticated model which uses knowledge 
of both the point spread function and the restricted geometry 
of the lattice can improve the discrimination of nearby atoms.

Without continuous cooling, atoms will be significantly 
heated during the imaging process. This heating occurs 
through the build-up of velocity kicks an atom receives each 
time it absorbs and re-emits a photon, eventually giving it 
enough kinetic energy to escape the potential well of a lat-
tice site. Cooling and confinement by a deep pinning lattice 
allows the capture of images consisting of hundreds of scat-
tered photons per atom, with reconstruction fidelity limited 
mainly by atom losses and hopping between lattice sites [13]. 
Implementing continuous cooling is, however, among the more 
exper imentally challenging facets of a single-site imaging 
system. The requirement of a cooling transition which can 
simultaneously be used for imaging severely limits the range 
of species which can be imaged, and generally requires that a 
quantum gas microscope is custom-built for each new species. 
As a result, the extension of single-site imaging to fermionic 
alkaline atoms came significantly later than boson-imaging, 
requiring the implementation of more sophisticated cooling 
techniques, such as Raman sideband and EIT cooling [1, 5, 7].  
These cooling techniques tend to increase experimental 

complexity, needing additional cooling beams, and, in the 
case of EIT cooling, may themselves introduce high levels 
of background light, which must then be reduced by other 
means, such as alternating cooling and imaging pulses in a 
single imaging cycle [6]. To our knowledge only one example 
of optical lattice imaging without cooling has been published 
at this time, which relies on confining Yb atoms in a deep 
lattice and using short imaging pulses to prevent losses due 
to heating [14]. Fluorescence imaging of single Li atoms in 
free flight has recently been achieved, but using this method 
multiple atoms can only be reliably resolved at a separation 
greater than 32 µm, precluding the study of short-scale many-
body dynamics [15].

We propose a method for reconstructing optical lattice 
images to single-site resolution which does not require atoms 
to be confined to a lattice site during imaging. When atoms are 
neither continuously cooled nor pinned by a deep lattice, they 
will move away from their original lattice site on a random 
walk as they scatter photons from the imaging beam. High-
resolution imaging without extra cooling and optical pinning 
will bring enormous experimental and conceptual simplifi-
cation, and will be essential to the development of ultrafast 
microscopy. In this respect, atoms with strong optical trans-
itions for imaging and large masses, such as lanthanides, are 
perfect candidates, and are a target of growing interest as 
many-body quantum systems in the community. In the case 
of our planned Er microscope, the lattice will be switched off 

Figure 1. (a) Illustration of threshold-based reconstruction. A 
histogram of intensities following deconvolution at each site in a 
set of images is plotted. If sites are separated by more than or close 
to the diffraction-limited resolution, this will reveal a bimodal 
distribution of intensities. The threshold intensity used to classify 
a site is determined by the point at which the two peaks overlap. 
(b) Examples of simulated images of three-by-three erbium 
lattice segments, with a lattice constant of 266 nm and 1.5 µs 
illumination time. The superimposed red lines indicate the lattice 
site boundaries. Of the three images, only the center one has an 
occupied central lattice site.
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entirely during imaging, allowing the atoms to diffuse in free 
space. In other cases, such as the Yb lattice experiment that we 
simulate to assess our networks, the lattice potential is deep-
ened during imaging to provide some confinement without 
cooling, such that atoms jump between lattice sites as they 
heat up [14].

