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Abstract
Since their invention in the 1980s, optical tweezers have found a wide range of applications, from
biophotonics and mechanobiology to microscopy and optomechanics. Simulations of the motion
of microscopic particles held by optical tweezers are often required to explore complex phenomena
and to interpret experimental data. For the sake of computational efficiency, these simulations
usually model the optical tweezers as an harmonic potential. However, more physically-accurate
optical-scattering models are required to accurately model more onerous systems; this is especially
true for optical traps generated with complex fields. Although accurate, these models tend to be
prohibitively slow for problems with more than one or two degrees of freedom (DoF), which has
limited their broad adoption. Here, we demonstrate that machine learning permits one to combine
the speed of the harmonic model with the accuracy of optical-scattering models. Specifically, we
show that a neural network can be trained to rapidly and accurately predict the optical forces
acting on a microscopic particle. We demonstrate the utility of this approach on two phenomena
that are prohibitively slow to accurately simulate otherwise: the escape dynamics of swelling
microparticles in an optical trap, and the rotation rates of particles in a superposition of beams
with opposite orbital angular momenta. Thanks to its high speed and accuracy, this method can
greatly enhance the range of phenomena that can be efficiently simulated and studied.

Since their invention [1], optical tweezers have been employed to discover and study new phenomena,
including molecular motors [2, 3], thermodynamics of small systems [4, 5], and microscopic organisms [6,
7]. In the study of these systems, numerical simulations are frequently used both to plan and to interpret
experiments. The particle trajectory is often obtained from Brownian dynamics simulations, where it is
simulated as a series of sequential Brownian and deterministic steps [8, 9], which respectively account for the
thermal motion and the deterministic optical forces acting on the particle. Typically, the most
computationally expensive part of the calculation is determining the optical forces; furthermore, due to the
randomness introduced by the thermal motion, these forces need to be calculated sequentially. For complex
optical phenomena, multiple trajectories with a large number of time steps may be needed in order to have
sufficient statistics. For example, when the inertia contributes to the particle dynamics, such as for the
motion of particles in vacuum, the particle trajectories need to be simulated with sub-nanosecond
resolution, so that even the simulation of a 1-minute trajectory requires on the order of 1012 time steps [10].

In simple situations, the optical trap can be approximated with a harmonic potential, so that the optical
force can be easily estimated as Fot =−kx, where k is the stiffness of the optical trap and x is the displacement
of the particle from the equilibrium position [9, 11]. However, there are many scenarios where this model is
insufficient, for example, when modelling a particle escaping an optical trap [12] or the motion of a particle
in a beam with orbital angular momentum [13, 14]. While ad hoc phenomenological force-field models are
often employed to simulate these phenomena [15, 16], it is necessary to employ semi-analytical methods
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Figure 1. Estimation of optical forces using a neural network. (a) Illustration of a fully connected neural network with three
inputs (x, y, z), three outputs (fx, fy, fz), and three hidden layers. (b) Log-density plot comparing neural network force estimates
(FNN) with the ground-truth forces calculated with the T-matrix method (FTM) featuring an excellent agreement between the two
methods for 106 randomly sampled force vectors (viz. 3× 106 unique counts for the force components). (c) Axial and (d) radial
force–position curves calculated using the neural network (orange symbols, FNNx and FNNz ) featuring an excellent agreement with
those calculated with the T-matrix method (gray line, FTMx and FTMz ).

such as the T-matrix method to obtain a physically accurate simulation [17–20]. However, these
semi-analytical methods are prohibitively slow for running extensive dynamics simulations [21].

Another approach is to use local interpolation, which involves sampling the force distribution at a
number of discrete points on either a grid (structured interpolation) or at random locations (unstructured
interpolation) and using an interpolation function (e.g. a linear or cubic polynomial) to estimate
intermediate values [22]. Unlike Brownian dynamics simulations, which require sequential force
calculations, the force values required for interpolation can be calculated in parallel, significantly reducing
run-time. While interpolation works well for low-dimensional problems (1 to 3 DoF) [22], it is difficult to
implement efficiently for higher-dimensional problems because of runaway requirements on the memory
storage and the lack of ready algorithms implemented in the major software packages.

