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1.  Introduction

The four-point potential drop (PD) technique has been in use 
for more than a century in various fields, notably in geophys-
ical and materials sciences [1] where it is a standard approach 
for measurement of the electrical resistivity of soil and semi-
conductors. The technique is also used for the characterization 
of metals [2] and modern applications include the probing of 
micro-scale particles [3]. In four-point measurements, a cur
rent is injected into the material via electrical contacts and 
the voltage response is measured across one or more separate 
pairs of contacts. This arrangement achieves high sensitivity 
to the properties of the probed sample since the contact resist
ance between the sample and the current-carrying wires can 
be neglected. Figure 1 illustrates a four-point probe consisting 
of spring-loaded pins where the drive current is delivered via 
the two outer contacts and the inner pair of pins serves as the 
voltage probe.

In traditional applications, such as resistivity and crack 
measurement, the direct current potential drop (DCPD) 
method has been widely adopted and requires only a direct 
current source and the measurement of a steady voltage [1, 4]. 
Alternating current potential drop (ACPD) has been used for 
materials characterization [2] and crack measurement [5, 6] 
by exploiting the frequency-dependent skin depth of a time-
harmonic injected current [4]. In contrast, the transient poten-
tial drop method relies on recording the transient response 
to a pulsed current. Physically, the resulting time-dependent 
skin effect voltage is due to the diffusion of quasi-static 
electromagnetic fields in the material excited by the pulsed 
drive current. The method has applications in non-destructive 
evaluation (NDE) of conducting materials, in particular for 
observing the variation of material properties or geometrical 
features with depth on the basis of the temporal evolution of 
the signals. In the analysis of such signals, where the goal is 
to deduce unknown properties of the material from the meas-
urements, a general approach is the inversion of measure-
ment data, a procedure that requires modeling of the sensor 
response by either analytical or numerical methods, or a com-
bination these, and an important step in this development is 
the experimental validation of such models. With this in mind, 
we consider here the experimental validation of four-point 
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transient PD formulas for the fundamental case of measure-
ments made on homogeneous plates.

In previous related work on four-point measurements, 
Bowler and Huang [7] used multi-frequency ACPD to measure 
the conductivity and magnetic permeability of homogeneous 
metal plates. As a model for variation of material properties 
with depth the theory of four-point ACPD on a layered half-
space [8] has also been given. In other applications to NDE, 
Sposito et  al used ACPD for measurement of material loss 
[9] and recently the application to stress monitoring by means 
of directional four-point probes was studied by Corcoran and 
Nagy [10].

Early work on transient PD was made by Hognestad 
and Honne [11] for measurement of tensile and compres-
sive stresses in steel rods. More recently, theoretical evalu-
ations were given for four-point transient PD measurements 
on planar half-space conductors [12] and plates [13] based 
on inverting the corresponding frequency-domain (ACPD) 
results [2]. However, these predictions have so far not been 
compared with experimental measurements to validate the 
theory and demonstrate its practical use. Although the existing 
literature on ACPD theory and experiment lends confidence to 
the validity of transient measurements, the latter requires in 
general that the time-dependence of the drive current is taken 
into account whereas in ACPD a simplification is made where 
the current is assumed to be sinusoidal with a given frequency. 
An analysis assuming a finite rise time of the drive current 
was given in [12] for transient four-point measurements on a 
half-space, but the analysis for plates in [13] was limited to the 
simplest case of an ideal step current.

In the present work we consider the experimental valida-
tion of four-point transient potential drop theory for measure-
ments on plates that are thin compared to the probe spacing. In 
this context, a plate is considered thin when the plate thickness 
is less than one half of the probe separation, assuming equal 
separation between the probes [14]. With this restriction, 
the task of deriving the transient response is reduced to the 
analysis of a one-dimensional diffusion problem on the basis 
of time-domain equations. An advantage of this thin-plate 
approximation is that the results are expressed conveniently 
in terms of simple formulas which facilitate the interpreta-
tion of experimental data. Although the approximation for 
the transient step response on thin plates is also discussed in 
[13], where a (short-time) series solution is given, we consider 
here a solution to the diffusion equation  on the form of an 
eigenfunction expansion to obtain an alternative formulation 
expressed as a steady state (DC) part and a summation term 
describing the transient response; in contrast, the short-time 
solution given in [13] is expressed as a half-space term, accu-
rate at short time scales, together with image summations that 
correct for the finite thickness of the plate. Furthermore, we 
consider the response to an exponentially rising current pulse 
as a simple model for a drive current having a finite rise time. 
Finally, together with the experimental validation of these 
results, we discuss the use of the theory for measurement of 
conductivity, relative permeability and plate thickness.