The random motion of the atoms makes the reconstruc-
tion of the lattice occupation an intractable inverse problem, 
meaning that there is no way to exactly determine the most 
likely initial atom distribution which gave rise to a particular 
recorded image. It is nevertheless possible to approximate the 
atom as a fixed point emitter, with an effective PSF broad-
ened by atom motion compared to the true optical PSF. This 
method may be sufficient when lattice spacings are large 
compared to the atom displacements, or when many photons 
are collected before the atoms move away from their starting 
positions. However, an additional restriction imposed by non-
cooled imaging is that the total photon count must be small, as 
only a few photons can be detected before atoms move too far 
to be distinguished from their neighbours, severely limiting 
the applicability of the stationary emitter approximation. We 
suggest that deep neural networks provide a way to overcome 
some of the limitations of noncooled image reconstruction. 
The advantage of using deep learning for data-analysis lies in 
the fact that a deep neural network can approximate non-linear 
relationships between input data. This is especially useful in 
the analysis of intractable inverse problems. In the past few 
years, machine learning has found an increasing number of 
applications in physics, particularly in classification problems 
[16]. Deep neural networks may offer advantages in both 
speed and accuracy over existing approximations, as has been 
demonstrated for a range of physical problems, including 
determining observable properties of electrons in arbitrary 2D 
potentials [17], reading out trapped ion qubits [18] and recon-
structing the optical phase of imaging light at an objective 
from low photon count recorded images [19]. In other cases 
they may allow classification of experimental data for which 
no agreed-upon approximate model exists, which has led to 
their use in identifying phase transitions in quantum many-
body systems [20–22] and evaluating theoretical models of 
interactions of fermions in an optical lattice [23]. Outside the 
realm of classification problems, recent work has focused 
on the rich field of unsupervised machine learning, in which 
models are trained with unlabelled data based on some metric 
internal to the data set, such as the degree to which different 
inputs can be divided into non-overlapping clusters [24]. 
Unsupervised learning has recently been demonstrated to be 
useful in quantum state tomography, where neural network 
states representing the amplitude and phase of a many-body 
quantum system are learned based on sets of measurements of 
its state in a range of bases [25].

The reconstruction procedure we describe here has been 
designed primarily to analyze images from our planned non-
cooled erbium quantum gas microscope [26], but is generally 
applicable to most cooled and noncooled imaging systems. 
To illustrate the task at hand, figure 1(b) shows some typical 
(simulated) example images that our method aims to clas-
sify. In the present paper we test two different deep learning 

classifiers of different levels of complexity, and compare their 
performance to a threshold-based reconstruction model.

2. Reconstruction using deep learning

Deep neural networks are generally models that transform 
an input vector, in our case an array of pixels, into an output 
vector. In this case the output is a scalar value indicating 
whether or not a lattice site is occupied. Deep neural networks 
perform their function using a series of two or more consecu-
tive transformations, each of which takes the output of the 
previous one as its input [27]. The transformations are said 
to connect different layers of the network, beginning with the 
input layer, consisting of a raw input vector, through to the 
final output layer. A hidden layer is one which lies between 
the input and the output, whose state is not read out to the user. 
The model as a whole is referred to as an artificial neural net-
work, as its structure is inspired by, though not actually very 
similar to, biological neural networks [28]. Each element of a 
layer, usually a scalar number, can be referred to as a neuron. 
The parameters of the network that define the precise mapping 
from one layer to the next can be learned by repeatedly evalu-
ating the performance of the network on a set of test input 
vectors, and adjusting the parameters accordingly.

A feedforward neural network, illustrated in figure  2, is 
among the simplest neural network architectures that exist. It 
consists of a series of layers, where each neuron in a layer is con-
nected to every neuron of its neighbouring layers, and there are 
no intralayer connections. The action of the network on an input 
data vector is, in its most basic form, a series of matrix multi-
plications. Generally a bias vector is also added to the output of 
each layer, and a transfer function may also be applied to each 
output. Thus, the action of a single layer can be written as

Figure 2. Illustration of three-layer feedforward neural network 
architectures with all-to-all interlayer connections in N-1-1 (a) and 
N-M-1 (b) configurations, where N is the number of pixels in an 
input image and M is the number of neurons in a hidden layer.

Meas. Sci. Technol. 31 (2020) 025201
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y(i) = f (W(i)y(i−1) + b(i)) (1)

where y(i−1) is an m element input vector representing the 
neuron values of layer i  −  1, y(i) is an n element output repre-
senting the neuron values of layer i, W(i) is an n × m matrix, 
b(i) is an n element bias vector and f  is an arbitrary transfer 
function applied element-wise to the the intermediate value 
to give an output neuron state. The transfer function is often 
used to map scalar values back to the interval {0, 1}. The pro-
cess of training a neural network broadly consists of adjusting 
weight matrices and bias vectors to optimize the output for 
a particular problem. The performance of a trained network 
can then be evaluated by measuring its generalization error, 
the rate at which it correctly classifies items in a previously 
unseen data set. In principle, a two-layer feedforward network 
is capable of learning any arbitrary relationship between ele-
ments of an input data vector [27]. In practice it is often dif-
ficult to train such a network, particularly when dealing with 
large input vectors, such as the high-magnification images of 
lattice segments we use to train our classifier.