In this article, we demonstrate an alternative method based on machine learning. We show that a neural
network (NN) can be trained to calculate optical forces with greater accuracy than phenomenological
methods, in significantly less time than exact methods, and with less memory requirements than
interpolation methods. To demonstrate the power of this approach, we employ it to study two phenomena
that would be prohibitively slow to accurately simulate otherwise: the escape dynamics of swelling
micro-particles in an optical trap, and the hopping rates of particles in a superposition of Laguerre-Gaussian
beams.

While standard methods require explicit formulas to determine the optical forces starting from the
physical parameters of the particle and trapping beam, in this work we employ machine-learning models that
are trained to automatically determine the optimal rules to calculate the optical forces through a large series
of known samples, i.e. pairs of physical parameters and corresponding optical forces (which can be obtained
either from an experiment or an accurate numerical simulation). Specifically, we employ NNs because they
have been one of the most successful tools for machine learning in recent years [23, 24]. NNs have
outperformed standard approaches to track particles [25, 26], to enhance microscopy [27], to design
electromagnetic nano-structures [28, 29], to predict optical scattering [30], and to calculate hydrodynamic
forces [31]. Here, we employ dense fully-connected NNs, an example of which is illustrated in figure 1(a).
These NNs consist of a series of fully-connected layers of neurons, where the output of each neuron is a
non-linear function of the weighted sum of the neuron’s inputs. The weights are iteratively adjusted (trained)
until the NN learns to associate the correct optical force to each set of physical parameters. In this work, we
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Figure 2. Improved performance and accuracy of neural networks compared to other methods. (a) NN with 3 DoF (position x,
y, z): (b) as a function of their memory footprint, this NN (NN-3, orange solid line) outperforms in terms of mean absolute error
(MAE) structured interpolation (S) and unstructured interpolation (US) as well as the harmonic model (H); (c) furthermore, this
NN (NN-3, orange solid line) is several orders of magnitude faster than the T-matrix (TM) and similarly fast as the unstructured
interpolation (US), while the structured interpolation (S) and the harmonic approximation (H) are even faster. (d) NN with 5
DoF (position x, y, z, particle radius R, refractive index n): (e) its MAE and (f) its speed are still comparable to those of the 3 DoF
NN, while the other methods cannot be easily employed as discussed in the text; for convenience of comparison, the gray lines in
(e) and (f) report the results in (b) and (c), respectively. Error bars in (b) show the variation between 10 NNs trained on the same
training data (see Methods for details).

generate and train three different networks using optical forces obtained from exact T-matrix simulations
[19, 32]. Networks are trained using Keras with a Tensorflow backend [33] (see Methods).

To evaluate the accuracy of this approach, we first explore the simple scenario of the optical forces acting
on a spherical particle in an optical trap generated by a Gaussian optical beam. The NN, shown in figure
1(a), consists of 3 layers of 256 neurons connected to three input and three output neurons. The three inputs
are the three-dimensional particle position (x, y, z) and three outputs are the components of the optical force
acting on the particle (FNNx ,FNNy ,FNNz ). We train this NN using 106 samples randomly distributed around the
beam focus. Figure 1(b) compares the NN predicted forces with the exact T-matrix forces for 106 previously
unseen samples, qualitatively demonstrating very good agreement between the NN predictions and the
T-matrix method. Figures 1(c) and (d) further demonstrate the excellent agreement between the NN (orange
symbols) and the exact T-matrix method (gray lines) both along the transverse x-direction (figure 1(c)) and
along the axial z-direction (figure 1(d)), which extends well beyond the linear-force regime around the focal
point.

