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Figure 3. Distribution of U0 for structures for the training set (a) compared with structures generated from extrapolation along
the first principal component of models trained on (b) encoding and decoding alone, (c) an ancillary U0 prediction task, (d) U0

and ZPVE prediction tasks, and (e) U0, ZPVE, and Eg prediction tasks. For each paradigm, 3000 unique structures are generated
across the ten duplicate models for a total of 30 000 structures. The mean of each distribution is denoted with a dashed red line
and the largest |U0| value in the training data is indicated by the dashed green line. The percentage of generated compounds with
|U0| greater than observed in the training data is shown on the right.
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Figure 4. Distribution of Eg for the training data (a) and structures generated from models trained to predict Eg by targeting (b)
1.5–2.0 eV, (c) 5.5–6.0 eV, and (d) 9.5–10.0 eV. While (c) and (d) show good specificity, the model is unable to resolve structures
in the 1.5–2.0 eV range (b). For each target, 3000 unique structures are generated across the ten duplicate models for a total of
30 000 structures. The median of each distribution is indicated by a dashed red line. Targeted regions are highlighted in blue.
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Abstract
Generative models are a sub-class of machine learning models that are capable of generating new
samples with a target set of properties. In chemical and materials applications, these new samples
might be drug targets, novel semiconductors, or catalysts constrained to exhibit an
application-specific set of properties. Given their potential to yield high-value targets from
otherwise intractable design spaces, generative models are currently under intense study with
respect to how predictions can be improved through changes in model architecture and data
representation. Here we explore the potential of multi-task transfer learning as a complementary
approach to improving the validity and property specificity of molecules generated by such
models. We have compared baseline generative models trained on a single property prediction task
against models trained on additional ancillary prediction tasks and observe a generic positive
impact on the validity and specificity of the multi-task models. In particular, we observe that the
validity of generated structures is strongly affected by whether or not the models have chemical
property data, as opposed to only syntactic structural data, supplied during learning. We
demonstrate this effect in both interpolative and extrapolative scenarios (i.e., where the generative
targets are poorly represented in training data) for models trained to generate high energy
structures and models trained to generated structures with targeted bandgaps within certain
ranges. In both instances, the inclusion of additional chemical property data improves the ability of
models to generate valid, unique structures with increased property specificity. This approach
requires only minor alterations to existing generative models, in many cases leveraging prediction
frameworks already native to these models. Additionally, the transfer learning strategy is
complementary to ongoing efforts to improve model architectures and data representation and can
foreseeably be stacked on top of these developments.

1. Introduction

The proliferation of machine learning (ML) research in the context of the chemical sciences has yielded
powerful modeling paradigms for increasing the accuracy and reducing the cost of predicting the properties
of molecules and materials. As this work reaches maturity, the so-called ‘forward-problem’ of predicting
function from a given chemical structure is becoming more routine and with new datasets coming online
more properties will soon become accessible to prediction using ML models. However, the ‘inverse-problem’
of finding an optimal set of structures under functional constraints is more directly relevant to chemical
design and remains unsolved. Deep generative models are one class of ML modeling that is potentially
capable of addressing the inverse problem by yielding exemplary structures from the same population as the
training distribution. Such models have been effective in generating images that accurately match a desired
caption [1], novel musical scores [2], and have recently been under intense study in chemical applications to
discover new functional molecules and materials [3–8]. Common generative methods include variational
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autoencoders [9–11], recurrent neural networks [12–14], generative adversarial networks [15–17], and
adversarial autoencoders [18–20], among others, and the optimal model architecture and data representation
for chemical generation is still an area of active research. These models have been extensively applied toward
the design of drug-like molecules, but other applications also include the generation of novel solar cell
materials[21] and crystalline species [22].