2. Theory of transient potential drop measurements

In potential drop methods a voltage difference V , measured 
between two points on the surface of a conducting material, is 
defined by the path integral

V = −
∫ b

a
E · dl� (1)

where E denotes the surface electric field vector due to a 
current flowing in the material. The potential is measured 
between two points a and b on the surface and dl is an infini-
tesimal vector pointing along the integration path.

In general, the potential drop is a time-dependent voltage 
V(t) arising in response to a current I(t) which is assumed 
to be known. The DCPD and ACPD methods represent spe-
cial cases where the applied current is either constant (DC) or 
alternating (AC) with a given frequency. In the former case a 
steady state voltage is measured while in the ACPD method 
a frequency-dependent voltage arises whose amplitude and 
phase are recovered by frequency-domain techniques such 
as lock-in amplification. In transient potential drop measure-
ments the voltage due to a time-varying current is recorded 
and analyzed in the time domain. Typically, the current is a 
pulse which is initially zero and rises to a steady value, the 
simplest example of which is an ideal step current.

In the analysis of four-point measurements, it is customary 
to assume that the current is delivered via point contacts. 
Furthermore, given a time-varying source, we assume that the 
current is delivered by straight wires oriented perpendicular 
to the surface, ensuring that there is no inductive coupling 
between the current-carrying wires and the conducting mat
erial. The theoretical analysis involves first solving for the 
electromagnetic fields in the material due to a given current 
I(t), and then calculating the potential from (1). Assuming 
that the fields are changing at slow rates, displacement cur
rents can be ignored and Maxwell’s equations reduce to diffu-
sion equations for the quasi-static fields.

In the following we outline an approximate theory of four-
point transient potential drop measurements on plates that 
are thin compared to the probe spacing. For completeness, 

Figure 1.  A four-point probe in contact with a metal plate of 
thickness a. The probes are co-linear and placed symmetrically 
about the mid-point of the probe. The spacing between each current 
injection pin and the nearest voltage probe is denoted by s and d is 
the separation between the voltage probes.
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considering the limited literature on the transient PD method, 
we introduce the analysis in terms of one-dimensional magn
etic field diffusion problems. Solutions to these problems are 
then used to express the transient voltage of a four-point probe.

2.1.  Four-point potential drop due to steady current

Consider first the elementary case where a steady current 
is injected into a plate of thickness a and conductivity σ. 
Treating a single current source point in isolation, the fields 
are axially symmetric and the potential depends only on the 
radial distance from the source. The four-point potential drop 
can then be written as a superposition

V = V+ + V−� (2)

where V+ and V− are the potential drops due to the positive 
and negative source points.

The analysis for thin plates or sheet material is simpli-
fied by considering only points sufficiently far away from the 
source points so that the current density is approximately uni-
form throughout the thickness of the plate. Conservation of 
the total current I over a cylindrical surface of radius r  cen-
tered on the source gives the electric field E(r) = I/2πσra 
which may be integrated between two points r1 and r2 to get 
V = I ln(r2/r1)/2πσa. Adding the contribution from the neg-
ative source (or sink), the four-point probe voltage, according 
to (2), can be written as

V =
I

2πσa
G� (3)

where G is a geometric probe factor. For arbitrary arrange-
ment of the probes, G = ln

(
r+2 r−1 /r+1 r−2

)
 with r±j  denoting 

the distance from the positive (+) and negative (−) source 
to voltage probe j . For a co-linear probe, as in figure 1, with 
voltage probes separated by a distance d and letting s1 and 
s2 denote the separation of the source points and the voltage 
probes, the probe factor becomes

G = ln

[(
1 +

d
s1

)(
1 +

d
s2

)]
.� (4)

In the special case of a symmetric probe with s1 = s2 = s, 
G = 2 ln(1 + d/s) and for an equi-spaced probe, s  =  d and 
G = 2 ln 2 ≈ 1.4. Intuitively, the validity of the thin-plate 
approximation depends on the value of s since by making s 
small the voltage probe is moved closer to the source points 
where the assumption of uniform current does not hold [14]. 
The validity is examined in more detail later in relation to the 
transient potential drop.

