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Abstract
Single-shot x-ray imaging of short-lived nanostructures such as clusters and nanoparticles near a
phase transition or non-crystalizing objects such as large proteins and viruses is currently the most
elegant method for characterizing their structure. Using hard x-ray radiation provides scattering
images that encode two-dimensional projections, which can be combined to identify the full
three-dimensional object structure from multiple identical samples. Wide-angle scattering using
XUV or soft x-rays, despite yielding lower resolution, provides three-dimensional structural
information in a single shot and has opened routes towards the characterization of
non-reproducible objects in the gas phase. The retrieval of the structural information contained in
wide-angle scattering images is highly non-trivial, and currently no efficient rigorous algorithm is
known. Here we show that deep learning networks, trained with simulated scattering data, allow
for fast and accurate reconstruction of shape and orientation of nanoparticles from experimental
images. The gain in speed compared to conventional retrieval techniques opens the route for
automated structure reconstruction algorithms capable of real-time discrimination and
pre-identification of nanostructures in scattering experiments with high repetition rate—thus
representing the enabling technology for fast femtosecond nanocrystallography.

1. Introduction

Sources of soft and hard X-rays with large photon flux such as free electron lasers [1, 2] have enabled the
high-resolution imaging of unsupported nanosystems such as viruses [3], helium droplets [4–6], rare-gas
clusters [7], or metallic nanoparticles [8]. For reproducible samples, a set of scattering images taken for
different orientations in the small-angle scattering limit, each delivering a two-dimensional projection of the
object’s density, can be used to retrieve its three-dimensional structure using conventional reconstruction
algorithms [9, 10]. Short-lived and non-reproducible objects, however, elude the repeated acquisition of
several images required for the tomographic reconstruction from small-angle scattering. The partial
three-dimensional information contained in wide-angle scattering enables to overcome this main deficiency,
for the prize of an even more complicated inversion problem [5, 8, 11]. Finding a fast reconstruction method
thus remains the major obstacle for exploiting the potential of wide-angle scattering for genuine single-shot
structure characterization.

Two aspects distinguish wide-angle from small-angle scattering. First, the projection approximation is no
longer valid due to substantial contributions of the longitudinal component of the wavevector, such that the
curvature of the Ewald sphere plays an important role. Second, for the wavelength range for which
wide-angle scattering is realized, the refractive index of most materials deviates substantially from unity, and
hence multiple scattering, absorption, backpropagating waves, and refraction all have to be accounted for.
Currently, all these constraints can only be met by solving the full three-dimensional scattering problem by,
e.g. finite-difference time-domain (FDTD) methods, gridless discrete-dipole approximation (DDA)
techniques, or appropriate approximate solutions based on multislice Fourier transform (MSFT) techniques
[6, 12].
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These methods allows one, for an assumed geometry model of the nanoparticle, to describe their
wide-angle scattering patterns. However, the determination of the geometry from those patterns is highly
nontrivial, as there exists no rigorous inversion method. Consequently, the existing applications of
wide-angle scattering had to be based on a parametrized geometry model whose parameters can be
determined by an iterative forward fit, e.g. by an ensemble of optimization trajectories in phase space as
employed in the simplex Monte Carlo approach in [6]. Because for every iteration step, at least one forward
simulation has to be performed, this method is only applicable to a small data set and for a sufficiently
simple geometry model [6]. Hence, there is an urgent need for efficient reconstruction methods that can be
used in real time for a large data set. Here we present a proof-of-principle study that shows, by considering
icosahedra, that a neural network, trained with simulated scattering images, establishes a high-quality
reconstruction method of particle size and orientation with unprecedented speed.