Several of the early papers on generative chemical models have noted low generative validity [10] and
diversity [23] when using typical chemical representations (e.g. using SMILES, InChI, and grammar based
representations) and architectures. Thus, intense research has been devoted to developing model
architectures that guarantee or improve the chemical validity and uniqueness of the molecules produced by
deep generative models [24–29]. In contrast, the role of training data and the possible impact of including
additional chemical property information during training remains largely unexplored. In particular,
although generative models are typically trained using abundant syntactic data (i.e.molecules with valid
Lewis structures from databases like QM9 [30] and ZINC [31]) limited chemical property data is typically
incorporated into model training. Likewise, research on which properties are conducive to inverse design has
been scarce, and the properties that have been investigated tend to be either narrow in scope, such as simple
cheminformatics data like molecular weight and the water-octanol partition coefficient, or properties that
may not be directly verified and are instead based on similarity to known lead molecules [12]. A general
approach for targeted generation of compounds based on general quantum chemical properties has not yet
been developed.

In the present work we investigate whether transfer learning [32–37] (TL) improves the performance of
generative models in comparison with baseline models trained to generate molecules with a single property.
We focus on multi-task TL [38–41], whereby modifications to model architecture are minimal, save only
through the inclusion of additional property prediction tasks. Since multi-task TL is largely model
independent, it provides a potentially complementary strategy for improving generative models to
contemporary efforts to modify model architecture and data representation. The hypothesis driving our
exploration of multi-task TL for generative models is that the limited validity and uniqueness exhibited by
many generative models is a symptom of insufficient chemical property data being utilized during training.
In particular, elementary chemical properties including internal energy, bandgap, and zero-point vibrational
energy (ZPVE) can be routinely calculated from quantum chemistry and may provide relevant information
about validity and molecular stability that cannot be learned from molecular structures alone. This
hypothesis is explored using a generative variational autoencoder model with multi-task TL trained on the
QM9 dataset, along with semi-empirical calculations for validation of generative predictions. We consider
internal energy at zero Kelvins (U0), zero-point vibrational energy (ZPVE), and HOMO-LUMO gap (Eg)
evaluated at the DFT level as multi-task prediction properties for training, and compare how generative
performance with respect to validity, uniqueness, and property specificity is affected by inclusion of
additional ancillary chemical property data. Since QM9 is a database of small molecules, relatively few high
|U0| samples or low Eg samples exist in the training data. Thus, by characterizing generative results in these
property spaces we can characterize how generative performance in an extrapolative task is affected by TL.
For targeted structure generation, we observe that multi-task TL increases the percentage of valid and unique
high |U0| structures up to sevenfold with increased property specificity. Searching within areas of physically
accessible property values tends to greatly increase the proportion of valid chemical species generated. Even
within property regimes with limited representation in the training data, such as structures within the optical
bandgap of 1.5–2.0 eV, the inclusion of additional property data improves the ability of the generative
models to discover new valid structures. Thus, multi-task TL can be utilized in both extrapolative and
interpolative applications to generate novel compounds with optimized or targeted molecular properties
with a higher success rate.

2. Computational methods

2.1. Datasets
All models were trained and evaluated using structures from the QM9 dataset. This dataset contains
molecular properties computed at the B3LYP/6-31G(2df,p) level for small molecules ranging from 1 to 9
heavy atoms (C, O, N, F). 80% of the structures and their associated properties were utilized for model
training, 10% were withheld as part of a validation set to gauge model performance during training, and the
final 10% were kept as an independent testing set for the property prediction tasks [42]. The internal energy
at 0 K (U0), ZPVE, and HOMO-LUMO gap (Eg) were used individually, or in combination, for training
multi-task models.
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3. ML architecture

Approximately 100 models were evaluated in total, with models distinguished by the number and kind of
prediction tasks utilized during training. Unless otherwise noted, model types were evaluated in an ensemble
fashion, with ten models trained per ensemble. Sampling results for each model type are averaged across the
ensemble to provide uncertainty estimates. The autoencoder model utilized in this study was based on the
grammar variational autoencoder developed by Kusner et al. The major alteration from the original
implementation lies in the use of linear predictor networks during model training and evaluation, which was
previously shown to be advantageous for multi-task training [39]. Models were trained using the RMSprop
algorithm with a learning rate of 0.001 for 100 epochs. The loss corresponding to predictor mean squared
error (MSE) was scaled by 100, Kullback-Leibler (KL) divergence was scaled by 750, and the categorical cross
entropy loss weight from encoding/decoding was scaled by 50 initially, before decaying to 1 according to a
sigmoid function. These loss weights were selected to ensure well-balanced performance with respect to both
reconstruction on the training data and property prediction accuracy. Exemplary trained models, model
schematic, and full training details may be found in the Supporting Information.