2.2.  Magnetic field diffusion in planar conductors

As a prototypical example of the transient potential drop 
method, consider the diffusion of a transient electromagnetic 
field into a homogeneous planar conductor [15] with linear 
conductivity σ and permeability µ = µ0µr  where µ0 is the 
free space permeability and µr is the relative permeability of 
the material. The surface of the conductor is at z  =  0, extends 

into the positive z-direction and is infinite in the lateral direc-
tions. A time-dependent current I(t), flowing in the positive 
x-direction, gives rise to a current density J = J(z, t)x̂, which 
is assumed to be uniform in the x- and y -directions.

This situation can be formulated as a one-dimensional 
magnetic field diffusion problem by considering the magn
etic field H = H(z, t)ŷ, oriented perpendicular to the current 
density (figure 2), and whose magnitude at the surface, H0, is 
related to the total current through Ampere’s law, H0  =  I/w 
where w is the width of a square Amperian loop enclosing the 
current. In other words the surface magnetic field is in this 
case controlled by the total current per unit width. The current 
density J(z, t) = −∂H/∂z gives rise to a surface voltage per 
length l given by

V
l
= − 1

σ

∂H
∂z

∣∣∣∣
z=0

.� (5)

The above relations between the the current density and the 
magnetic field are due to the differential form of Ampere’s 
law, ∇× H = J.

To model transient fields, consider an initial-boundary 
value problem in terms of the magnetic field governed by the 
diffusion equation

∂2H
∂z2 = µσ

∂H
∂t

� (6)

with the initial condition H(z, 0) = 0, corresponding to zero 
current for t � 0, and the boundary condition H(0,t)  =  H0(t) 
effectively taking into account the time-dependence of the 
current for t  >  0. Assuming initially a half-space conductor 
we require also that H(z, t) → 0 for z → ∞, reflecting the 
non-radiative nature of quasi-static fields.

A common solution method is to apply the Laplace trans-
form defined by h(z, p) =

∫∞
0 H(z, t)e−ptdt for the complex 

transform variable p [16]. Take the Laplace transform of (6) 
to obtain the ordinary differential equation

d2h
dz2 = µσph� (7)

with a solution that goes to zero as z → ∞ given by

h(z, p) = h0(p)e−
√
µσpz.� (8)

Here, h0(p) is the Laplace transform of the boundary condi-
tion. To find the response to an ideal step, write the boundary 
field as H0(t) = H0u(t), where u(t) is the Heaviside step func-
tion with Laplace transform 1/p. Insert for h0(p) = H0/p into 

Figure 2.  Orientation of the current density and magnetic field for 
the simple case of a current being injected into a planar conductor 
of finite thickness.
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(8) and take the inverse Laplace transform [17] to obtain the 
time-dependent field for t  >  0,

H(z, t) = H0erfc
(√

µσ

4t
z
)

.� (9)

The resulting surface voltage is

V(t) =
H0

σ

√
µσ/πt� (10)

which decays to zero for t → ∞ reflecting the fact that the 
current density tends to zero as the total current is distributed 
throughout the half-space. Note that we implicitly assume 
zero fields for t � 0 and therefore omit the unit step function 
u(t) in the expressions for H and V .

The magnetic field in (9) can be written in terms of a 
characteristic length scale δ(t) =

√
4t/µσ representing a 

time-dependent diffusion depth analogous to the frequency-
dependent skin depth in ACPD.

