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Abstract
In this paper, we present a novel geometry information-based adaptive step (non-equidistance)
scanning path generation method for metrological scanning probe microscopes. This method
reduces the total amount of required data and enables faster surface scanning speed for large
industrial workpieces while preserving adequate geometric information for performance
evaluation after surface reconstruction. The grid points are generated iteratively while gaining
knowledge of the surface geometry step by step. We focus on the curvature properties and then
propose a metric for the curvature information based on the triangulated surface geometry. With
certain convergence criteria on the curvature measure variation, the proposed methods promise
better surface reconstruction completeness and performance evaluation correctness. Simulations
on the algorithm are performed on a typical parametric surface. A brief comparison to
height-based scanning algorithm is performed to show the adaptability of the novel method on
curvature evaluation. Experimental verifications are conducted to show the efficiency of the
proposed algorithm.

Supplementary material for this article is available online
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(Some figures may appear in colour only in the online journal)

1. Introduction

Quantitative scanning probe microscopes (SPMs), such as the
atomic force microscope (AFM), scanning tunneling micro-
scope (STM), and electrostatic force microscope, have been
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the well-known techniques for surface topography meas-
urements. With the capability of integration with position-
ing sensors (e.g. interferometers [1]), SPMs are not only
widely used as quantitative tools in various fields of scientific
research, but they are also developing rapidly for manufactur-
ing and industrial applications, especially for the surface eval-
uation of microstructures [2–6].

Unlike the attempt to obtain the highest possible resolution
in scientific research, the characterization of industrial work-
piece samples is conducted over a relatively large region. Fur-
ther, the efficiency of the measurement either to investigate
surface defects or to reconstruct surface geometry has equal
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importance as the measurement accuracy. However, the meas-
urement speed of large-scale industrial products is often quite
slow. On the one hand, such measurements require large data-
sets for the reconstruction of the measured surface. On the
other hand, physical limitations, such as stabilization time for
the probe to dwell and read out measurement results, limit
the lower bound of the time required for a single readout. A
combination of two effects and necessary long total distance
movements for measurement ergodicity leads to excessively
long measurement times. These long measurement times lead
to disturbances on the probe-sample interaction mechanism,
making fluctuations in the electronics and variations of the
temperature nonnegligible, resulting in unpredictable errors in
the measurement results.

One approach to achieve a higher scanning speed is by
using non-raster scanning techniques. Such techniques com-
bine circular and linear motions, including spiral [7], Lissa-
jous [8, 9], cycloid trajectories [10], concentric circle [11],
and optimized Archimedean spiral [12], to avoid driving the
actuators with triangular waveforms, providing higher system-
atic stability to ensure further reduction of the dwelling time.
Because of the timespan limitations in the readout electronics
and closed-loop controllers, a more commercial approach to
reduce the total measurement effort is to sample only neces-
sary grid points. This approach can be achieved by the imple-
mentation of adaptive scanning techniques, rather than a con-
ventional raster scan. The selection of measurement grids has
been addressed in a variety of studies. Some approaches focus
on the precision of the edges [13] using adaptive sampling in
successive refinements based on bisectionmethods.More gen-
eral approaches reduce the total measured sample points by
randomly omitting grid points known as compressive sensing
[14, 15]. Thesemethods are also often equippedwithmatching
path planning algorithms to offer more suitable scanner move-
ments; thus, the relative positioning errors in terms of the ideal
measurement path are reduced [16].

However, current methods mostly focus on height inform-
ation [13, 17, 18]. Although it is important for the surface
reconstruction algorithm, height information is insufficient
for other geometric property evaluation processes in adapt-
ive grid algorithms. Information other than height needs dif-
ferent measures for the convergence criterion. Without such
a measure, algorithms tend to oversample the measured sur-
face to extreme, but unnecessary, accuracy in high-frequency
regions while ignoring the geometric claims in lower fre-
quency regions. Hence, the convergence criterion consider-
ing height information provides a significant refinement effort
on steep areas of the surface. For example, in the measure-
ment of Fresnel mirrors [19, 20], we show that contemporary
algorithms tend to ignore the desired curvature information,
which is often in the low varying reflective region, while gen-
erating denser grids on sharp edges. Such excessively dense
grids challenge both the positioning accuracy of the motion
stages and the path planning strategy.

In this paper, we discuss a possible realization of non-
equidistant measurement methods for a long-range SPMbased
on a more practical convergence criterion. To maintain sta-
bility during the refinements, we further utilize the curvature

measures [21, 22] to define the convergence criterion in
accordance with the considered geometrical properties (e.g.
principal curvatures and normal directions). These conver-
gence criteria are then demonstrated to be more suitable for
the maintenance of the local features of the sample surface.
Simulations are carried out for a clearer illustration of the
proposed method; experimental verification of the method is
also addressed by evaluating an optical surface. We show that,
with such sampling methods, the reconstructed surface con-
tains sufficient information for the evaluation of its geometric
property.

2. Modeling and methods

The basic concept behind conserving the geometric inform-
ation of a measured surface is to minimize the difference
between the original surface and its approximations, such as
triangulation or digitization, while considering certain geo-
metric properties [21–23]. These properties, including the area
density, mean and Gaussian curvatures, have varying import-
ance in an actual evaluation process depending on various
applications of the workpiece. For example, the specific sur-
face area distribution and fractal structure are mostly relevant
for biochemical applications [24, 25], while surface profiles,
such as curvatures and normal vectors, have greater import-
ance in optical microarrays [5, 26]. The principal optimization
objectives are similar: an adaptive scanning algorithm must
include adequate faces to satisfy the performance evaluation
of the reconstructed surface for certain applications. In terms
of the measurement task, it is equivalent to declare that a suf-
ficient density of grid points must exist to approximate cer-
tain curvature properties, and the measured curvature must be
stable with respect to the grid refinement.