Below, we discuss a number of neural network architec-
tures with which we have experimented in order to classify 
lattice images. All of our neural networks are trained on large 
data sets of simulated images of three-by-three lattice site 
regions (see appendix for discussion of the simulation). The 
reason for using three-by-three segments is that these are able 
to capture the first-order correlations between the brightness 
of a lattice site and its eight nearest neighbours while still 
being small enough that we can simulate training data sets 
in which every possible arrangement of atoms is represented. 
When the networks are applied to test images, these are first 
broken down into overlapping three-by-three segments, which 
are then individually fed into the network for classification of 
the central site of each segment.

2.1. Threshold reconstruction as a three-layer network

In order to better understand the process of neural network 
training and how it can be used to achieve improvements in 
fidelity, we first wish to trace a direct link between threshold 
reconstruction and some simple neural network architectures 
for which we can provide qualitative post-hoc interpretations 
[29]. To this end, we implement a basic form of threshold 
reconstruction in a form resembling a neural network, and 
compare it to an equivalent neural network trained on a data 
set of simulated images.

The simplest way to determine an intensity value for 
threshold reconstruction is to simply add up all the bright 
pixels in a lattice site. This could be trivially represented in 
the feedforward neural network form given in equation  (1) 
through multiplication of the input by an m × 1 binary vector, 
with a one multiplying every pixel in the region to be summed 
and zeros everywhere else: y(i) = w · y(i−1). To improve the 
discrimination between photons from lattice atoms and noise 
counts, one can replace the simple sum by a weighted sum 
using a PSF centered on the lattice site being classified. The lat-
tice spacing and alignment can be determined experimentally 
beforehand by various means, such as Fourier transforming 

a whole lattice image [8] or projecting images onto each 
axis of the imaging plane and fitting with a periodic series 
of Gaussians [2, 3], as we do in this work. The sum of pixels 
weighted by the PSF can then be expressed as a row-matrix 
multiplication linking the input layer and single-neuron hidden 
layer of a neural network. In other words, the matrix W(i), for 

i  =  1, in equation (1) is simply a row vector W(1)
1j = PSF(xj), 

with xj the coordinates of the j th pixel of the PSF. The transfer 
function applied at the hidden layer is f (x) = x . The trans-
formation from the hidden layer to the single-neuron output 
consists of a scalar multiplication by a weight w followed by 
the addition of a bias b and application of the logistic-sigmoid 
transfer function f (y) = (1 + exp(−y))−1, producing an 
output in the range 0 to 1, with 0 corresponding to an unoccu-
pied central site and 1 corresponding to occupied. This layer 
performs the same role as the comparison of site intensity to a 
fixed threshold. In principle the above network could also be 
reduced to a two-layer network, but for later convenience we 
employed a three-layer format. By scanning the parameter w, 
the maximum possible fidelity of the weighted sum threshold 
reconstruction can be determined, as illustrated for the case of 
noncooled erbium atoms in figure 3.

We can gain some insight into the neural network training 
process by training a network using the optimal weighted 
sum threshold as our initialization condition. As a first step, 
we leave the network architecture fixed, but optimize the 
weight matrix W(1) and weight w using conjugate gradient 
descent, training the network with a set of simulated images, 
after initializing W(1) with the PSF reshaped to a row vector 
as described above. During the training process, the weights 
assigned to pixels in the input image and the classification 

Figure 3. Range of fidelities achievable using weighted sum 
threshold-based reconstruction by varying the mean pixel intensity 
threshold, which is equivalent to b/w in the neural network 
representation. Fidelities are evaluated on a data set of simulated 
images of unconfined erbium atoms in a lattice of period 266 nm, 
generated according to the procedure described appendix A . The 
inset shows the bimodal distribution of mean pixel intensities in the 
simulated data set. Prior to optimizing the threshold the pixels are 
weighted by a PSF centered on the lattice site, which improves the 
separation of the peaks in the intensity distribution. In both plots, 
the optimal threshold of 0.108 is indicated by a dashed red line.
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threshold are adjusted so as to minimize the reconstruction 
error. Given that the hidden layer has only a single neuron, 
this still directly corresponds to a weighted sum of all the 
pixels in an input image. What we see, however, is that during 
the training procedure the neural network learns to negatively 
weight bright pixels in neighbouring lattice sites, and achieves 
a significant increase in fidelity as a result, as illustrated in 
figure 4. This tells us that without additional manual interven-
tion on the part of researchers the network can learn to com-
pensate for overlap of signals from filled lattice sites onto their 
neighbours. We also found that while manually initializing the 
network with the PSF allows it to reliably converge to a good 
classifier, using any random initialization generally does not 
converge to a good solution. This shows that though training 
even this simple neural network leads to an improvement over 
the manually optimized method, it remains very sensitive to 
user defined initialization conditions, which are specific to 
each imaging system.