Machine learning using neural networks, and deep learning in particular, are ideally suited for the
extraction of structural parameters from scattering images, as this is equivalent to the retrieval of a small
number of parameters or classes from high-dimensional spaces [13, 14]. Originally conceived for analyzing
big data, deep learning has already had significant impact in natural sciences, ranging from analyzing phase
transitions and properties of matter [15–19] and simulations of many-body quantum systems [20] to
quantum state reconstruction [21, 22]. In x-ray imaging, neural networks have been introduced only
recently. In the small-angle regime, it has been demonstrated that both the tasks of phase retrieval and
reconstruction of theoretically generated binary two-dimensional density distributions can be solved also
with neural networks [23]. From transmission scattering patterns of thin materials lattice cell orientation
maps were extracted [24], as a parameter representation of the material structure. In a next step, using the
computational power of the world’s largest supercomputer, full density projection images have been
recovered [25]. In addition, the task of pre-classifying scattering patterns has been successfully tackled with
neural networks [6], and reinforcement learning techniques have provided further insights into experimental
features of x-ray scattering patterns [26]. In these previous applications, the neural networks were either
trained and tested solely on theoretical data or were used for feature extraction from experimental diffraction
images. In our work we take the decisive step by training a neural network on augmented theoretical data
and use it for predictions on experimental scattering data.

2. Experimental and theoretical framework

The choice of icosahedra as test objects was motivated by their ubiquity in nature, ranging from viruses
[3, 9, 10, 27] to rare-gas [28] and metal clusters [8]. Focussing on the last example, which already constitutes
a wide-angle scenario (see figure 1(a)), we compute scattering images of icosahedral silver clusters with a
range of sizes and spatial orientations using an MSFT algorithm [6], representing the training data. The
employed generalized multi-sliced Fourier transform (MSFT) algorithm includes an effective treatment of
absorption [8].

We numerically generated ~ 25, 000 individual scattering images for clusters with a uniform size
distribution (30 nm≤ R≤ 160 nm) and random orientations in the fundamental domain of the
icosahedron, which represent perfect theoretical data. When representing spatial rotations by unit
quaternions (see appendix A for details), the fundamental domain of the icosahedron has the shape of a
dodecahedron in imaginary space [29], which is simply connected and possesses a natural metric, unlike
other lower dimensional representations such as Euler angles. Furthermore, any arbitrary rotation in the
axis-angle representation may be projected into this domain by determining the distance to the closest
quaternion associated to one of the symmetry rotations.

The ultimate goal is to analyze realistic scattering data that are obtained from experiments with various
imperfections. Therefore, the neural network should not be trained solely using the ideal theoretical data, but
also with appropriately augmented data [30–32]. In that way, the network will be trained to focus on
physically relevant features. Here, we augment our data by adding noise, blur, spatial offsets, a central hole, as
well as blind spots and cropping of the images. These augmentation features address common experimental
imperfections associated with photon noise, limited detector resolution, source-point and beam-pointing
jitter, transmission of the high-intensity primary beam, and detector segmentation and finite size (see
figure 2). These augmentations (see appendix D for details) increase the training set 11-fold.

3. Network design and training

Based upon the quaternion representation of rotations, we can find a unique, bijective parametrization of
arbitrary icosahedra of uniform density by a vector with five scalar entries: the four components of the
quaternions and the radius of the circumsphere. On the other hand, the associated scattering patterns can be
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Figure 1. Wide-angle scattering setup. Nanoparticles of icosahedral shape and varying size and orientation are interrogated by
soft x-ray radiation from a free electron laser (FEL) [8]. The resulting wide-angle scattering pattern is simulated by employing an
MSFT algorithm. The Convolutional Neural Network (CNN) computes a parameter representation of size and spatial orientation
of the nanoparticle from the scattering image.

understood as two-dimensional single-channel (or grayscale) images with a size of 128×128 pixels. For the
regression task of assigning a parameter vector to an image, we utilize the ResNet architecture of a
convolutional neural network with 34 layers. This architecture was found to both offer the complexity
needed for learning the specified task while also keeping the number of free parameters as low as possible to
counteract overfitting and minimizing training times.