Conventionally, by choosing a 3× 3 neighborhood of a
grid point and assigning a virtual coordinate system for the
grid point coordinates, the surface can be approximated by a
second-order interpolation of the measured values on the nine
grid points. Let z⃗= z⃗(x,y) be a parametric equation of the
measured surface S, and this approximation can be given by

z(x,y) = a00 + a10x+ a01y+ a20x
2 + a02y

2 + a11xy, (1)

where coefficients a00, · · · ,a11 are estimated using the method
of least squares based on the measurement readouts of each
neighboring grid point [27]. The fundamental forms and
curvatures can be derived from this localized parametric sur-
face as an approximation to their real values. However, this
approximation does not maintain smoothness between neigh-
boring grids because of the varying estimated parametric sur-
face in equation (1). In particular, this approximation is not
suitable when the grids are not equidistant.

Generally, no pointwise convergence of mere principal
curvatures exists [28]. Hence, the curvature estimation accur-
acy of a single point is not strictly dependent on the grid dens-
ity, especially in terms of the neighborhood of sharp edges.
However, the integrals of curvatures of a certain area would,
in general, converge to the real value of the sample surface (as
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Figure 1. (a) Schematic of the curvature measure method. Unlike contemporary methods, the grid point refinement near sharp edges
maintains convergence properties, and the tube volume V∆ (B) tends to be its real value asymptotically. (b) Schematic of the tube formula
for a specific subset B above surface S. The formula works for∆<minρ, where ρ is the distance between S and the medial axis Sk

(
Rd\V

)
to promote one-to-one mapping.

can be observed, for example, using the tube formula [21]),
enabling the application of curvature measures as an alternat-
ive convergence criterion. Specifically, such curvature meas-
ures satisfy at least the O(hϱ) , ϱ ∈ R+ dependence on grid-
step h to promote stability in refined meshes [22]. Such mono-
tone dependency promises theoretically a certain option of
grid-step h for arbitrarily high approximation accuracy. The
basic concept behind the selection of curvature measures as
the convergence criterion is illustrated in figure 1(a), where the
normal direction u⃗(p) diverges with respect to denser grids,
while the nominal volume V∆ (B) converges to the actual
volume above the surface.

However, for unknown a priori surface structures, determ-
ining exactly how well an approximation conserves the neces-
sary information is often difficult. One possible approach
is to develop a similar convergence criterion to the pure
height measurements presented in [13, 18]. This is based
on using the measurements from two prior refinement levels
to verify whether the surface converged locally. Wherever
the difference between the estimated surface curvature meas-
ured between two prior refinement levels is larger than the
threshold, the scan path is refined further based on the conver-
gence dependence of O(hϱ). In this section, we state the main
ideas of the approach and focus on the basics and derivations.
Then, the refinement based on the O(hϱ) dependency and the
Laplacians on triangle meshes [29] is modified accordingly.

2.1. Notation and key concepts

Before addressing the convergence criterion in the meas-
urement process, a series of fundamental concepts that will
emerge frequently in the following discussion should be
presented.

A surface is denoted by S in the three-dimensional (3D)-
oriented Euclidean space R3. A surface patch σ (u,v) is a loc-
alized parametrization of the surface with (u,v) ∈ R2. The val-
ues of the unit normal vectors n⃗ at the points of S (or σ) are
recorded by its Gauss map Gs, which is the map from S ∈ R3

to the unit sphere S2 that assigns to any point p ∈ S a unit vec-
tor n⃗p ∈ S2. The rate at which n⃗ varies across S is measured by
the derivative of G

DpG : TpS→ TG (p)S
2, (2)

which is often known as the Weingarten map. The Weingarten
map can be symmetric; the associated quadratic form is
referred to as the second fundamental form. The eigenvectors
and eigenvalues of the Weingarten map are called principal
directions and principal curvatures, respectively. Both prin-
cipal curvatures, denoted by κ1 and κ2, can be recovered
from the trace and determinant of DpG. The mean and
Gaussian curvature at p are given by 1

2 (κ1 +κ2) and κ1κ2,
respectively.
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For closed-loop surface metrology systems, such as con-
stant signal mode STMs and AFMs or micro-coordinate meas-
urement machines, the probe center is constrained to a sur-
face of constant separation away from the original workpiece.
Let ∆ be some unchanged separation corresponding to this
scheme, and the parallel surface S∆ of S is defined as [30]

S∆ = {p+∆n⃗p|p ∈ S}. (3)

LetV be the workpiece inRd, and then S denotes the surface
of V to be measured. Let ρ be the distance between S and the
medial axis Sk

(
Rd\V

)
of the complement of V in Rd and V∆

denote the volume between S and S∆. Assume that∆< ρ for
all points p ∈ S (the parallel surface S∆ does not intersect with
itself such that the probe is assumed to measure only one point
once). Then, for a subset B on S, we obtain the tube formula
[31]

Vol(V∆ (B)) = ∆ ·Area(B)+ ∆2

2
·
ˆ

B

HdH2 +
∆3

3
·
ˆ

B

GdH2,

(4)

whereH andG are the mean and Gaussian curvatures, respect-
ively, and H2 is the 2D Hausdorff measure. Figure 1(b) illus-
trates a schematic of the tube formula. This inspires the intro-
duction of curvature measures as a measure of the polyno-
mial dependence on∆ of the tube volume of a specific subset
B⊂ ∂V= S.