The weighted sum model alone does not represent the best 
available form of threshold reconstruction. Deconvolution, or 
equivalently fitting an image with a set of Gaussians centered 
on each lattice site, is the most widely used method, described 
in [9, 13, 14], among others. A threshold can then be applied 
to the fit amplitude of each Gaussian to assign the sites as 

occupied or unoccupied. The fit with a joint distribution of 
multiple Gaussians serves the purpose of discriminating 
between the signals produced by atoms on neighbouring lat-
tice sites. An increased amplitude for a Gaussian centered on 
one site generally corresponds to a reduction of the ampl-
itude on its neighbours, representing a reduced occupation 
probability. Ideally, this method converges to the most likely 
distribution of lattice site occupations for the whole image. 
We implement this method for three-by-three lattice segments 
as the state-of-the-art benchmark against which we compare 
our machine learning methods. For the tight atom confine-
ment and larger lattice spacings (�512 nm) typical of existing 
quantum gas microscopes, threshold reconstruction remains 
highly effective [3–5]. We explore this regime by simulating 
imaging of erbium atoms in a two-dimensional square lattice 
with a spacing of 532 nm, under which conditions we see up 
to 99.9% threshold-based reconstruction fidelity. Threshold 
fidelity drops off as the lattice spacing is decreased and PSF 
overlap increases, however, and is closer to 97% in the 266 nm 
spacing system we aim to image.

In order to re-express the Gaussian fit method as a three-
layer feedforward network, we use a 512-neuron hidden layer. 
Each of the neurons in the hidden layer is connected to the 
input image in the same way as the weighted sum method 
described above, but now the weight matrices correspond not 
just to a single Gaussian PSF on the central site, but to sums 
of Gaussians on each site in all of the 512 possible distribu-
tions of occupied and unoccupied lattice sites. The distribu-
tions with the greatest overlaps with the real image will then 
produce greater activations in the corresponding hidden neu-
rons. The initial weights to the final layer are then a sum of 
all the hidden neuron values corresponding to an occupied 
central site, minus all those corresponding to an empty cen-
tral site. This is effectively a majority vote among all the pos-
sible Gaussian fits as to whether the central site is occupied. 
The output is then normalized to provide a value in the range 
{0,1}. This architecture is illustrated in figure 2(b). As always, 
the network is then trained to optimize fidelity from these ini-
tial conditions. In section 3 we refer to this network architec-
ture by the name ‘Gaussian network’ when we compare it to 
both the manual Gaussian fit and the more sophisticated deep 
convolutional network described below.

We find that the output of the feedforward neural network 
is itself a good estimator of the confidence of the result. For 
example, an output of 0.6 has an approximately 60% prob-
ability of genuinely corresponding to an occupied site. An 
output of 0.1 has a 90% chance of corresponding to an unoc-
cupied site. This allows the classifier to be easily used for con-
fidence-weighting or post-selection of experimental results.

2.2. Convolutional neural network reconstruction

The three-layer networks introduced above are based on the 
assumption that atoms act like point sources fixed at a lat-
tice site. Without continuous cooling, however, atoms wander 
between sites, so ideally a model would be able to encom-
pass the movement of atoms and distinguish between an atom 

Figure 4. (a) Point spread function determined by averaging 
simulated images of 10 000 isolated Er atoms, with a 3 µs imaging 
pulse, used to weight pixels in an input image for threshold-based 
reconstruction. (b) Learned pixel weights after training the three-
layer network in figure 2(a) on a data set of 102 400 distinct images, 
using the PSF as the initial state of the input layer. Without any 
additional human input, the network learns to assign a negative 
weight to bright pixels in the neighbouring sites of the central atom. 
This example illustrates the ability of even very simple neural 
networks to learn approximate models of the correlations between 
neighbouring lattice sites.