Over 6 million compounds were cumulatively generated in the present study. Since it is infeasible to
characterize all of these compounds at the B3LYP/6-31G(2df,p) level, GFN2-xTB (xTB) was utilized to
evaluate U0 and Eg of newly generated species [43]. DFT level predictions for Eg were estimated from a
random forest model trained to predict the difference between xTB and B3LYP/6-31G(2df,p) (figure S1
(stacks.iop.org/MLST/1/045010/mmedia)). The random forest model consists of 120 regressors expanded to
max depth and trained to predict the difference in xTB and DFT computed bandgap given a Morgan
fingerprint of depth two with 1024 bits. Fingerprints were calculated using the RDKit implementation, and
the random forest model followed the Scikit-Learn implementation. xTB predictions for |U0| were found to
be linear correlates for the DFT values (figure S2) and were used without modification.

3.1. Sampling paradigms
In the variational chemical autoencoder studied here, new compounds are generated by sampling points
from the latent chemical distribution and passing these points to the decoder. By including an ancillary
property prediction task, molecular properties vary linearly along particular directions within the latent
space (i.e. a principle component). The regions of the latent space to target can thus be determined by linear
regression of the target property of training compounds with respect to their position along the principal
components. The generative performance of the models was investigated using both extrapolative and
interpolative sampling approaches. Extrapolative property sampling was achieved using a one-sided
distribution with mean equal to the extreme latent position along the sampled principle component in the
training data and variance determined from the variance of the training data along the sampled principle
component. All other dimensions were normally sampled according to the training set distribution.

In interpolative sampling, the goal is to recover compounds whose properties lie within a given range
(with at least some representation within the training data). The maximum and minimum position along the
latent dimension corresponding to the high and low end of the targeted property range were determined via
linear regression. This dimension was then sampled from a uniform distribution with specified high and low
values. All other dimensions were sampled normally according to the training set distribution.

4. Results and discussion

4.1. Extrapolative sampling
To explore whether adding property prediction tasks can improve generative models we investigated two
simplified models: one trained only on encoding and decoding, and another also trained to predict U0 from
the latent encoding. The latent dimensionality was set at two to allow comprehensive sampling to evaluate
the validity of generated compounds and for direct visualization of the latent space. One thousand points
were sampled from this 2D latent space using the quasi-random Sobol algorithm to maximize the area of the
latent space sampled. Due to the stochastic nature of the decoding process, each point was decoded 500 times
to determine the average sampling validity. These models are not optimized for either predictive or
generative performance, but have been aggressively simplified to illustrate the basic TL mechanism explored
in this work. The results from these experiments are presented in figure 1.

This example illustrates two salient features of adding a property prediction task to the generative model.
First, by learning to predict a chemical property the models also learn to discriminate between valid and
invalid structures. For the autoencoder trained without property prediction tasks (figure 1(a)), the latent
space is organized syntactically, with a region containing almost exclusively aromatic compounds in the top
left, separated by a gap from other non-aromatic ring-containing structures (figure S3). However, we observe
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Figure 1. Comparison of latent space Sobol sampling for 2D autoencoders trained on (a) chemical reconstruction only and those
with (b) an ancillary U0 prediction. All compounds utilized in training the models have been projected into the latent space and
are colored according to U0. The points corresponding to the Sobol sampling are colored according to their average validity across
500 decodings. For the model trained to predict U0, we observe a clear relationship between increasing validity and decreasing
|U0|, whereas for the model trained only on reconstruction, there are no observable trends with respect to either validity or
property values.