The concept of curvature measure [21] is a generalization
of the Gaussian and mean curvatures for convex and smooth
objects. It was subsequently extended to triangulations, digit-
ized objects, and sub-analytic sets by P. Wintgen [32] and M.
Zähle [33] by the introduction of normal cycles, which is the
integration current defined by the graph of the Gaussian map
in equation (2), and it serves as basics of the generalization of
the curvatures in non-smooth geometry [34, 35]. The curvature
measures are typically denoted by µk, and in the smooth case,
we have

µ0 = dH2,µ1 =−2HdH2,µ2 = GdH2 and µ3 = 0. (5)

Specifically, to ensure a clear description of the follow-
ing discretization method, we follow the subscript conventions
given by [22, 36], rather than by [34], where the subscripts are
in reversed order. Therefore, the volume given by equation (4)
for B in 3D manifold can be rewritten as

V∆ (B) =
3∑

k=0

µk (B)ωk+1∆
k+1, (6)

where µk (B) denotes the integral of µk over B and ωp denotes
the volume of the unit p-dimensional Euclidean ball. Below,
we list the values of ωp for small p.

Thus, we are able to assign µk (B) to each individual subset
of the surface B∩S. To recover the classical geometric proper-
ties, the curvature estimators are also defined. The normalized
mean (Gaussian) curvature estimator Ĥu (Ĝu) of S is given by

Ĥu (B) | : = µ1 (B)
µ0 (B)

Ĝu (B) | : = µ2 (B)
µ0 (B)

. (7)

The normal vector field u can be represented in various
forms based on different vertex normal computing methods. A
possible method is the Voronoi Covariance measure [37, 38],
which provides a convergent normal vector field u⃗ for a cer-
tain family of parameters. A carefully chosen approximation
method of the normal bundle can improve the estimate sig-
nificantly, leading to more accurate curvature measure evalu-
ation. In this study, the general polygonal meshes during the
refinement were triangulated implicitly by splitting each non-
triangular face into triangles at its barycenter for simplicity,
and the normal vectors on the newly added grid points are
estimated by interpolation of the nearby facets. As highlighted
in [22], such simplifications are not influential to the conver-
ging stability. The class of such normal vector estimator selec-
tions are called the corrected normals. Thus, the corrected nor-
mal vector evaluations yield the corrected normal cycle and,
consequently, the corrected curvature measures.

After specifying the vertex normal, the closed form formu-
las for the curvature measures can be derived easily. (xi)i=1...n
denotes the positions of the n grid points of the surface poly-
gonal mesh. Let (ui)i=1...n be some normal vector field pre-
scribed at these points. Therefore, on an arbitrary triangle τijk
on the generated mesh with vertices i, j, and k, the interpolated
corrected curvature measures take the following forms:

µ(0) (τijk)

∣∣∣∣= 1
2
⟨ū | (⃗xj− x⃗i)× (⃗xk− x⃗i)⟩ ,

µ(1) (τijk)

∣∣∣∣= 1
2
⟨ū | (uk− uj)× xi+(ui− uk)× xj+(uj− ui)× xk⟩ ,

µ(2) (τijk)

∣∣∣∣= 1
2
⟨ū | u⃗j× u⃗k⟩ ,

µ(X,Y) (τijk)

∣∣∣∣= 1
2

〈
ū
∣∣∣ 〈Y⃗ ∣∣∣ u⃗k− u⃗

〉
X⃗× (⃗xj− x⃗i)

〉
− 1

2

〈
ū
∣∣∣ 〈Y⃗ ∣∣∣ u⃗j− u⃗i

〉
X⃗× (⃗xk− x⃗i)

〉
,

(8)

where ⟨·|·⟩ denotes the scalar product and ū= 1
3 (⃗ui+ u⃗j+ u⃗k).

The measure µ(0) is the corrected area density of the given
triangle, and µ(1) and µ(2) are the corrected mean and Gaus-
sian curvature density, respectively. Further, µ(X,Y) is the trace
of the corrected second fundamental form along arbitrary dir-
ections X and Y, as an alternation of µ3 in equation (5) for
corrected normal u⃗. µ(X,Y) can be used to determine the dis-
tance of the corrected normal u⃗ from the ground normal n⃗,
as a measure of the quality of the choice of corrected nor-
mal. When u⃗= n⃗ and h→ 0, µ(k) (B)→ µk (B) , k= 0,1,2
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and µ(X,Y) (B)→ µ3 (B) = 0 is obtained asymptotically. The
ground normal n⃗ requires complete knowledge of the surface
profile and is unrealistic for measurement tasks. However, it
can be used in a simulation processes as a primary verification
of the algorithm.

2.2. Adaptive measurement algorithm

Themain concept behind this approach is to minimize l2 errors
of the estimated curvature measures between two consecutive
measurements. The key points of the refinement algorithm are
as follows:

(a) Perform measurement on a net formed by rows and
columns with predefined h discretization. Then, estim-
ate the concerned curvature measures pointwise using the
aforementioned curvature measure method. The estimated
results are denoted by Meas(k)i , where the super- and sub-
scripts denote the ith measurement performed in the kth
iteration. Further, interpolate the result to h

2 resolution. The
estimates on the newly added virtual points are denoted by

M̂eas
(k)

ii .
(b) Perform measurement on another net, where the grids

are displaced by h
2 along both directions of the row and

column, namely, the barycenter of the initial mesh rect-
angle facets. The new curvature estimates are denoted by
Meas(k)ii .