Meas. Sci. Technol. 31 (2020) 025201
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originating at a central site and one which has been displaced 
there. In order to produce a model that takes into account 
more than simply how well a central site is fit by a static PSF, 
we turn to a more sophisticated network architecture known as 
a convolutional neural network.

A convolutional neural network works on basis of convo-
luting an input image with a learned kernel, such that each 
neuron in a subsequent hidden layer corresponds to the convo-
lution for a specific position of the kernel on the input. Rather 
than learning a single weight for every input pixel, as in a 
feedforward network, during training the convolutional net-
work learns the weights of the kernel, which are then re-used 
for all the different subsections of the input. This is useful for 
identifying significant features which may occur at any posi-
tion within a 2D image, such as the PSF of a freely wandering 
atom. In a realistic convolutional neural network architecture, 
multiple kernels are often used to identify different sets of 
features.

A deep convolutional neural network layers this process 
several times, learning one set of kernels for the input image, 
then another set with which to convolute the outputs of the 
first, etc. While the first kernels tend to represent visibly rec-
ognizable features in the input, the subsequent layers are more 
abstracted, learning, for example, to identify correlations 
between different features identified by the first layer. A con-
volution operation is usually accompanied by normalization 
and application of a function such as a rectified linear unit, 
serving much the same function as the transfer functions in 
feedforward neural networks. Most deep convolutional net-
works also include pooling layers, which perform the function 
of producing a statistical summary of the outputs of a con-
volutional layer. Common pooling processes include taking 
the maximum or the average value of the convolution outputs 
in a given region. Pooling can also perform the function of 
dimensionality reduction; if the overlap of pooling regions is 

reduced, the number of output neurons will be smaller than 
the number of inputs. This reduces the complexity of the next 
convolutional stage, increasing training speed and reducing 
memory usage. The number of pixels between each step of the 
pooling filter is known as the stride. Finally, a convolutional 
network will usually finish with a fully connected layer, such 
as those illustrated in figure 2, which produces an output of a 
fixed size for a classification or regression task.

In this work, we use a network with three convolutional 
layers and two average pooling layers, followed by a fully 
connected classification layer. This network architecture is 
illustrated in figure  5, along with visual representations of 
the features learned by the network trained on simulated lat-
tice images. By testing a range of network parameters, we 
find we can achieve optimal performance with a convolution 
kernel size of 10-by-10 pixels, corresponding to the size of a 
single lattice site in our training images. We also optimize the 
size and stride of pooling layers, and the number of training 
images, all of which is detailed in appendix B.

3. Evaluating classifier performance

We evaluate the performance of both the Gaussian and con-
volutional networks introduced in the previous section  in a 
range of different simulated experimental conditions, and 
compare them against the benchmark of Gaussian fit amplitude 
threshold-based reconstruction. The neural network classifiers 
are extremely flexible, and can be applied to the analysis of any 
two-dimensional lattice images, provided the imaging system 
is understood well enough to simulate the imaging of three-by-
three lattice segments to generate labelled training data. Further 
details of our simulation of the imaging system are provided 
in the appendix. The performance metric we use is the recon-
struction fidelity across the whole lattice, i.e. the percentage 

Figure 5. Illustration of the convolutional neural network architecture used in the present work. The images are a sample of the features 
learned at each layer of the network. These are created using a version of the deepDream algorithm in MATLAB [30], shown as a grid of 
artificial images which most strongly activate those features.
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of sites which are correctly classified when the reconstruction 
method is used to assign every site in a previously unseen lat-
tice image. Depending on the particular experimental context 
in which these methods are applied, other performance metrics 
could be more appropriate. In investigations of Mott-insulating 
behaviour, for example, the rate at which a classifier correctly 
identifies holes in an otherwise uniformly filled lattice could be 
a more useful metric [13, 23].