no discernable trend with respect to decoding validity or |U0| across the latent dimensions. In contrast, the
model trained to predict |U0| (figure 1(b)) exhibits sampling validity trends that follow the physical property.
Second, adding a property prediction task exposes both training data limitations and features of chemistry
that affect generative behavior. The sampling validity of the model trained to predict |U0| approaches nearly
100% for small molecules (i.e. low |U0|) and lower validity for large structures (i.e. high |U0|). This is
consistent with the observation that small molecules are easier to validly decode and are well represented in
the training data. In contrast, high |U0| structures are relatively rare in QM9 given that the dataset is curated
for small molecules.

Motivated by this example, we then explored whether generative validity also follows chemical property
trends in higher dimensional autoencoders that are more typical of generative applications [9, 10, 18, 44]. In
particular, higher dimensional latent spaces are required to effectively compress chemical data when multiple
properties are utilized during training (figures S4 and S5). We compared the generative performance of two
56-dimensional autoencoders, one trained only on encoding and decoding and the other also trained to
predict U0 from the latent encoding. Both models were sampled in an extrapolative mode along their first
principal component as determined by the latent encodings of the training data, with 30 000 unique
structures generated for each model type. For the model trained without property prediction, the
extrapolative sampling validity is found to be 25%± 7% with uniqueness of 23%± 5%, regardless of
direction along the first principal component and consistent with no organization of the latent space with
respect to validity. Conversely, sampling in the low absolute internal energy regime of the jointly trained
model nearly doubles the average validity, raising it to 45%± 3%, but drastically reduces the uniqueness to
3%± 2%, as there are only a small number of C,N,H,O, and F containing molecules as U0 approaches zero.
Conversely, extrapolating to high |U0| produces a valid structure in only 3%± 2% of trials with similar
values for uniqueness. These results establish that validity trends in high-dimensional autoencoders follow
chemical property values, consistent with the experiments on the low-dimensional models.

It is clear that the inclusion of chemical property data during generative model training affects sampling
validity and suggests that supplying additional chemical information may further improve generative
performance. We therefore examined the effect of including additional property prediction tasks based on
available QM9 data, including ZPVE, which is expected to scale with the number of bonds in the molecule,
and Eg, which is not anticipated to correlate with the internal energy of a compound, and repeated the U0

extrapolation outlined above. The validity and uniqueness statistics for the baseline model trained only on
U0, and models trained on U0/ZPVE, and U0/ZPVE/Eg are summarized in figure 2. The addition of ancillary
ZPVE and Eg prediction tasks improves the ability of the multitask models to generate high absolute internal
energy structures. Inclusion of ZPVE alone leads to an increase in the average sampling validity and fraction
of unique structures. Including an additional Eg prediction task results in little further change in sampling
validity, but the proportion of unique structures generated increases and the variance of both quantities
decrease.

To investigate if the increased validity and uniqueness of the multi-task models is also reflected in
increased property specificity, we have histogrammed the predicted U0 of the generated compounds for each
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Figure 2. Average sampling validity and uniqueness for the high |U0| extrapolation trial. Results are averaged across ten distinct
models for each training paradigm, with error bars denoting standard deviation. Baseline models exhibit very limited ability to
generate structures with high |U0|. The addition of ancillary property prediction tasks greatly improves the generative utility of
these models.

Figure 3. Distribution of U0 for structures for the training set (a) compared with structures generated from extrapolation along
the first principal component of models trained on (b) encoding and decoding alone, (c) an ancillary U0 prediction task, (d) U0

and ZPVE prediction tasks, and (e) U0, ZPVE, and Eg prediction tasks. For each paradigm, 3000 unique structures are generated
across the ten duplicate models for a total of 30 000 structures. The mean of each distribution is denoted with a dashed red line
and the largest |U0| value in the training data is indicated by the dashed green line. The percentage of generated compounds with
|U0| greater than observed in the training data is shown on the right.