Figure 2 compares more quantitatively the NN and alternative standard methods in terms of both
accuracy and speed as a function of their memory footprint. We start by considering the 3 DoF NN discussed
in figure 1. By varying the number of neurons in the 3 intermediate layers, we directly control the NN
complexity and correspondingly the required memory. This allows for a straightforward comparison
between the NN memory footprint and the memory needed to store the interpolation data (see Methods).
The resulting mean absolute error (MAE) as a function of the memory footprint is shown by the orange line
in figure 2(b) (NN-3). To put this result into context: in a typical optical tweezers experiment we might
expect experimental noise to be between 10−2 and 10−1 pN mW−1; achieving a MAE of almost 10−3 pN
mW−1 for some of the larger networks demonstrates that NNs are more than suitable for modelling these
kinds of experiments. The NN accuracy is strongly dependent on the training sample distribution: for
optimal training performance, the samples should be clustered around regions where the force varies rapidly.
Since in a Gaussian-beam optical trap the forces are largest and vary the most around the beam focus, a
convenient choice for the sample distribution is Gaussian-distributed samples around the focus (see
Methods). Similar considerations apply for the choice of points for unstructured interpolation (see
Methods). For all memory footprints, the NN greatly outperforms both structured interpolation (S, gray
squares) and unstructured interpolation (US, gray circles). This improved performance is due to the fact
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that, while unstructured interpolation requires storing all training samples indefinitely, NN only needs to see
the training points during training and is able to encode the same information in a network using
significantly less memory. For reference, we show also the MAE of the harmonic model (H, dashed line). We
can observe that, while for sparse grids (low memory footprint) both interpolation methods perform worse
than the harmonic model, the NN already outperforms it even for the smaller memory footprints.

Figure 2(c) compares the performance of the various methods in terms of their computational speed on a
standard laptop computer (3.4 GHz processor, 16 GB RAM, see Methods). The exact T-matrix method is the
slowest (TM, gray dotted line,≈ 10000 s to calculate 106 samples), while the harmonic approximation is the
fastest (H, gray dashed line,≈ 0.01 s to calculate 106 samples). For both these methods the memory footprint
is fixed. The NN (NN-3, orange line) and unstructured interpolation (US, gray circles) perform similarly (≈
10 s to calculate 106 samples) and about three orders of magnitude faster than the T-matrix method almost
independently of the memory footprint. Structured interpolation (S, gray squares) is faster than both these
methods, but at the expense of a much lower accuracy (figure 2(b)).

The results in figures 2(b) and (c) show that the NN is better in terms of accuracy and similar in terms of
speed to unstructured interpolation for systems with≤ 3 DoF. The NN gains a real edge when increasing the
number of DoF. For example, we can consider a problem with 5 DoF, corresponding to the particle position,
x, y and z, its radius R, and its refractive index n. In such case, structured interpolation becomes unfeasible
because of memory constraints (a 5-dimensional grid with comparable resolution reaches quickly into the
Terabytes). Similar memory-management problems emerge when considering unstructured interpolation
algorithms. On the other hand, a NN (figure 2(d)) can still be trained with enough samples to learn the
5-dimensional dependence of the force field, achieving good accuracy (figure 2(e)) at a similar speed as in
the 3-DoF case (figure 2(f)). The additional input parameters increase the number of multiplications needed
to evaluate the network resulting in a slight increase in evaluation time, as demonstrated in Figure 2(f). The
only minor difficulty encountered with training these larger networks is generating enough training data;
fortunately, this task can easily be parallelised.