(c) Compare the subsets of the M̂eas
(k)

ii and Meas(k)ii of
the same dimension, whose differences can be calcu-
lated pointwise. Identify grid points where the estimated
curvature measures between the last two iterations differ
more than a given l2 error criterion.

(d) At regions where the convergent criterion fails, the net is
refined twice in resolution, to h

2 . The algorithm repeats
from the first step until the desired convergent criterion
is satisfied everywhere.

Figure 2(a) depicts a schematic illustration of this h
2 estim-

ation process. Here, the black dots are grid points of the first
performed measurement, which are then interpolated to h

2 sep-
aration, as depicted by the dashed line at the center. Another
measurement with h

2 displacement in both X and Y direction
was performed in the next iteration and represented by blue
dots. The actual value in the second measurement (blue vec-
tor) is compared to the estimated value in the first measure-
ment (gray vector), and the error is the difference between the
vectors. In a triangulated setup, the h/2 grid deviation pro-
cess designed for rectangles is more practical to be replaced by
deviating to the barycenters of the triangle faces to avoid self-
edges and repeat face elements. Notably, the measurement
path must be generated to follow each refinement step. Poten-
tial candidates for such paths are the space-filling curves with a
fractal dimension of two [39], considering the bisection nature
in subdivision spaces. A representative of such curves are the
2D Hilbert curve and Sierpiński curves, whose quadtrees sub-
divide the side length of the squares into two parts in each
step [40]. The triangulation of such distributed sample points

is also well-studied [41], and the evaluation of the curvature
measures can be given directly from the triangulation result.
Moreover, a routing system based on the space filling curves
is a promising solution for the planar traveling salesman prob-
lem (TSP) of distributed individual points in the scanning path
by equalizing the weights of all refined points [42, 43].

We can derive the interested surface properties from the
previous defined curvature measures by choosing the integra-
tion base B ∈ R3. One possible approach is to apply the initial
grid as the integral limits (i.e. a square with a side length of
h and extruded by ∆ on both sides, as shown in figure 2(a)).
A more flexible approach introduced in [22] is to define a ball
around x⃗, which may or may not be larger than the initial grids,
but covers the sharp edges better and significantly cleaner in
mathematical expressions. Let Br (x) be the ball of center x⃗
and radius r. The corrected mean curvature Ĥ and the correc-
ted Gaussian curvature Ĝ at x⃗ are defined in accordance with
equation (7) by

Ĥ :=
µ(1) (Br (⃗x))

µ(0) (Br (⃗x))
, (9)

Ĝ :=
µ(2) (Br (⃗x))

µ(0) (Br (⃗x))
. (10)

The first and second principal curvatures κ̂1 and κ̂2 at x⃗
and their associated corrected principal directions v̂1 and v̂2
are also defined by

κ̂1 (⃗x,r) :=− λ2 (Mr (⃗x))

µ(0) (Br (⃗x))
, v̂1 (⃗x,r) :=

z⃗2 (Mr (x))

µ(0) (Br (⃗x))
(11)

κ̂1 (⃗x,r) :=− λ2 (Mr (⃗x))

µ(0) (Br (⃗x))
, v̂2 (⃗x,r) :=

z⃗1 (Mr (x))

µ(0) (Br (⃗x))
(12)

where

Mr (⃗x) := 1
2

(
µ(M) (Br (x))+

(
µ(M) (Br (x))

)T)
+Ku⃗ (⃗x)⊗ u⃗ (⃗x) ,

µ(M) :=
[
µ(ei,ej)

]
, i, j= 1,2,3

.

The numerators λ1 (M)≤ λ2 (M)≤ λ3 (M) are the eigenval-
ues of M, and z⃗1, z⃗2, and z⃗3 are their associated eigenvectors.
Ku⃗ (⃗x)⊗ u⃗ (⃗x) is the Kronecker product of the corrected nor-
mal u⃗ with itself, and some large coefficient K is chosen to
force the tangency of principal direction eigenvectors.

We are also able to implement alongside another iterative
refinement algorithm considering the determination of sharp
edges. The corrected normal cone algorithm is also well suited
for the convergent detection of such discontinuities, as shown
in the schematic illustration in figure 1(a). The key points of
this complementary algorithm can be given as follows:

(a) Define sharp edges and extreme points as regions where
the estimated curvature exhibits distinct statistical prop-
erties, compared with the majority of the sample surface,
whereas the curvature estimation follows the same steps as
given in the above refinement algorithm.

5
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Figure 2. (a) Schematic for element comparison and grid refinement. A different comparison scheme can be used for various concerned
surface properties, that is, l2-error for vector fields such as vertex normals and l∞-error face values such as Gaussian curvatures and mean
curvatures. (b) Flowchart of the combined refinement algorithm for both surface patches and sharp edges. The algorithm ends only when
both convergent criterions are satisfied.

(b) Novel refinement points are added to the barycenter of tri-
angulations with distinguished properties, and the integ-
ration ball radius follows the same bisection asymptotical
reduction criterion as that given in the above refinement
algorithm. Add these points in the next curvature value
estimation process, and if these points are indeed extreme
points, the total area of such distinct distributions is sup-
posed to be suppressed face-wise.

(c) When the total area of the edges and extreme points does
not shrink further, the algorithm reaches a convergence
criterion, either on the difference between two consecut-
ive measurements or a total portion with respect to initial
triangulation.