Next, assume that the material is bounded by an addi-
tional surface at z  =  a, corresponding to the bottom surface 
of a plate with thickness a. Initial and boundary conditions 
are as before except that now H(a, t) = 0 meaning that the 
external source of the field is confined to the top surface 
as is typically the case in four-point potential drop meas-
urements. We seek a solution for the transient potential on 
a form that decays to a steady state, which is appropriate 
for step-like drive currents that rise to a constant value. In 
other words, the solution should include a transient part that 
decays to zero for large values of t. A steady state solution 
of (6) that is zero at z  =  a takes the form 1  −  z/a with the 
omission of an integration constant. Assuming that h(z, p) 
is a solution to (7) with h(0,p )  =  h0(p ), the transient field 
h̄(z, p) = h(z, p)− h0( p)(1 − z/a) fulfils the homogeneous 
boundary conditions h̄(0, t) = h̄(a, t) = 0 and is a solution to 
the non-homogeneous equation

d2h̄
dz2 − κph̄ = κh0(p)p (1 − z/a) .

This permits a solution on the form of an eigenfunction 
expansion,

h̄(p, z) =
∞∑

n=1

An sin (nπz/a) .� (11)

The coefficients are determined by inserting for h̄(p, z) into 
the differential equation and solving for An, which gives

An = −2h0(p)p/kna
k2

n + µσp

where kn = nπ/a. The full solution including the steady state 
part may then be written as

h(p, z) = h0(p)

(
1 − z

a
− 2

∞∑
n=1

p sin(knz)/kna
k2

n + µσp

)
.� (12)

Assuming a step change, h0(p) = H0/p, the magnetic field in 
the plate can be evaluated using elementary inverse Laplace 
transforms [17] with the result

H(z, t) = H0

(
1 − z

a
− 2

∞∑
n=1

sin(knz)
kna

e−k2
nt/µσ

)
.� (13)

Finally, taking the derivative with respect to z and evaluating 
the result at z  =  0 gives the surface potential,

V(t)
l

=
H0

σa

(
1 + 2

∞∑
n=1

e−k2
nt/µσ

)
.

2.3.  Four-point transient potential drop on thin plates

Consider now that a current I(t) is delivered to the plate via a 
single wire, resulting in an axially symmetric magnetic field 
that depends on the radial distance r  from the wire in addition 
to z and t. Write the magnetic field as H = H(r, z, t)φ̂ where φ̂ 
is a unit vector in the azimuthal direction in a cylindrical coor-
dinate system centered on the current wire. Let H0(t) denote 
the field in air surrounding the wire which is also the field at 
the plate surface and given by

H0(t) = I(t)/2πr.� (14)

A simplified analysis of the fields inside the conductor can 
be made by making the assumption Jz  =  0, i.e. the current 
density has only a radial component, J = J(r, z, t)r̂ . Ampere’s 
law,

J =
1
r
∂ (rH)

∂r
ẑ − ∂H

∂z
r̂,

implies J = −∂H/∂t  and that H ∼ 1/r . A one-dimensional 
diffusion equation for H is then obtained by taking the partial 
derivative of J with respect to z and inserting into Faraday’s 
law which may now be written as ∂J/∂z = −µσ∂H/∂t. The 
resulting diffusion equation for H, given by (6), has the solu-
tion (13) except with H0 as in (14) which now ensures the 
required continuity of the tangential component of the magn
etic field across the top plate surface.

The fact that the spatial and temporal dependence are sepa-
rated means that we may simply write down the four-point 
transient step response as

V(t) = V0

(
1 + 2

∞∑
n=1

e−π2t/κn

)
� (15)

with V0 given by (3) and where we have defined κn = µσa2/n2. 
In obtaining (15), only the 1/r -dependence in (14) is integrated 
and the result summed to give V0, as in section 2.1, with the 
other factors treated as being constant, including the time-
dependent part. The first term in the series is the DC potential 
drop due to a steady current I0 and the exponential terms in 
the summation represent a transient skin effect voltage. Each 
additional term included in this series improves the accuracy 
at progressively shorter timescales.

2.4. Thin-skin approximation

The thin-plate approximation (15) can be applied to conduc-
tors of arbitrary thickness in the so-called thin-skin regime 
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where the diffusion depth of the current, rather than the plate 
thickness, is somewhat less than the probe spacing. The choice 
of a must be made to ensure that δ(t) � a for this approx
imation to be valid. Here, a does not necessarily represent a 
physical boundary, but instead the assumption that H ≈ 0 at 
z  =  a artificially truncates the conducting region and enables 
the eigenfunction expansion in (11) [18].