3.1. Noncooled erbium lattice

We first test our model on the challenging case of noncooled 
and unpinned ultracold atoms. As a species of interest we 
choose erbium, which is a highly magnetic lanthanide atom 
that has recently been brought to quantum degeneracy [31, 32].  
We simulate the following experimental conditions: prior to 
imaging, Er atoms are held in a three-dimensional optical 
lattice with typical spacing of 266 nm. The lattice is then 
switched off and atoms are illuminated with a resonant light 
pulse of 1.5 µs. The atomic fluorescence is projected onto a 
CCD camera by our imaging system with a numerical aper-
ture (NA) of 0.89. The imaging light operates on the 401 nm 
transition, for which we predict a maximum scattering rate, 
limited by the transition’s natural linewidth, of 9.5 × 107 s−1.  
With an imaging beam intensity  ∼10 times higher than the 
saturation intensity of the transition, we expect to collect 
less than 90 photons per atom in a single image. Given this 
relatively small number of collected photons, we can reliably 
assume that a negligible number of pixels will be multiply 
illuminated, allowing us to binarize our images, facilitating 
the convergence of neural network training. For cases where 
the magnification is small enough compared to the lattice 
spacing that multiple illumination of pixels is likely, we have 
devised an alternative normalization function, given in equa-
tion (A.1) in the appendix, to map the input to the range {0,1}.

We test convolutional network, Gaussian network and 
threshold reconstructions on previously unseen simulated 
images of entire lattices, which are divided into overlap-
ping three-by-three site blocks for input to the networks. In 
figure 6, the fidelities of the various methods for a range of site 
occupation densities at 266 nm spacing, from a sparsely filled 
to an almost completely filled lattice, are shown. In the max-
imum uncertainty case of half filling, the error rate is reduced 
from 2.03% for the Gaussian fit threshold method to 1.80% 
for the convolutional network. For sparse filling the error rate 
of the convolutional network is just 0.16%, while that of the 
threshold method is 0.39%, a more than twofold improve-
ment. As the filling increases the performance of all methods 
decreases as a result of the reduced distinguishability of indi-
vidual occupied and unoccupied sites, even as the overall 
entropy of the entire lattice configuration decreases. We note 
that at high filling the 512 hidden neuron Gaussian network 
performs particularly well, better than both the convolutional 
network and the threshold-reconstruction, though we have no 
clear interpretation for this boost in performance.

As we increase the lattice period, reconstruction perfor-
mance increases rapidly. The convolutional network achieves 
as high as 99.90% reconstruction fidelity at a spacing of 

532 nm and half-filling of the lattice. Threshold-based recon-
struction in these conditions provides average fidelity of 
99.83%, indicating that the neural network continues to pro-
vide a small but significant advantage at high spacing. The 
convolutional network fidelity of 99.9% is maintained at 0.1 
lattice filling fraction, dropping only slightly to 99.5% at 0.9 
filling. This fidelity is achieved despite expected atom losses 
of ∼ 3% during imaging caused by atoms escaping the not 
fully closed imaging transition cycle. That is, the network is 
able to reliably identify most lost atoms even from the small 
number of photons they scatter prior to loss.

We also use our simulation to estimate the imaging pulse 
time which maximizes fidelity. Figure  7 shows how the 
fidelity of threshold, three-layer and convolutional recon-
struction changes with imaging pulse time. Simulations sug-
gest that the highest reconstruction fidelity can be achieved 
for a 1.5 µs imaging pulse. It is assumed that at this time-
scale background light is not a significant contributor to image 
noise, so the noise level is taken to be constant over all pulse 
lengths. We observe that the performance of the threshold-
based reconstruction drops off more rapidly with increased 
imaging time than the neural network methods, while the per-
formances of the Gaussian and convolutional networks appear 
to converge. The simulations in figure 7 are conducted at half-
filling of the lattice. We find that the fidelity drops off more 
sharply as imaging time is increased for dense filling of the 
lattice, though it plateaus at the filling percentage for greater 
than half-filling, corresponding to the error rate incurred by 
assigning all sites as occupied.

3.2. Noncooled ytterbium in pinning lattice

We subsequently seek to evaluate our reconstruction tech-
nique for the case of noncooled imaging in which atoms 