Due to the implementation of this second refinement
algorithm, the system can distinguish the edges from the sur-
faces. Further, the surface to be estimated is no longer limited
to a predefined region, but expands along with the shrinkage
of the edge area in the successive iterations, leading to more
accurate curvature estimations near the neighborhood of these
extreme points. The integration ball r can also be refined at
each iteration step to discover smaller features in accordance
with the finer grids. A flowchart for the combination of the
aforementioned algorithms is shown in figure 2(b).

As a conclusion, the total measurement time can be for-
mulated approximately as a combination of the measurement
time of the sample pointsNta, the traveling time along the gen-
erated paths (N− 1) ts and the calculation time for obtaining
the geometric information Tc, given by:

Ti ≈ Nitai+(Ni− 1) tsi+Tci, (13)

where the footnote i represents the ith iteration, N denotes the
number of the generated refinement points, ta and ts repres-
ents the average data acquisition time and the average trav-
eling time between consecutive points, respectively. The pro-
posed algorithm contributes to saving the total measurement
time from all the three aspects:

(a) The algorithm can reduce the total number N of measured
points and consequently the number (N− 1) of paths in
between.

(b) Equippedwith solution for the TSP on the generatedmeas-
urement points, the algorithm can reduce the average trav-
eling time ts when the surface feature points are relatively
sparse.

(c) The calculation time Tc also depends on the number of grid
points, by Tc ∝ O(N) [44]; so the total calculation time for
retrieving geometric information is also reduced due to a
smaller N.

We exploit this combined non-equidistant grid point gen-
eration algorithm to perform adaptive measurement in the fol-
lowing sections.

2.3. Numerical simulation

In this section, we implement the aforementioned combined
refinement algorithm into the virtual measurement process of
a multi-grade parabolic Fresnel mirror surface profile to illus-
trate the adaptability and convergent performance of our geo-
metric property-oriented adaptive refinement algorithm. We
first provide a primitive setup to show the adaptivity of our
method on the evaluation of curvature properties. Then, a more
detailed simulation process is presented to more clearly illus-
trate how the presented algorithmworks in iterative refinement
steps.

2.3.1. Numerical simulation methods. Following the steps
given in the previous section, a first step refinement of the
grid points of our algorithm and the contemporary height con-
vergent method are both shown in figure 3 to provide an ini-
tial perception of our method in contradiction to the contem-
porary height convergence method. The initial data points are
generated in figure 3(a), with a separation of 0.01 unit length.
The two measurement nets of the first iteration are then gen-
erated with mesh grid of 0.2 unit length, with a displacement
of 0.1 unit in both directions, as depicted in figure 3(d). The

6
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Figure 3. Simulation result showing the adaptability of the proposed algorithm on surface curvature properties. (a) Depicts the generated
two-grade Fresnel mirror, (b) shows the first step height difference between the initial grid and the h/2 deviated grid, (c) shows the refined
grid in accordance with the height convergent criterion, (d) illustrates the relative position and interpolation scheme of both the initial and
deviated grid, (e) shows the first step curvature difference between the two grids and accordingly, and (f) shows the refined grid with
curvature convergent criterion.

height error and mean curvature error between M̂eas
(1)

ii and

Meas(1)ii are calculated and shown in figures 3(b) and (e). A
convergence threshold of 1

4 the maximum error magnitude is
set, and the first step refinements of both error terms are given
in figures 3(c) and (f), respectively. Because both error terms
are calculated based on the same measurement pair Meas(1)i

and Meas(1)ii , the conclusion is straightforward: the height
error convergent criterion, which is not explicitly respons-
ible for curvature profiles, are not sensitive to the curvature
errors and will not consider these errors during further refine-
ment steps. Meanwhile the curvature error convergent cri-
terion addresses such errors properly, as denoted by the red
triangles in figure 3(f). This shows the adaptability of the mod-
ified algorithm on the evaluation of curvature properties.

A more detailed simulation process is presented for the
combined algorithm, where the iterative refinement and the
number of the data points are also considered. The surface is
triangulated for simplicity in the integration process, and the
l2 convergent criterion is replaced by l∞ error, which is the
maximum deviation of the estimated curvatures in consecut-
ive measurements. Determining the edges leads to a shrinking
portion of the area of the edges and an expanding portion of
the area of the surface patches in the total projected area on the
uv-plane. Figure 4 shows the simulated first-step refinement
setup of a three-level Fresnel mirror. Grid point separations of
0.4 and 0.2 mm are generated. Figures 4(a) and (b) provide
the corresponding estimation of the mean curvatures. By fit-
ting the estimated curvature to the theoretical surface, which
is often known for manufactured species, or roughly assume
that the majority of the estimated values must follow a normal
distribution profile, we can regard those extreme values as ini-
tial guess for the position of the edges. Consequently, by set-
ting the edge determination threshold to 3σwith σ the standard

deviation of the fitted normal distribution, figures 4(c) and (d)
show the surface meshes after removing the identified edges
from the initial triangulation. A comparison of the curvature is
performed in accordance with figure 2(a), where the estimated

values M̂eas
(1)

ii of the refined points at the barycenters (denoted
by the red dots in the subfigure) of the initial triangulations
are interpolated by an integration within the integration ball of
radius r, as also shown in figure 4(c). After the refined points
are measured, a novel triangulation, including these barycen-
ters and the refined edge areas, is generated, and the corres-
ponding Meas(1)ii is evaluated with the same integration ball.