We now turn our attention towards scenarios that are almost impossible to accurately simulate without
the NN approach. First, in figure 3, we consider a particle whose size and refractive index gradually change
while held in an optical trap. This scenario is relevant to problems including modelling hydrogel particles
swelling over time in optical tweezers or the study of cells undergoing osmotic stresses. More generally, this is
an example of a problem where particles deform as they move through optical fields, such as the study of
water-glycerol droplets [34] and of the deformation and growth of cells or microorganisms [35]. Using the
5-DoF NN shown in figure 3(a) (the same as that we employed in figures 3(d)–(f)), we simulate the escape
trajectories of a swelling particle held in an optical trap in the presence of a fluid flow (see Methods). As
schematically shown in figure 3(b), a swelling particle, whose radius increases and whose refractive index
decreases, is gradually pulled out of the trap when the restoring optical force decreases. This scenario is
difficult to explore experimentally or computationally due to the large number of repetitions required to
determine the statistics of the escape trajectories. For a rapid swelling (figures 3(c)-(e)), the particle escapes
the trap almost immediately after the flow is turned on. For a slow swelling instead (figures 3(f)–(h)), the
particle initially remains trapped at the edge of the beam before eventually escaping. Without the NN
approach, it is practically impossible to collect enough statistics to clearly see how the escape trajectories
change. For example, using exact T-matrix calculations it takes us≈ 50 s to simulate just 5 trajectories
(figures 3(d) and (g)), the same amount of time during which we can simulate 104 trajectories with the NN
(figures 3(e) and (h)). The latter amount of statistics are essential, for example, to determine the final particle
distribution with a high degree of accuracy.

The second scenario we consider involves the mixing of two beams with opposite orbital angular
momentum (OAM) [36], which generate interesting interference patterns that can be used, for example, to
design ratchet-like micro-motors [37, 38]. Figure 4(a) shows a schematic of the experiment. A particle is
placed in a mixture of two Laguerre-Gaussian beams of order± 5 mixed into a single beam with a fixed
power, so that the resulting beam is αLG0,+5 +(1−α)LG0,−5, where α∈ [0, 1]. Different values of α lead to
different orbital rates ω for the optically trapped particle. Figure 4(b) compares the results of an experiment
(black symbols), where we trap a particle pushing it against the microscope slide using the laser beam (see
details in Methods), with those we obtain employing a 4-DoF NN (shown in the inset of figure 4(b)) to
extensively simulate this system (orange line). We obtain excellent agreement with the experimental results.
This strong agreement is further illustrated by the time-averaged experimental (figure 4(c)) and simulated
(figure 4(d)) trajectories, which represent≈ 20 s of a single particle’s trajectory, revealing three distinct
behaviours: When ω≈ 0 (α= 0.5), we have a series of confining potential wells resulting from the even
mixture of two beams with opposite OAM [38]. When ω is significantly larger than 0 (e.g. α= 1), we have a
smooth inclined potential around the beam, where the particle slides at an approximately constant rate
[13, 36]. Finally, in intermediate regions (e.g. α= 0.7), we obtain a washboard potential, where the particle is
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Figure 3. Swelling particle escape from an optical trap simulated with a 5-DoF neural network. (a) 5-DoF NN with inputs for
particle position, x, y and z, radius R and refractive index n. (b) A swelling particle is trapped in the presence of a flow; as the
particles swells, its radius R(t) increases and its refractive index n(t) decreases, so that the restoring optical force decreases and,
eventually, the particle escapes from the trap. The beam is propagating downwards and the trap centre is marked by the orange
cross. (c) Time dependence of the particle properties R(t) (solid line) and n(t) (dashed line) for a case in which the particle swells
quickly. (d) Example of 5 escape trajectories computed using the T-matrix method and (e) 104 trajectories simulated using the
5-DoF NN taking about the same computational time (≈ 50 s). (f)–(h) Corresponding results for a particle swelling more slowly.
The scale bars in (b), (d), (e), (g) and (h) represent 0.2µm.

metastably trapped in local minima, but on average moves around the beam [39]. The NN allows us to
rapidly explore the effect of different parameters (including height of the beam relative to the microscope
slide, beam power, and viscous drag) on the observed rotation rates and trajectories. Further still, the NN
allows us to simulate significantly more accurate probability distributions: For example, figure 4(e) shows the
average of 100 simulated trajectories, clearly displaying the steady-state behaviour of this system. This system
demonstrates how the NN approach can be used to model and understand the behaviours of particles in
complex light fields such as those used in references [40, 41].