Although (15) can be made accurate at short times by 
including enough summation terms, an exact expression for 
the thin-skin approximation is found by noting that the half-
space result in (10), with similar reasoning as in the previous 
section, can be used to write the four-point potential drop as

Vts(t) =
I0G
2πσ

√
µσ

πt
.� (16)

2.5.  Finite rise time

The idealized step response diverges for t → 0, which is imme-
diately clear from (16), but in practice the response is limited 
due to the finite rise time of the drive current. Experimentally, 
the rise time may be controlled deliberately or limited by the 
finite bandwidth of the current drive circuitry. As a simple 
model of a step-like drive current of finite rise time, we con-
sider the case of an exponentially rising current,

I(t) = I0

(
1 − e−t/τ

)
,� (17)

which has the Laplace transform

Ĩ( p) = I0

(
1
p
− 1

p + 1/τ

)
.

To find the potential drop, use (12) and (5) to write the trans-
form of the voltage as

v(p) =
Ĩ(p)

2πσa

(
1 + 2

∞∑
n=1

p
k2

n + µσp

)
.

After inserting for Ĩ(p) and expanding the terms inside the 
summation into partial fractions, inversion to the time domain 
gives

Vexp(t) = V0

(
1 − e−t/τ + 2

∞∑
n=1

e−t/κn − e−t/τ

1 − τ/κn

)
.� (18)

Figure 3 shows this expression compared with the step 
response (15) and illustrates how controlling the rise time of 
the drive current limits the peak height of the transient.

The terms outside the summation in (18) are proportional 
to the drive current and may be considered a resistive contrib
ution to the potential drop as it is present in the absence of any 
skin effect. In figure 4 this contribution is compared with the 
skin effect voltage.

The validity of the thin-plate approximation is indicated in 
figure 5 where it is shown that the error in the approximation 
can be made negligible (less than 0.2%) by measuring the 
potential at a distance s from the source points greater than 
approximately 2 times the plate thickness. In all cases the error 

is zero at t  =  0 and remains negligible throughout the time 
range where the thin-skin approximation holds. Physically, 
the departure from the thin-skin regime reflects the influence 
of the probe distance s on the decay of the transient [13].

It is useful to also evaluate the response to a drive current 
having a finite rise time for the thin-skin approximation (16). 
In this case an exponential current pulse leads to transforms 
that are more complicated, but the result can be written com-
pactly as

Vts,exp(t) =
I0G
2πσ

√
µσ

τ
D
(√

t/τ
)

.
� (19)
Here, D(x) is the Dawson function [17] which is related to the 
error function by D(x) = (

√
π/2)e−x2

erfi(x) where erfi is the 
imaginary error function defined by erfi(x) = −ierf(ix) which 
is a real function for real argument x despite the appearance 
of the imaginary unit. The actual Laplace inversion is carried 
out in the appendix.

3.  Experiment

Transient potential drop measurements were made using a 
co-linear probe consisting of four spring-loaded pins held in 
place by plastic supports. The probe dimensions are given 
by s1 = 7.5 mm, s2 = 10.5 mm and d = 16.5 mm, corre
sponding to a probe factor G ≈ 2.1 and an overall probe length 
of 34.5 mm. The separations between the probes were mea-
sured to within ±0.2 mm using a mechanical ruler with .5 mm 
divisions. The drive current was generated by programming 
an arbitrary waveform generator (AWG) to produce a pulse 
train with exponentially rising and falling edges. By recording 
the response to several consecutive pulses, the resulting repet-
itive signal can be averaged to reduce random noise when 
appropriate.

A multi-channel PC oscilloscope was used to record both 
the drive current and the transient potential drop. The former 
was obtained by measuring the voltage over a precision 
resistor in series with the drive circuit; the transient poten-
tial drop on the plate was measured as the differential voltage 

0.0 0.2 0.4 0.6 0.8 1.0
Time (t/κ)

0

1

2

3

4

N
or

m
al

iz
ed

vo
lt

ag
e

Step
τ = κ/2
τ = κ/10
τ = κ/50

Figure 3.  Transient potential drop due to an exponentially rising 
drive current for different values of the rise time τ  relative to 
the decay time constant κ = µσa2. The solid line shows the step 
response (15) corresponding to an ideal step change of the drive 
current and representing the limit τ → 0.
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between pick-up wires that were soldered close to the tips of 
the voltage probes and kept close to the plate surface to mini-
mize the induced voltage in the loop formed by the wires and 
the conducting path between the probes. See also figure 6 for 
a schematic diagram of the experimental setup.