After a comparison of the two datasets M̂eas
(1)

ii and Meas(1)ii ,
barycenters with deviations larger than a certain threshold are
retained in the next iteration. The edge regions are herewith
re-evaluated, and the regions marked as the surface profile are
also re-generated for the evaluation in the next iteration. The
integration radius is decreased iteratively to capture smaller
and smaller surface features. The refinement processes of both
grid separations are shown in figure 5, whose subfigures (a)
and (b) show the first refined grid and the refined grid after
four iterations for grid separation of 0.4 mm. Figure 5(c) illus-
trates the estimated mean curvature distribution of the final
refinement, in comparison with the estimation results given
by figure 4(a). Similarly, the (d) and (e) show the grids for
0.2 mm, and (f) depicts the corresponding estimation of the
mean curvature across the entire surface. The convergent per-
formances of both grids are shown in figure 6.

Another example is simulated on the surface of a multi-
focal micro lens array (MFMLA) [45]. The results are given
in figure 7. The subfigures (a) and (b) show the refinement
process of the proposed curvature convergent algorithm and
illustrate the surface profile of theMFMLA used in the simula-
tion. Same as the previous examples, the measurement process

7
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Figure 4. Influence of initial grid separation for combined algorithm on a generated three-grade Fresnel mirror: (a) illustration of initial
estimation of mean curvature on a coarser grid with 0.4 mm separation, (b) initial curvature estimation on a finer grid with 0.2 mm
separation, (c) and (d) respective triangulation where the corresponding extreme elements in (a) and (b) are marked as edges and removed
from the surface patch element evaluation.

Figure 5. Schematic of the simulated refinement process for combined algorithm: (a) first step refinement grid of the proposed Fresnel
mirror from a 0.4 mm separation initial grid (red dots are the 2D boundary elements to constrain the triangulation region), (b) refined grid
after four iterations, and (c) corresponding estimated mean curvature at the final stage. Accordingly, (d)–(f) show the same process but with
a smaller initial grid separation of 0.2 mm.

is given an initial equidistant grid as the starting point of the
algorithm; the initial estimation result is shown in figure 7(c).
Figure 7(d) shows a comparison of the final curvature estim-
ation results for both algorithms, stitched into a single subfig-
ure, and figure 7(e) shows the comparison of both algorithms
under different measurement considerations.

2.3.2. Simulation results and discussion. The simulation
results indicate the convergence property of the iterative grid
point generation algorithm. Figure 4(a) shows the 0.4 mm
grid setup hardly conveys accurate information about themean
curvature properties. This is also partially true for the 0.2 mm
grid, where, although the initial estimation of mean curvature
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Figure 6. Graph showing convergence of the l∞ norm of the estimated mean curvature value and the determined edge area as a portion of
the total projected area of 5.6×5.6 mm, for both initial grid setup in the context.

Figure 7. A comparison of the height convergent algorithm and the curvature convergent algorithm: (a) and (b) illustrates the surface profile
of part of a multi-focal micro-lens array used in the simulation and the refinement process in the curvature convergent algorithm,
specifically, (c) shows the initial generated grid and the corresponding estimation of the corrected mean curvature, (d) shows the final
estimated mean curvature of both the curvature convergent algorithm and the height convergent algorithm, the zoom-in illustration shows
that the curvature convergent algorithm faces some issues on the integration of rims, and (e) shows the convergence characteristics of both
algorithms under different considerations.

can distinguish the boundary of the fast-variating regions from
smooth surface patches, it fails to resolve smaller surface patch
profiles in between, as expected. This leads to overly large
vacancies of the identified edge regions. However, after four
iterations of grid refinement, the edge information is already
able to be derived from the estimated mean curvature, as
shown in figure 5(c). When the initial grid separation is set
to a smaller value (0.2 mm), the final estimation of the mean
curvature addresses the edges better. Zoomed images of the
final refined grids of the two different initial grid separations
in figures 5(b) and (e) show that the coarser grid spares more
effort on the refinement of grids near sharp edges in success-
ive iterations, while finer initial grids indicate a much-relieved
edge refinement strategy.

Figure 6 shows the convergence performance of the two
refinement processes. Notably, in the first iteration of the
coarser grid setup, the estimation of the mean curvature, as
well as the determination of the edges, are less accurate,

resulting in unusually suppressed data at the beginning of the
line chart. The later iterations are relatively free of this type
of unconformity, and the convergence nature of the combined
algorithm is illustrated as the edges are addressed more accur-
ately in refined grids and the integration radius is set lower to
capture more detailed variations. Although an absolute con-
vergent criterion, such as a threshold on the mean curvature
deviation or the edge area portion, can be addressed directly
in accordance with the simulated convergence plot, it is still
strongly recommended that a relative convergence criterion
focusing on the difference between consecutive measurements
be used instead, especially with unknownmanufacturing qual-
ity and systematic measurement errors.

Further, the edge determination threshold strongly affects
the refinement process. Table 1 shows the influence of dif-
ferent criteria used when determining the extreme points that
are supposed to be edges. For a looser threshold of 3σ, which
is used for the illustrative simulation results, the number of
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Table 1. Development of grid point generation with different convergence criterion for edge determination.