Thus far, we have focused on how NNs can empower fast and accurate simulations for designing,
analysing and modelling experiments. Another key advantage of the NN approach is its small memory
footprint, which allows easy distribution of pre-trained NNs to calculate optical forces. In this way, multiple
users can take advantage of the initial training cost and perform sophisticated numerical simulations on
readily available hardware. This enables more collaborative workflows and the possibility of integrating
numerically accurate simulations into interactive online demonstrations or teaching material.

In conclusion, we have shown NNs to be a valuable tool for simulating optical forces enabling longer,
more accurate, and more memory-efficient simulations. Compared to interpolation and other methods,
NNs are easier to implement for problems with many DoF and they use significantly less memory while still
performing with similar evaluation times to the most efficient interpolation techniques. In particular, NNs
can be used to supplement experiments, including to design trapping configurations or to analyse
experimental results. While here we considered only spherical particles, our method can be extended to
particles with other shapes by adding rotations as inputs and torques as outputs. Further investigation into
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Figure 4. Dynamics of a particle in a superposition of Laguerre-Gaussian beams. (a) Schematic of an experiment with a particle
held by a superposition of two Laguerre-Gaussian beams of order± 5 with opposite orbital angular momentum, weighted by the
parameter α so that the total beam is αLG0,+5 +(1−α)LG0,−5. (b) Rotation rates obtained from experiments (black symbols)
and from neural-network-based simulations (orange line). The error bars represent standard errors. Inset: schematic of the
employed 4-DoF NN. (c) 20-s experimental trajectory of a particle for various α, leading to a confining potential (α= 0.5), a
washboard potential (α= 0.7), and an inclined potential (α= 1). (d) Corresponding 20-s simulated trajectory for a single
particle. (e) Average of 100 simulated trajectories clearly showing the steady state behaviour in the various cases. The scale bars in
(c)-(e) represent 1µm.

different network architectures and training could further improve accuracy and decrease the number of
points needed for training. More broadly, the method described here is general enough to be applicable to a
wide range of fields including simulations of optomechanics, optoelectronics or acoustics. Although we focus
on demonstrating this method for simulating optically trapped particles, we believe this technique will be of
interest to the wider optics and photonics community and can be used to model other complex optical
processes.

1. Methods

1.1. Training of neural networks
NN are trained in Python using Keras (version 2.2.2) [33] with TensorFlow backend (version 1.5.0). An
example Jupyter Notebook for the 3-DoF NN is provided in Supplementary Information
(stacks.iop.org/MLST/1/045009/mmedia). Training each NN consists of three main parts: loading the data,
setting up the NN model, and training the NN on the training data.

Training data for each NN is loaded from a data file containing exemplary inputs and outputs. Values are
read from the file, scaled to near unity, randomly shuffled and split into a validation and training set (with a
1/9 split). For our NNs, training data consists of simulation data generated in Matlab (R2018a) using the
Optical Tweezers Toolbox (OTT, version 1.5) [19, 32]. Importantly, training data could have been generated
with another process, for example, by position and force measurement in an experiment.

Setting up the NNmodel involves specifying the shape and parameters for each NN layer. In this work we
explored dense fully connected NNs with few intermediate layers. Details about the number of layers and
neurons per layer can be found in subsequent sections. Intermediate layers use rectified linear unit (ReLU)
activation functions. The final layer uses a linear activation function. Single precision values are used for NN
weights for compatibility with available training hardware.

The NN is trained by optimising the NN weights to minimise a loss function. We use the Keras
implementation of the Adam optimiser [33] with default parameters and mean squared error for the loss
function. For training the NN, we use gradually increasing batch sizes. The training set is used for training
the NN and the validation set is used to evaluate the accuracy of the model at the end of each training epoch.
We train the NNs on NVIDIA Tesla V100 graphics cards.