In the theory it is assumed that the current wires are infi-
nitely long, although in practice the wires must form a closed 
loop and were extended for approximately 30 cm above the 
plate to minimize the influence of the inductive coupling 
between the plate and the sections of wire running parallel to 
the plate surface.

In addition to the potential drop due to the current in the 
plate there is another contribution to the measured voltage 
which is due to the mutual inductance between the vertical 
current wires and the pick-up probes. This voltage can be 
written as VL = LdI/dt  where the inductance L is a geomet-
rical parameter characteristic of the probe. For an exponen-
tially rising current the induced voltage appears as an additive 
term on the form

VL(t) =
LI0

τ
e−t/τ .� (20)

3.1.  Materials

Three different samples were used in the experimental mea-
surements: two plates, made of aluminium and carbon steel 
(grade S235), both having a nominal thickness of 3 mm, and a 
somewhat thinner sample of DC01 cold-rolled steel sheet with 
a nominal thickness of 1.2 mm. The thickness of each sample 
was measured more accurately using a micrometer and taking 
the average of readings at several points along the plate edges. 
The dimensions of the samples are summarized in table 1.

The samples are wide compared to the probe length to min-
imize edge effects: all samples have lateral dimensions greater 
than ten times the probe length which reduces the expected 
DC error due to edge effects to less than 1% [19].

3.2.  Permeability and thickness measurement

In section  2.5 it is shown that the transient potential drop, 
(18), can be expressed in terms of the constant DC voltage V0 
and a transient part characterized by the decay time-constant 
κ = µσa2 and the rise time τ  of the drive current. In the fol-
lowing we use the probe resistance defined by R = V0/I0, 
which may be written in terms of the probe and plate param
eters as R = G/2πσa. Experimentally, the probe resistance is 
determined from the DC voltage V0 which is extracted from 
the measured voltage pulse after it reaches a steady state. The 
transient decay time is then determined in a fitting procedure 

where a value of κ in (18) is found that minimizes the residual 
sum of squares between the measured potential drop and the 
theoretical prediction.

From the experimental values of R and κ, the model param
eters µ, σ and a can be determined. Assuming first that the 
thickness is known, the conductivity is given by

σ = G/2πRa� (21)

and the relative permeability can be found either from 
µr = κ/µ0σa2 using the estimate of σ or directly in terms of 
the measured parameters according to

µr = 2πκR/µ0aG.� (22)

Alternatively, both the conductivity and the thickness can 
be determined simultaneously assuming that the permeability 
is known, for example in measurements made on non-magn
etic materials with µr = 1.0. Taking the product κR2 to first 
eliminate a gives the conductivity,

σ = G2µ/4π2R.� (23)

Similarly, σ is eliminated by taking the product κR to get the 
thickness,

Table 1.  Dimensions of the samples used in the experimental 
measurements. The accuracy of the thickness measurement is ±0.01 
mm.

Sample Thickness Width (mm) Length

Aluminium 3.02 400 400
Steel (S235) 2.96 350 350
Steel sheet 1.21 400 500
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Figure 4.  A transient voltage decomposed into resistive and skin 
effect contributions for a rise time τ = κ/10. The resistive part 
is proportional to the exponential drive current. The skin effect 
contribution is due to the magnetic excitation of the material and its 
peak height determined by the rise time.
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Figure 5.  Validity of the thin-plate formula indicated by the 
percentage difference between the transient step response calculated 
using the thin-plate approximation and the formula for plates of 
arbitrary thickness given in [13]. A symmetric probe with d  =  2s 
was assumed in the calculations.
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a = 2πκR/Gµ.� (24)

These formulas are applied in the following sections for the 
interpretation of the experimental measurements.

The principle of conductivity and permeability measure-
ment outlined above is similar to the procedure by Bowler and 
Huang [7] using multi-frequency ACPD. However, although 
application of the theory to thickness measurement was also 
considered in their work, an independent measurement of the 
conductivity was used instead of determining both parameters 
from the potential drop data.