Threshold Iteration 1 2 3 4

1σ Surface point #a 289 501 786 1173
Edge point # 788 3328 10597 27664

3σ Surface point # 892 757 1250 3465
Edge point # 324 2919 8504 15700

a The numbers represents only the newly added number of grids in the corresponding refinement iteration; the total number of measurement points is a sum of
the rows and the generated initial grids.

the newly added face refinement points grows more rapidly in
comparison with a stricter threshold of 1σ. However, the num-
ber of the refined points in the edges with 1σ threshold grows
even more drastically. This is partially due to a larger number
of triangulation elements that are marked as edge elements.
Another reason is due to the surface model itself: by theoret-
ical calculation, a significant portion of surface curvature lies
near or beyond the [−σ,σ] interval centered at the universal
mean. This indicates the importance of the knowledge on the
measured surface model for better time-saving convergence
criterion choice strategy.

Now consider the simulated refinement process of the
MFMLA as shown in figure 7. The applied height conver-
gent algorithm also fails to capture detailed curvature inform-
ation, as shown in the right-hand-side of figure 7(d), espe-
cially within regions neighboring to flat surface patches; the
proposed curvature convergent algorithm, on the other hand,
is able to capture such discontinuities properly. But there are
also issues on the curvature calculation process: the compu-
tation on rims and corners of the measurement region may
fail due to the application of smaller integration ball radius, as
shown in the zoom-in illustration. This is not a problem when
the measurement scanning range is chosen to be larger than
the feature region; but for totally unknown surface profiles,
the integration ball radius should be chosen larger to over-
come such failures. The total number of measurement points
in the proposed algorithm is 48134, which is also larger than
a total of 39374 points in the contemporary height convergent
algorithm. This problem can be partly addressed by selecting
weaker criterions, but the accuracy on the curvature estimation
also becomes worse.

A comparison of the convergent characteristics of both
algorithms with different measurement concerns is also given
in figure 7(e). As can be seen from the results, although
the proposed algorithm outperforms the height convergent
algorithm in the curvature estimation applications, its perform-
ance on pure height measurements is less effective, as expec-
ted.

In general, the above simulation process shows the theor-
etical convergence performance of the proposed algorithm.
The algorithm shows adaptability in the evaluation and estim-
ation of surface curvature, compared to the height conver-
gent method, which often ignores the diversity in such sur-
face properties. The algorithm also shows relative robustness
in that the dataset used contains artificial noise. This robust-
ness benefits from the integration nature of the corrected nor-
mal cone method. Codes used in the above simulation process

can be found in the supplementary materials (available online
at stacks.iop.org/MST/32/125009/mmedia) as well as our Git-
Hub repository: https://github.com/yyhuzju/non-equidistant-
algorithm/tree/no_GUI.

3. Experimental verification

3.1. Experiment setup

In a previous study, we developed a metrological STM for
the measurement of large area workpiece measurement [3, 6].
A primitive verification of the proposed algorithm was per-
formed on this STM system. A schematic illustration of the
system setup is depicted in figure 8(a), and a photograph of
the system is shown in figure 8(b), illustrating the relative
assembly relationship between the actuation platforms. The
STM probe was prepared via electrochemical etching pro-
cess [46]. Figure 7(c) shows a photograph of the probe tip
acquired using scanning electron microscope. The probe has
a sharp tip with a radius below 50 nm. The adapted linear
positioning stages (Type M-112.1DG1, PI Inc.) for the x-, y-
, and z-axis have a minimum incremental motion of 0.05 µm
and a unidirectional repeatability of 0.25 µm, with a travel-
ing range of 25 mm. The position of the scanner axes during
the measurement process is acquired by built-in encoders. A
two-arm 632.8 nm wavelength laser interferometer was used
to measure the translational volumetric errors and the errors
are compensated according to a geometric error model. The
STM probe was installed on a piezoelectric actuator (PEA,
Type VS15, CoreMorrow) with a traveling range of 19 µm.
All the stages were mounted on a marble bed. The tunneling
current was measured using a picoampere electrometer (Type
6514, Keithley Instruments), and the readouts were fed dir-
ectly to a PC runtime controller via the IEEE 488.2 protocol.

The dwelling time of the probe is given an upper limit for a
single readout to converge, which is 2 ms for points in the iden-
tified regular areas and 5 ms for points on edges. Readouts that
are not convergent within the given time limit are approxim-
ated by averaging the last ten results. This kind of rough cutoffs
are usually less influential in the case of curvature measure-
ments than in height measurements, because of the integral
nature of the curvature estimation method.

The workpiece to bemeasured is a piece of Fresnel reflector
array with a parabolic profile. Figure 9(a) demonstrates how
the Fresnel reflector array works: for parallel incident light,
the reflector focuses the light on a plane above the reflector
surface to distributed focal points. The images were acquired
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Figure 8. (a) Schematic illustration of the STM system, (b) photograph of STM system, and (c) SEM image of tungsten probe tip.

Figure 9. (a) Schematic illustration of the Fresnel reflector array; the image acquired by optical microscope shows the surface and the focus
plane of the microarray, and the height difference in between at ≈ 2.02 mm, close to the designed 2 mm focal length. (b) Photograph of the
working STM probe above the reflector surface.

Figure 10. Comparison between (a) space-filling curve scheme and (b) raster scanning scheme for the initial grid points, showing the
reduction in corners and total travel range.

by an optical microscope and showed both the sample sur-
face and the focus plane, whereas the later one was actually
distributed images of the light source. The cross-section pro-
file is also given in figure 9(a), showing the dimensions of the
multistage parabola. An on-machine setup of the tip-sample
pair is shown in figure 9(b). When performing the measure-
ment, the separation between the probe tip and the sample was

set to approximate 0.05 µm to avoid collision and damage to
the workpiece surface.