The exact network structure is visualized in figure 3. It is composed of an initial 7×7 convolution layer
with stride 2 and 64 filters, followed by a 2×2 max pooling for lateral dimension reductions, feeding into
four stacks of 3, 4, 6 and 4 consecutive residual blocks as defined in [33] with 64, 128, 256 and 512 filters
each, respectively. The first convolution of each stack has stride 2 and consequently the corresponding
identity shortcut is implemented by 1×1 convolutions. Behind the final residual layer follows a global
average pooling operation, reducing the tensor size to a 512-vector from which the terminal 5-vector,
composed of the four quaternion components and the radius, is computed by a fully connected layer. All
activation functions are set to tanh.

Upon training, the network parameters were optimized to minimize the mean-squared deviation of the
predicted parameters compared to their target values. The training was performed on an Nvidia GTX 1060
consumer graphics card with the Wolfram language neural network framework, which was completed within
approximately 4 h. During training, the generalization capability is supervised by checking the prediction on
the validation set after each iteration on the training set.

After training, the network’s predictive capacity has been benchmarked on a separate test set containing
5000 scattering patterns. The measure of interest is the mean relative prediction error (normalized to the
possible parameter range). In addition, we also specified the maximal relative prediction error out of the five
parameters (for further information regarding error definitions see appendix C). These two errors (mean
and maximum) are computed for each of the test patterns. Figure 4(a) displays the resulting histograms for
the mean (blue bins) and the maximum prediction error (red bins). The reconstruction of the relevant
physical parameters is highly accurate, with prediction errors well below 1%.

For comparison with established forward fitting methods, we also reconstructed 30 images of the test set
with a state-of-the-art Monte Carlo simplex procedure, as used in [6]. For each image, the reconstruction
started from 50 random initial points in parameter space, and 50 simplex iteration steps have been taken.
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experiment simulation

noise hole crop sim. exp.
Figure 2. Image Augmentations. The ideal theoretical scattering images are augmented by image defects that account for
experimental imperfections. They can be divided into quality defects such as noise or blur, and experiment-specific features such
as the central hole and the limited size of the detector. We randomly combine all image effects, and in addition apply them in a
well-defined order to generate images that closely resemble experimental data (Experimental data taken from [8], permitted by
Creative Commons CC-BY 4.0 license (http://creativecommons.org/licenses/by/4.0).

Figure 3. Network Design. The network architecture is based upon the ResNet scheme described in [33]. The first two layers are
used for an initial lateral dimension reduction, while all other convolution filters are encapsuled in residual blocks. Each block
consists of two consecutive convolutional layers whose output is added to the initial input and, by this, implement a residual
calculation. The last residual block is fed into an average pooling operation compressing the tensor shape into a vector with 512
entries from which the output five-vector is calculated by a fully connected layer. The five components of this output vector are
assigned to the four components of a rotation quaternion and the radius, respectively, and represent a full characterization of an
icosahedron.

The convergence of the reconstruction error as function of required image calculations can be seen in
figure 4(b), where we estimated that, on average, four scattering patterns need to be calculated in each
iteration step. The solid line marks the median best approximation, while the shaded area marks the 90%
quantile. In comparison, the red bars denote the same measures for individual neural networks trained on
different sized portions of the complete training set. It can be seen that both methods eventually achieve the
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Figure 4. Performance Validation. (a) The performance of the network is validated by computing the relative mean prediction
error (blue bins). The majority of the mean prediction errors is below 1%, with a minor quantile observing large errors that are
mainly attributed to unphysical predictions. The maximal errors in each parameter (red bins) also remain mostly below 1%. (b)
Evaluated on 30 random samples of the training set, the Monte-Carlo-Simplex algorithm reached a median accuracy (blue line)
of 0.37% within 50 iterations. Each iteration step is estimated to require on average four scattering simulations, the horizontal
axis denotes the number of scattering simulations during a single MCS run. The blue shaded area covers the 90% quantile of the
best-fit runs for each image, visualizing the error margin of the MCS method. The performance of neural networks trained with
subsets of the training set of different sizes are marked by red dots with shaded areas for the respective 90% quantiles. The
corresponding training times are also expressed in units of scatter simulations. In order to achieve comparable median accuracy
and error margin, the number of required scattering simulations for the training of a neural network corresponds to only a few
MCS reconstructions.