Note that the most direct approach to the analysis pre-
sented above is to include a sufficient number of summa-
tion terms in the calculations of (18) to accurately describe 
the entire measured transient. However, a practical simplifi-
cation is to include only a few terms in the calculations and 
restrict the analysis to the late part of the decay where the 
resulting approximation is valid. For example, in the simplest 
case, the transient voltage is described by a single exponential 
according to (15) provided that the rise time of the current is 
short relative to the transient decay time (figure 3). Moreover, 
in this limit where the transient response approaches the step 
response the measurement is made independent of the exact 
form of the drive current.

3.3.  Aluminium plate measurements

Figure 7 shows experimental data from a transient potential 
drop measurement on the aluminium plate, together with 
the theoretical prediction calculated from (18) using param
eters obtained in the fit procedure. Also shown is the contrib
ution from the induced voltage (L  =  0.32 nH) along with the 
skin effect voltage which illustrates that the induced voltage 

Figure 6.  Simplified schematic diagram of the measurement 
setup. The drive current waveform generation and the oscilloscope 
recordings are controlled from a PC.
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Figure 7.  Transient potential drop measurement on the aluminium 
plate. The experimental measurement is given by the solid line and 
the grey squares represent the theoretical calculation. The estimated 
contributions from the skin effect voltage and the induced voltage 
are also shown to indicate the relative magnitude of these effects.
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Figure 8.  Residuals in the fit for the aluminium plate in figure 8 
plotted as the percentage error relative to the DC value of the 
measured potential drop.

Figure 10.  Measurement on the aluminium plate when the probe 
separation is less than the plate thickness and the thin-plate 
approximation does not hold. The thin-plate theory (18) and thin-
skin theory (19) are plotted using a conductivity of 19.0 MS m−1.
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Figure 9.  Measured current in the aluminium plate compared with 
the prescribed exponential waveform having a rise time of 50 µs.
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contributes a significant fraction of the overall transient 
voltage.

An average of 64 pulses was used to obtain residuals  
(figure 8) within about ±1% for the duration of the transient. 
The residuals are given as the difference between the theor
etical and measured normalized voltages. As such, they rep-
resent the percentage difference relative to the DC potential 
drop. The drive current, with magnitude 1.5 A and rise time 
40 µs, is shown in figure 9 and compared with the prescribed 
exponential waveform.

The measurement corresponds to a conductivity of 
19.0 ± 0.5 MS m−1 and a relative permeability of 0.98 ± 0.03, 
calculated from (21) and (22) using the known thickness of the 
plate together with the measured probe resistance of 5.95 µΩ 
and a decay time constant of 214 µs obtained in the fit. The 
accuracy of approximately 3% in the parameter estimates are 
evaluated by propagation of error in the respective formulas 
where the main contributions are due to uncertainties in the 
resistance measurement and the probe factor.

Following the discussion in the previous section, the thickness 
and the conductivity can be estimated from the measurement 
data by setting µr = 1.0, which gives σ = 19.3 ± 0.7 MS m−1 
and a = 2.97 ± 0.09 mm calculated from (23) and (24). The 
higher uncertainty in this conductivity estimate compared to 
that above is due to the probe factor appearing in the second 
power in the corresponding expression for σ.

In the present context, estimates of the relative permea-
bility and plate thickness serve as useful checks on the validity 

of the theory since both parameters are known. However, the 
approach also allows for simple measurement of the thickness 
of planar conductors without the need for an independent con-
ductivity measurement.

3.4. Thin-skin measurement

Figure 10 shows an example of the case where the thin-plate 
approximation does not hold, but the theory can be applied 
in the time region where the diffusion depth of the current 
is shallow compared to the probe distance. The overall probe 
length is the same as before, but shorter probe separations of 
s1  =  2 mm and s2  =  3 mm are used. Since these values are 
similar to the plate thickness, a time dependent discrepancy 
between the approximate theory and the measured potential 
drop is expected according to figure 5.

The advantage of this approach, when applicable, is the 
simplicity of the thin-skin approximation especially on the 
form of (19). Furthermore, the steady state response can be 
analyzed separately by means of the DC formulas for a plate 
[19] and the material properties can be inferred without com-
puting the response in the intermediate regime where the 
formulas are more complicated.