model in figure 3. We note a root mean square deviation of∼11 Hartrees between U0 calculated at the DFT
and xTB level (figure S2), thus we expect this to be the minimum uncertainty in the resulting estimates and
also contributes to width of the resulting distributions. Extrapolative sampling of the base autoencoder
(figure 3(b)) exhibits a broader distribution of U0 values than observed in the training distribution, however
the mean U0 is consistent with the training data and <5% of the structures exceed the maximum U0 of the
training data (figure 3(a)). Figure 3(c) shows that including the U0 prediction task leads to an increase in the
number of high |U0| structures and shifts the mean relative to the training data; however, the mean of the
predicted distribution is still within the training distribution, indicating a limited ability to extrapolate
beyond the training data. Figure 3(d) shows that inclusion of the ZPVE prediction task shifts the distribution
toward higher |U0| structures well beyond the training data, with∼20% of the generated structures
displaying |U0| greater than the maximum value in the training set. Thus, the increase in valid/unique
structures observed in figure 2 comes from the higher density of desired structures within the sampling
region. Interestingly, while the further addition of a Eg prediction task in figure 4(e) increases the validity and
uniqueness of the generated structures, the bias toward higher |U0 structures has been removed. It appears
that inclusion of Eg saturates the latent space with valid structures, albeit biased toward the training
population. The disparate impact on U0 extrapolation of including the ZPVE and Eg prediction tasks can be
understood in terms of their correlation with U0. ZPVE scales with molecular size, and so supplying this
chemical information improves the extrapolative sampling of high |U0| structures; however, Eg is weakly
correlated with U0, but still provides chemical information that improves the overall validity of sampled
molecules.

4.2. Interpolative sampling
The extrapolative sampling that was investigated above is representative of chemical discovery applications
where champion property values are being sought for new compounds outside of the convex hull of the
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Figure 4. Distribution of Eg for the training data (a) and structures generated from models trained to predict Eg by targeting
(b) 1.5–2.0 eV, (c) 5.5–6.0 eV, and (d) 9.5–10.0 eV. While (c) and (d) show good specificity, the model is unable to resolve
structures in the 1.5–2.0 eV range (b). For each target, 3000 unique structures are generated across the ten duplicate models for a
total of 30 000 structures. The median of each distribution is indicated by a dashed red line. Targeted regions are highlighted in
blue.

Figure 5. Average sampling validity and uniqueness for the three targeted Eg paradigms. Results are averaged across ten distinct
models for each training paradigm, with error bars denoting standard deviation. The models show difficulty in generating
compounds within the poorly represented 1.5–2.0 eV range, and are comparatively much stronger in generating structures with
Eg between 5.5–6.0 and 9.5–10.0. The addition of ancillary U0 and ZPVE prediction tasks greatly increases the proportion of valid
and unique structures generated in the 1.5–2.0 eV range.

training data. In contrast, interpolative sampling is relevant to applications where a range of property values
are desired with some representation in the training data. For instance, in photovoltaic applications it is
relevant to target structures within the optical bandgap of 1.0–2.0 eV rather than compounds with extreme
values. To investigate the baseline performance of interpolative sampling we trained autoencoders on an Eg
prediction task. Ten separate models were trained to evaluate model variance, and novel compounds were
generated for the target Eg ranges of 1.5–2.0, 5.5–6.0, and 9.5–10.0 eV based on the principle component
corresponding to Eg (see methods). For each range, 3000 unique structures for each of the ten models were
decoded and subjected to xTB calculation to determine Eg.