Experiment Reconstruction Validation
a

r = 151 nm
b

r = 144 nm

Figure 5. Reconstruction from experimental data. Experimental data from [8] (left column, permitted by Creative Commons
CC-BY 4.0 license (http://creativecommons.org/licenses/by/4.0/)), are evaluated by the neural network. The reconstructed spatial
orientation in the laser propagation direction is shown in the middle column. The reconstructed radii are very close to those given
in [8]. The theoretical scattering patterns associated with these reconstructions reproduce the experimental images very well,
including low-intensity features (right column). The intensity of the theoretical patterns is clipped at a maximum intensity in
order to mimic the non-linear response of the detector.

same level of accuracy. The optimized scattering code requires∼ 2.5 s per image on a hexa-core Intel Xeon
E5, resulting in a generation time of∼ 17 h for the complete training set. The subsequent training of the
network on the complete data set takes additional∼ 4 h, which result in a total of∼ 21 h or the equivalent of
31k scattering image calculations to yield the ready-to-use neural network. After successful training, the
evaluation of a single image takes only 5 ms, which is a negligible numerical effort compared to that required
during forward fitting. Hence, already for a small number of to be reconstructed images, the computational
overhead for training data set generation and actual network training can be compensated by the exceptional
reconstruction speed whilst still providing reconstruction results of comparable accuracy (see figure 4(b)).

We demonstrate the network’s ability in recognizing structures in imperfect experimental images by
applying it to data taken from [8], where two icosahedral clusters have been identified among the images (left
column in figure 5). The reconstructed size and spatial orientation (central column in figure 5) are validated
to reproduce the experimental scattering images (right column in figure 5). Our results match the
reconstructed data published in [8], with the exception of one of the radii which we attribute to the reduced
visibility of the radial fringes which complicates an accurate radius determination with any method.
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4. Summary

We have shown that, using a deep-learning technique based on augmented theoretical scattering data, neural
networks enable the accurate and fast reconstruction of wide-angle scattering images of individual
icosahedral nanostructures. Our results demonstrate that a network, which has only been trained on
theoretical data, can be employed for the analysis of experimental scattering data, with image processing
times on the millisecond time scale. The neural network reaches the same level of accuracy as established
forward fitting methods based on Monte Carlo Simplex algorithms. Although the reconstruction of a single
image using the neural network is orders of magnitude faster than the direct optimization, the generation of
the training data and subsequent training of the network requires a substantial constant overhead. However,
the reconstruction speed of the network compensates the extra effort after only a few scattering images.

Motivated by the performance of this method, we anticipate that a generalization to a wide range of
particle morphologies will be feasible. Combined with pre-selection algorithms as utilized in [6], this may
evolve into a classification tool for archimedean bodies. The envisaged combination of identification of
arbitrary three-dimensional shapes with short processing times is anticipated to represent the enabling
technology for a fully automated analysis of scattering data and real-time reconstruction of ultrafast
nanoscale dynamics probed at the next generation of x-ray light sources with high repetition rate—with
major implications for a broad range of physical, chemical and biological applications.
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Appendix A. Icosahedral symmetry

The icosahedron is one of the five platonic solids and is spanned by 20 equilateral triangle faces, intersecting
with 30 edges and twelve corners. It possesses three-fold rotation symmetry axes C3 about the center-of-mass
of each triangle, two-fold axes C2 about the center of each edge and five-fold axes about each corner, which
together form the icosahedral rotation group I. The 60 symmetry rotations imply that any rotation of a body
with icosahedral symmetry is 60-fold degenerate. Hence, the mapping of three-dimensional rotation
representations, such as Euler-angle or axis-angle representations, to icosahedral orientations are not unique,
but have to be constrained in their parameter range. The fundamental domain of rotations has an
exceptionally simple form in quaternion representation of rotations, where it forms a dodecahedron in
imaginary space [29].