1.2. Degrees of freedom neural network
These are NN with 3 inputs, 3 layers of hidden neurons and 3 outputs. For the comparison presented in
figures 2(b) and (c), we train 7 different NNs with 4, 8, 16, 32, 64, 128, and 256 neurons in each hidden layer.
Figure 1 uses 256 neurons for each hidden layer. Training data is simulated with OTT for a spherical particle
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(radius 818 nm, refractive index 1.5) in a circularly polarised Gaussian beam (numerical aperture 1.02,
medium refractive index 1.3, wavelength in medium 818 nm). Training data consists of 106 data points
randomly distributed according to a normal distribution with 3.19 µm standard deviation and centred on
the beam focus. Error bars in figure 2(b) show average results of 10 NNs trained on the same data.

1.3. Mean average error
Mean average error (MAE) is calculated according to

MAE=
1

3Nsamples

Nsamples∑
i

∑
j={x,y,z}

∣∣∣Fi,jTM − Fi,jNN

∣∣∣
where FTM is the T-matrix optical force calculated with OTT, FNN is the NN estimate, and Nsamples is the
number of samples in the validation data set. In figures 1(b), 2(b) and 2(e), the validation data set consists of
106 additional locations not used in the training of the NN.

1.4. Calculation of memory footprint
Memory footprint depends on the method. Optical tweezers harmonic models typically use between 1 and 9
values (i.e. between 8 and 72 bytes if using double precision values). Structured interpolation stores values on
an evenly spaced grid (i.e. a matrix), so that the required memory is directly related to the data type and the
number of values stored (i.e. an interpolation grid with 100× 100× 100 locations, each location containing
3 double precision values for Fx, Fy, and Fz, has an approximate memory footprint of 24× 106 bytes≈
24MB). Unstructured interpolation requires storing the location and value at each grid point (i.e. for 106

unstructured double precision position and force values, we need to store 48× 106 bytes≈ 48MB). For the 3
DoF NN, the number of parameters (NN weights and biases) scales as

Net3 = 2 N2 + 9 N+ 4

where N is the number of neurons per hidden layer. The memory footprint for the NN is approximately the
number of parameters multiplied by the memory per parameter (4 bytes for single precision values). The 5
DoF NN has an additional 2 N parameters corresponding to the weights connecting to the two additional
inputs, so that the total is

Net5 = 2 N2 + 11 N+ 4.

1.5. Sampling distribution
For both unstructured interpolation and the NN approach, the choice of sampling locations affects the
accuracy of the predicted forces. With infinite samples, interpolation will exactly reproduce the target
distribution. With a suitable architecture and training, a NN is capable of emulating interpolation;
consequently, the upper bound for the accuracy of a NN is related to the number and distribution of points
used for training. For the NN in this work, points are distributed around locations where the particle is likely
to be and where the forces vary most rapidly. For Gaussian beam NNs (3 DoF and 5 DoF), this corresponds
to a Gaussian distribution centred at the beam focus. For the 4 DoF NN, this corresponds to a toroidal
shaped distribution; the shape of the toroid was determined from preliminary simulations which indicated
where the particle was likely to be found.

1.6. Calculation of evaluation time
To measure the evaluation time shown in Figures 2(c) and (f), we used a 3.4 GHz Intel Core i7-6700 personal
computer with 16 GB RAM running implementations of each algorithm in Matlab. Matlab is chosen to allow
simple comparison between performance of OTT (which is a Matlab package [19, 32]) and the other
methods. Structured and unstructured interpolation use Matlab’s built-in implementations; and a harmonic
model with 1 parameter per dimension is implemented. Evaluation locations matching those used for the
MAE comparison are used. Methods are not explicitly parallelised. Additional performance may be
achievable using specialised implementations or explicit parallelisation.