The histograms of Eg values resulting from the interpolative sampling procedure are shown in figure 4.
Although all of the targeted ranges have some representation in the training data, the impact of data
imbalance is apparent in the results. The generative performance in the 5.5–6.0 eV range, which is well
represented in the training set, exhibits good specificity (figure 4(c)). A narrow distribution develops with its
most frequent value within the targeted region. Structures with bandgap between 9.5 and 10.0 eV (figure
4(d)) are much less well represented in the training data, and consequently the distribution is much broader
and is not centered about the target range, although generation is still shifted toward high Eg structures and a
large number of structures are still recovered within the targeted region. The situation is much starker for the
lowest bandgap target of 1.5–2.0 eV (figure 4(b)), which shows almost no representation in the training data
(figure 4(a)) due to the rarity of such low bandgap structures in a dataset comprised of small molecules. The
models exhibit limited ability to target compounds within this region, as evidenced by the distribution
centered at 4.5–5.0 eV. Only 200 structures with a bandgap of 1.5–2.0 were generated by these models, out of
a total of 30 000 generated compounds. Sampling in this region also tends to produce a much lower fraction
of valid/unique structures than the higher Eg targets (figure 5).
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Figure 6. Distribution of Eg for structures generated from model trained to predict U0, ZPVE, and Eg. Eg is targeted within
1.5–2.0 eV while U0 is extrapolated to bias the discovery of larger compounds. Compared to targeting Eg alone, the distribution of
Eg is much wider, which allows for the generation of approximately twice as many low Eg structures compared with models
trained on Eg alone. The targeted region is highlighted in blue.

Given the scarcity of training compounds exhibiting Eg in the 1.5–2.0 eV range, this generation task is
closely analogous to the extrapolative sampling experiments performed for high |U0| structures. The amount
of structures with bandgap of 1.5–2.0 eV is severely limited within the QM9 database, making this a
particularly difficult region to target. Because QM9 exhausts small molecule space, there is also a limited
amount of target compounds to actually discover within the space spanned by the training data. In order to
effectively target this underrepresented region, it is also necessary to expand the search beyond QM9 toward
larger molecules. To investigate if multi-task TL could improve targeted generative performance, we followed
the same procedure of high |U0| extrapolation while also targeting structures with Eg within 1.5–2.0 eV. We
trained ten separate models on Eg/ZPVE/U0 prediction tasks and performed targeted sampling for Eg in the
1.5–2.0 eV range while extrapolating along the U0 principle component to facilitate the generation of larger
structures. As shown in figure 5, the inclusion of these ancillary prediction tasks more than triples the
amount of unique structures generated. However, it is clear from observing the bandgap histogram in figure
6 that the increase in unique structures is not due to greater specificity. In fact, the distribution has been
shifted toward higher Eg structures compared to the model trained to predict Eg alone, and the distribution
has broadened. It is this broadening of the distribution that is responsible for the increase in the number of
unique structures generated, however it also allows the model to generate compounds with a bandgap of
1.5–2.0 eV. In particular, the number of structures within this range has more than doubled, with 440
structures compared to 200 for models trained on Eg prediction alone. The additional chemical property
information provided by the |U0| and ZPVE prediction tasks has been transferred to the task of generating
unique structures with targeted properties by improving the ability of the model to sample within these
underrepresented regions of chemical space. For the other bandgap targets, the inclusion of ZPVE and U0

data also serves to broaden the distribution of generated compounds (figure S6); however, as these regions
are already targeted effectively, it is not advantageous to add in the additional property data in these cases.

5. Conclusions

These results demonstrate that multi-task TL can be extended beyond property prediction toward improving
generative performance. We observe that including chemical property data during generative model training
provides complementary information to the syntactic, structural data that is typically used during training,
with a generic positive impact on generative validity and performance on extrapolation tasks. In particular,
by constraining the search to physically accessible property values, the validity of generated species is
increased. For extrapolative sampling, it may prove difficult to generate structures that are not well
represented in the training data due to significant differences in atom connectivity and topology; however,
the information learned in an ancillary property prediction task can be transferred to the generation task,
giving the model enough additional information to successfully resolve these new structures. For targeted
structure generation within property regimes that may not be well represented in the training data, this
mechanism may also be exploited to help the model effectively sample these underrepresented regions of
chemical space and resolve compounds with the desired property values. The choice of properties utilized in
this study was largely motivated by their availability and ease of calculation, however we anticipate that this
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effect can be employed in other extrapolative applications to generate novel compounds with optimized
molecular properties with a higher success rate.
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