QuaternionsQ are the four-dimensional extension of the complex numbers with three imaginary units
i, j and k fulfilling the relations i2 = j2 = k2 = ijk=−1 and ij=−ji. With real coefficients qi, any quaternion
may be written as q= q0 + iq1 + jq2 + kq3. Imaginary quaternions (q0≡ 0) are isomorphic to the space R3,
implying that all vectors a= (a1,a2,a3) can be represented by quaternions as qa = ia1 + ja2 + ka3. The sum
of two vectors then translates into the sum of two quaternions, whereas the quaternion product contains
both the scalar product of two cartesian vectors (in its real part) and their cross product (in the imaginary
part). The rotation by an angle α of any vector a about a unit vector n can thus be expressed by the product
of the quaternion qa with the unit quaternion qrot = cos(α/2)+ sin(α/2)(nxi+ nyj+ nzk). Hence, any
rotation can be projected into the fundamental domain by applying all inverse symmetry rotations and
selecting the one yielding the smallest rotation angle. For the training of a neural network, the quaternion
representation has the additional advantage of providing a useful metric for the distance between rotations.
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Appendix B. Dataset generation

The scattering patterns used for training are created by using the MSFT algorithm described in [8]. In
accordance with the experiment described therein, we simulate the scattering of ultra-short XUV pulses with
wavelength λ= 13.5 nm and femto-second duration on nano-sized silver clusters. The material parameters
are assumed to be equal to bulk silver, with absorption length aabs = 12.5 nm. For the calculations, the
electron density of the cluster is discretized on a cuboid grid, chosen to contain a depth of 192 pixels. The
outgoing scattered field is determined by the phase-coherent summation of the scattered field of each slice,
which can be obtained by Fourier transformation. Before transformation, each slice is zero-padded to a
width of 512 pixels. The computed scattered field is then reduced to an logarithmic intensity profile of
128× 128 pixels with random background noise, which is stored as a grayscale image. The rotation
quaternions are sampled uniformly from the fundamental domain, while the size of the clusters range from
30 to 160 nm. With this procedure, a dataset of 25 058 images has been generated, one fifth of which has been
reserved for validation during training. Another set of 5000 is generated for final testing indepentently from
the training process.

Appendix C. Error measures

The five parameters of our icosahedron representation reconstructed by the neural network cover very
different parameter ranges. For training purposes, both the parameters of the radius and the real part of the
rotation quaternion are linearly scaled to the interval [0, 1]. However, when testing the prediction quality of
the network it is more useful to have a uniform error measure, that gives the same weight to each parameter.
Hence, all error measures within this work are calculated from the relative errors of each prediction
parameter, obtained by normalization to the allowed parameter range. All four components of the rotation
quaternion are normalized to the maximal span of the fundamental domain in each direction. The deviation
of the radius is normalized to the range defined in the previous section. These five individual relative errors,
normalized to the parameter range allowed in our model, now weigth each parameter equally. From these,
further error measures can be defined. More precisely, the mean error, taking the mean values of all five
relative errors, and the maximum error, picking the largest of all five relative errors.

Appendix D. Image augmentation

Prior to training the neural network, image augmentation is applied to the dataset. The augmentation is
performed by applying eleven different filters to each ideal scattering pattern, and randomly adding the
newly generated images to the training set. These filters can be divided into five groups: trivial, noise, blur,
cropping and successive application. The trivial filter is the identity mapping, leaving the image unchanged.
Noise is applied both with uniform distribution with a randomly chosen intensity upto half the maximum
signal, changing every pixel by a random margin as well as salt-and-pepper statistics, where random pixels
are set to either minimal or maximal signal. Blurring is performed by convoluting with a Gaussian kernel
with randomly chosen radius of upto five pixels, and by jitter distortion. Cropping filters delete different
parts of the image, mainly to account for the characteristics of real detectors. Images are either
center-cropped for limited detector size, a central hole of random radius is deleted to simulate the shadow of
a beam dump, images are shifted or uneven detector sensitivity is simulated by attenuating parts of the
image. Finally, we both randomly combine all image effects, and in addition apply them in a well-defined
order so as to generate images that closely resemble experimental results (see figure 2).
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