Figure 6. Fidelities of three reconstruction methods, for various 
lattice filling fractions. From left to right, the methods are 
convolutional network, three-layer Gaussian network and threshold 
reconstruction. All test images are of unconfined erbium atoms 
at 266 nm spacing and 1.5 µs illumination time. For each filling 
fraction we simulate a ten-by-ten site lattice of a given filling, which 
we break up into overlapping three-by-three segments for fitting.
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are nevertheless confined in a deep lattice during imaging. 
We use as our guideline the first known successful imple-
mentation of this scheme, performed by Miranda et al [14] 
using Yb atoms in a lattice of period 543.5 nm. As in the 
case of our unconfined Er lattice, the Yb atoms will be 
heated during imaging, eventually displacing them from 

their original lattice site. This means that both systems 
require relatively short imaging pulses with high scattering 
rates. The addition of a pinning lattice, however, causes 
the atoms to remain confined in a smaller region, and for a 
longer period of time, before their eventual loss. The steep 
potential gradient at the nodes of the lattice also drives 
atoms away from these regions, reducing the photon den-
sity between sites compared to the unconfined case. In the 
experiment, Yb atoms are imaged on the 1S0 −1 P1 trans-
ition at 399 nm during a 40 µs pulse, while confined in a lat-
tice of depth 150 µK. With a scattering rate of 1.3 × 107 Hz, 
each atom scatters an average of 520 photons per imaging 
pulse [33], of which 6.6% are detected by the camera. The 
combined loss and hopping rate is 2.5% per pulse. In our 
simulation we achieve a threshold-based fidelity of 98.6% 
and a fidelity using the convolutional classifier of 98.8%, 
representing a small but consistent reduction in the error 
rate. Figure 8 shows an example of a simulated image of a 
15-by-15 lattice, with occupied sites identified by a trained 
convolutional network and labelled.

4. Conclusion

The extension of site-resolved imaging of optical lattices to 
noncooled atoms will be a step forward in the flexibility of 
quantum gas microscopy. We have demonstrated the effective-
ness of using both feedforward and convolutional neural net-
works for the analysis of noncooled lattice images, where low 
photon counts and atom movement limit the fidelity of tradi-
tional reconstruction techniques. We have shown that recon-
struction is viable for completely unconfined erbium atoms, 
for which we can reduce the error rate by as much as half com-
pared to state-of-the-art threshold reconstruction. We have 
also shown that the convolutional neural networks are able 
to perform consistently as well or better than threshold-based 
reconstruction for trapped atoms using the test case of pinned 
ytterbium atoms. The neural networks designed for this task 
are flexible, and can be applied to any imaging system which 
can be sufficiently well-simulated to produce large labelled 
data sets to train the network. This reconstruction technique 
can be trivially extended to continuously cooled imaging sys-
tems, where it may prove advantageous in cases where atoms 
are separated by much less than the diffraction limit of the 
imaging system and only a small number of photons can be 
collected.
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Appendix A. Imaging simulation

Training our neural networks requires large labelled data 
sets of lattice images, which cannot feasibly be constructed 
using experimental data. As a result we use simulations of 
the imaging process in order to generate data sets of realistic 
images from arbitrary underlying lattice occupation patterns. 
The networks are trained on images of three-by-three site 
lattice segments, where only the central site is classified as 
occupied or unoccupied. Training data sets are made up of 
an equal number of simulated images of each of the 512 pos-
sible permutations of occupied and unoccupied sites in the 
three-by-three lattice. During classification of real images, 
the entire image will be divided up into overlapping three-
by-three segments which are fed individually into the classi-
fier network.

The simulation models the stochastic processes of photon 
scattering and atom movement which determine the image 
recorded by a quantum gas microscope. Atoms are assumed 
to begin at the center of each lattice site with zero velocity. 
We simulate scattering events in which photons are absorbed 
from four imaging beams aligned in the imaging plane and 
re-emitted in a random direction of the full solid angle (4π), 
creating a discrete velocity kick with the corresponding recoil 
momentum at each event. If there is a lattice potential switched 
on during imaging, the acceleration and velocity of the atom 
are updated according to the velocity Verlet algorithm. The 
lattice potential is assumed to be a symmetric sin2 poten-
tial with an amplitude (trap depth) given as an input param-
eter to the simulation. Emitted photons are recorded by the 
camera with a probability given by the collection efficiency, 
which is determined by the geometry of the imaging system, 
overall losses due to absorption and quantum efficiency of the 
camera. Each photon is detected at a random position around 
the location of the atom itself, with a probability distribution 
determined by a point spread function centered on the atom. 
In the initial phase of the simulation, each photon detection is 
represented by unity addition to the illuminated pixel in the 
simulated image.