3.5.  Measurements on steel plates

Experimental data from measurements on the steel samples 
are shown in figure 11 for the 3 mm S235 steel plate and in 
figure 12 for the 1.2 mm steel sheet. The relative permeability 
and conductivity are calculated using (21) and (22) with the 
results σ = 3.6 MS m−1, µr = 61 for the 3 mm steel plate and 
σ = 5.7 MS m−1, µr = 87 for the 1.2 mm steel sheet.

Note that in both cases there is a discrepancy between the 
theory and measurements, reflecting the fact that no single 
value of κ results in an agreement over the entire range of the 
measured transients. Values of the fitting parameter κ were 
determined by minimizing the error in the late part of the decay 
where the transient approaches the steady state value. As a 
result, the theoretical calculations deviate from the experimental 
curves at short times. Similar results were reported previously 
for ACPD measurements on carbon steel plate [7] where by 
assuming a constant permeability, agreement with theory could 
only be obtained for low frequencies, whereas fitting the linear 
theory at higher frequencies requires the assumption of a fre-
quency dependent relative permeability [20].

Although a value of the overall permeability is easily deter-
mined from the late decay of the transient, slightly lower values 
would be obtained from an analysis in the thin-skin regime. 
Likely factors contributing to this observation is the non-linear 
magnetization that is typical for ferromagnetic materials [21] 
and possibly slight inhomogeneity in the material.

4.  Conclusions

In this work we have demonstrated the agreement between 
theory and experiment for four-point transient potential drop 
measurements on metal plates that are either thin compared 
to probe separation or when the analysis is restricted to a 
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Figure 11.  Transient potential drop measurements on the 3 mm 
thick steel plate. A drive current with amplitude 500 mA and a rise 
time of 0.5 ms was used. The inset shows the normalized residuals 
between the measured transient and the theoretical calculation.
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Figure 12.  Transient potential drop measurement on the steel 
sheet with thickness 1.2 mm. The drive current has a magnitude of 
approximately 200 mA and a rise time of 165 µs.

Meas. Sci. Technol. 31 (2020) 024006



Ø Persvik and Z Zhang﻿

9

thin-skin regime. As an addition to a similar previous theor
etical study for the step response on plates we have included 
the response to a finite rise time of the drive current which is 
an important parameter in experimental applications.

In addition to the theoretical validation, we have demon-
strated how the theory can be applied to rapidly determine 
the conductivity and permeability of conducting materials 
provided that the thickness is known. Moreover, in the case of 
non-magnetic materials whose relative permeability is known, 
a single transient measurement is sufficient to determine both 
the conductivity and the thickness.

The case of homogeneous plates considered here is a step 
towards the analysis and measurements on non-homogeneous 
materials with application to NDE of material properties that 
vary with depth and where the material may exhibit anisotropy 
for example due to applied stress or mechanical processing.

Appendix

A.1.  Finite rise time for thin-skin approximation

In the thin-skin approximation the Laplace transform of the 
voltage is given by

vts(p) =
Ĩ(p)
2πσ

√
µσp.

Given an exponentially rising current, write its transform as

Ĩ(p) =
I0/τ

p(p + 1/τ)
.

Now consider transforms on the form

f (p) =
√

c
√

p (p + c)
,

noting that, after inserting for Ĩ(p), vts(p) ∼
√

cf (p) with 
c = 1/τ . Rewrite f (p) in terms of the following partial frac-
tion expansion [12],

f (p) =
i
2

[
1

√
p
(√

p + i
√

c
) − 1

√
p
(√

p − i
√

c
)
]

� (A.1)

where now the transform pair 29.3.43 in [17] can be used to 
invert the terms in the brackets according to

1
√

p
(√

p ± i
√

c
) ↔ e−cterfc

(
±i

√
ct
)

.

Inverting the terms in (A.1) and evaluating the sum gives

f (t) = e−cterfi
(√

ct
)
≡ 2√

π
D
(√

ct
)

,

where we have used the relation erfc (ix)− erfc (−ix) =
−2erf (ix) and the imaginary error function erfi(x) = −ierf(ix). 
The above equation is the definition of the Dawson function 
D(x) introduced in the main text, otherwise known as Dawson’s 
integral, and can be evaluated numerically2.
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