1.7. Degrees of freedom neural network
NN with 5 inputs, 3 hidden layers and 3 outputs. For figure 2, number of neurons in hidden layers is varied,
similar to the 3 DoF NN. For figure 3, each hidden layer has 256 neurons. Training data is simulated with
OTT for a spherical particle in a circularly polarised Gaussian beam (numerical aperture 1.02, wavelength in
medium 800 nm, medium refractive index 1.33). Training data consists of 107 data points with: refractive
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index and radius values randomly sampled from a uniform distribution with the range 1.33–2.00 and 0.1–1.0
µm, respectively; and positions randomly sampled from a normal distribution centred at the focus and
standard deviation of 5 µm.

1.8. Escape trajectory simulation
The particle refractive index and radius are given by

n(t,σ) = nwater + 0.1e−t2/2σ2

and

R(t,σ) = 0.5− 0.2e−t2/2σ2

µm

respectively, where t is the simulation time, σ is the decay (growth) rate of the refractive index (size) of the
particle, and nwater is the refractive index of the medium. The particle is initially trapped by the beam. At
1 ms a flow is enabled causing the particle to move towards the edge of the trap and eventually escape.

1.9. Laguerre-Gaussian beammixture experiment
Particles are confined in two dimensions using mixtures of LG beams generated using a spatial light
modulator (SLM). These beams carry orbital angular momentum which is transferred to the particle.
Supplementary figure 1 shows an overview of the experimental setup which has been previously described in
references [42, 43]. Beams are created with a liquid crystal SLM (Meadowlark Optics, 512x512 HSP512L,
high-speed SLM), illuminated by a 1064 nm fibre laser (YLR-10-1064-LP, 10 W, IPG Photonics). The phase
pattern displayed on the SLM consists of a superposition of LG+/-5 azimuthal gratings. Although methods
exist for generating pure LG modes with SLMs [44], our method can be applied to model any arbitrary
incident beam including these impure LG modes (see details below). The hologram is imaged onto the
back-aperture of a 1.2 numerical aperture water immersion objective (Olympus UPlanSApo 60×) and
focused into the sample. The sample consists of 2 µm polystyrene spheres (refractive index≈ 1.59) in water
(refractive index≈ 1.33) prepared between two microscope coverslips. Particles are axially confined by
pushing them against the microscope coverslip with the optical trapping beam. A surfactant is mixed with
the water to reduce the chance of particles sticking to the coverslip.

1.10. Degrees of freedom neural network
NN with 4 inputs, 3 hidden layers with 128 neurons per layer, and 3 outputs. Training data is simulated for a
spherical particle (radius 1 µm, refractive index of particle 1.59) held in different mixtures of LG beams
(refractive index of medium 1.33, wavelength in medium 800 nm). In order to accurately model the
experiment, training data is generated using beams modelled on the experimentally realised beams (using
the paraxial point-matching code from OTT and an approximation for the phase and intensity of the beam
at the objective back aperture, numerical aperture 1.2). The experimentally realised beams are approximately
LG+/-5 beams except for variations in the intensity profile due to the incident illumination. 107 training
points are generated. Due to the computational expense in calculating different beam mixtures, only 21
different alpha values are present in the data set, evenly spaced from 0 to 1. For each data point, alpha is
randomly selected with a discrete uniform distribution, and position is uniformly randomly chosen from a
toroidal volume with inner radius 0.5 µm and outer radius 2 µm and height 1 µm centred on the beam axis
0.5 µm from the focus. The toroid corresponds to locations where the particle is trapped in the LG ring and
allows multiple axial positions to be explored in simulations.

1.11. Laguerre-Gaussian beammixture simulation
The simulation is designed to model the experimental observations. The beam power is set to match the
experiment rotation rate for a pure LG beam. Axial position is chosen to produce a ring with the same radius
as the experimentally observed ring. Particle movement is constrained to prevent motion along the beam
axis, emulating the effect of the microscope coverslip. Particle motion is modelled using a finite difference
simulation including both the deterministic optical forces and random Brownian motions. The particle in
the experiment was observed to occasionally stick to the slide; this is modelled with a frictional term
introduced after including Brownian motion.
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