The scattering code is looped with randomized exponen-
tial-distributed timesteps between absorption and re-emission, 
with the natural linewidth as input parameter, leading to an 
effective scattering rate at about half the natural linewidth as 
expected. The imaging process is concluded when the total 
elapsed time exceeds a given imaging pulse time or when the 
atom escapes the not fully closed transition cycle, accounted 
for by a small finite lossrate evaluated at each scattering 
event. Over the course of an imaging pulse, the accumulation 
of velocity kicks heats the atom and causes it to move on a 

random walk away from its initial position. Some example 
random walks are illustrated in figure A1.

After looping over the imaging time for all atoms, 
Poissonian noise is added to each pixel of the image to 
account for clock-induced charges, with a mean noise value 
per pixel estimated from state-of-the-art EMCCD cameras. 
We also add an overlay of bright pixels consisting of the leak 
light from a random configuration of next-nearest neighbors 
to each image. Only 1000 such overlays are generated, as 
opposed to every five-by-five configuration, and they are ran-
domly added to all images in the training data set. Finally, the 
electron multiplier gain from EMCCD cameras is applied to 

Figure A1. A set of three random walks for unconfined erbium 
atoms imaged with 401 nm light and illumination time 3 µs. 
The atom trajectories are marked by solid lines, and the photon 
detection positions are marked by circles, of the same color as their 
source atoms. Note that approximately six-times more photons are 
scattered than detected here.

Figure B1. Convergence of convolutional neural network 
classification fidelity with increasing size of the training data set. 
All data sets are composed of a given number of repetitions of each 
possible occupation pattern of a three-by-three set of lattice sites, 
for erbium imaged at 401 nm for 3 µs.
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every pixel to calculate how many electrons per pixel will be 
present [34]. The final conversion step into counts per pixel, 
requiring multiplication with a constant factor, adding a con-
stant offset and including the electronic readout noise, was 
omitted in the present analysis. We also did not include further 
effects like additional charges due to background light or dark 
current as they should be negligible under the assumed exper-
imental conditions.

Finally, we implement a preprocessing step, normalizing 
the data before feeding the data to the neural network for anal-
ysis. In the case of images with a low recorded photon count, 
where each pixel is very unlikely to be doubly illuminated, 
preprocessing consists of binarizing the images by setting the 
value of each illuminated pixel to 1 and all others to 0. For 
images with a higher photon count in which doubly illumi-
nated pixels are likely to occur, pixels are normalized to the 
range {0,1} according to the formula

xnorm = tanh

(
tanh−1(0.5)

x
µbright

)
 (A.1)

where x is an image, or batch of images concatenated to form 
a single vector, and µbright is the mean value of all the nonzero 
elements of x.

Appendix B. Optimizing network hyperparameters

Hyperparameters are the parameters of the network which are 
not updated during training. Hyperparameters can be individ-
ually set by the architect of a neural network, or determined 
through a hyperoptimization process whereby multiple net-
works with different hyperparameters are separately trained 
and their performance compared to select the optimal hyper-
parameter values.

Aside from network architecture, the most significant 
hyperparameter in our case is the size of the training data set. 
We use data sets composed of equal numbers of simulated 
images generated from each of the 512 possible distributions 
of atoms in a three-by-three lattice segment. We trained both 
three-layer and convolutional networks on data sets consisting 
of between 103 and 1.5 × 105 individual images of erbium lat-
tice segments with 266 nm lattice spacing. As can be seen in 
figure B1, the generalization error of the convolutional net-
work is minimized for 12.8 × 105 images, corresponding to 
250 images for each possible distribution of atoms. The error 
of the three-layer network also generally decreased, though 
its error is less consistent between different data sets due to 
the difficulty of reliably converging to a good local minimum 
without prior dimensionality reduction. As the unconfined 
erbium atoms at 266 nm spacing represent the most difficult 
test case for our networks, it can be assumed that other cases 
would not need any larger training sets.

For the convolutional network, we also need to optimize 
a number of parameters for each convolutional and pooling 
layer. As described in the text, we find a kernel size of 10-by-10 
pixels for all layers gives us our best performance. We use a 
progressively increasing number of filters in each convolu-
tional level, beginning with 20 in the first layer followed by  

40 in the second and 100 in the final layer. For the pooling 
layers, we find that our best performance is achieved for a 
pooling region of 5-by-5 pixels with a stride of 2.
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