The measurement path follows the outstanding space-
filling curve solution of the TSP [42]. The reposition point
was set to approximate the origin of the workpiece. A prim-
itive comparison between the total scan distance is shown in
figure 10. The figure indicates that, by using the space-filling

11



Meas. Sci. Technol. 32 (2021) 125009 Y Hu and B Ju

Figure 11. Estimated mean curvature results for (a) the finest grid separation of 5 µm, (b) initial grid with grid separation of 0.2 mm, and (c)
final adaptive grid after six iterations. Subfigure (d) shows the 3D surface profile of the final grid.

curve solution, the total traveling range of the scanning
probe is reduced to 63.49 mm with 31.21 and 32.28 mm
for the original and the deviated grids, respectively. Mean-
while, in the traditional raster scanning scheme, the total
tour range is 115.30 mm with 56.58 and 58.72 mm for the
same two grids. This shows the efficiency of the space-filling
curve solution in reducing the total movement time for faster
data acquisition. Further, space-filling curves promote more
tender corners, thus avoiding instability in fast positioning
during the measurement process. A more general solution
is by 3D space-filling curve with knowledge of the surface
profile from former measurements. We chose 2D curves in
this study for simplicity, as the vertical height difference is
relatively small compared to the long horizontal traveling
range.

3.2. Measurement results and discussion

The measurement results are shown in figure 11. Figure 11(a)
shows the result under the finest grid that can be meas-
ured using the current apparatus. The grid separation was
set to 5 µm, and the outermost points of the cylindrical
workpiece are extrapolated to form a square area for better
curvature estimation purpose. The mean curvature is estim-
ated in accordance. A zoomed-in scope showed the processing
traces by the diamond tool. The initial estimation with a grid
separation of 0.2 mm as a start point of the refinement pro-
cess is shown in figure 11(b). After six iterations of refine-
ments, the estimated mean curvature of the surface is shown
in figure 11(c). The 3D model of the final measurement is also
given in figure 11(d).

In general, the algorithm used in this study fits well for the
estimation for the curvature estimation process. The subfigures
show that the estimation result from the first measurement is
blurred, and thus it is difficult to obtain useful information.
However, after several iterations, the major surface features
are clearly visible and a curvature estimate is obtained similar
to that of the densest mesh. However, the processing traces are
also neglected due to the coarse grids in the flat regions. Finer
initial gridsmay help identify such small features, butmay also
lead to longer acquisition time. The number of points added in
each iteration is given in figure 12(a), which is 138944 points
in total. For comparison, the total number of points in the finest
raster grid is 246253. This reduction in the total measurement
points yields an over 30% improvement in the total measure-
ment time with space-filling curve paths, and it is expected to
increase the measurement efficiency by over 50% for the raster
scanning scheme. The total approximated measurement time
is given in table 2 as a reference. Note that in more advanced
setups, the total traveling time can be reduced further by apply-
ing faster scanners (i.e. reducing the average ts in equation
(13)), then the upper limit of the total measurement time will
be governed by the data acquisition (setting) time Nta. In
sparser grids, however, such as those in the first few refine-
ment iterations, the movement of the scanner still needs time
quite longer than the data acquisition process, i.e. ts ≈ 150 ms
for average 0.2 mm point separation when the acquisition time
remains the same as given above. In this situation, the path
planning is of the same importance as the adaptive grid selec-
tion. As a result, the total traveling time after path planning is
≈ 2393 s, while for raster grid with the shortest average travel-
ing time of≈ 0.012 s for finest grids as given in the table, this
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Figure 12. (a) shows a stacked histogram of the generated grid points during the refinement process. (b) shows the paths of the first few
refinement iterations, whereas the arrow shows the direction of the scanning path.

Table 2. Detailed timing during the measurement process in the current setup.

Iteration 1 2 3 4 5 6

Traveling time (s)
Ave Tot Ave Tot Ave Tot Ave Tot Ave Tot Ave Tot
0.151 49 0.082 76 0.053 248 0.031 389 0.019 597 0.012 1032

Measure time (s)a 0.66 1.98 14.3 37.9 97.1 269.2
Calculation time (s) — 0.38 2.97 11.43 ≈ 68b ≈ 377
a Approximated by typical readout step response.
b Longer calculation times depends largely on the selection of TSP algorithm; the current result is given by the space-filling curve solution for TSP.

time will be ≈ 2955 s. The calculation time in the table refers
to two processes: solving the TSP and computing the corrected
curvature. The codes given in this paper is not optimized and
the integration process is rather time-consuming. This prob-
lem can be partly addressed considering that when retrieving
curvature information, the integration process is unavoidable,
and the calculation time of 138944 points implemented in the
iterative process is still faster than the same process on 246253
points after performing traditional raster measurements. Thus,
despite some estimation noise in the measurements, the
algorithm proposed in this study still has a considerable prac-
tical value in the curvature estimation of complex workpiece
surfaces.

The path connecting the refinement grids in the first few
iterations are shown in figure 12(b). The path in each itera-
tion starts from the origin, travels toward the first quadrant,
follows a clockwise direction, and finally ends at the same ori-
gin, for the convenience to wait for subsequent instructions.
The minimal point separation in the 0.2 mm case is approx-
imately 3 µm, which is still acceptable regarding the specific-
ations of scanner. The mean curvature estimation uncertainty
for consecutive five measurements is given in figure 13, show-
ing the histogram of the estimatedmean curvature by area sum.
As can be seen from the results, the estimation in the reg-
ular regions, i.e. the total area with smaller mean curvature,
is relatively stable for different measurements. However, the
side bands around the central peak in the finest grid are sup-
pressed. This is mainly because that the small variations in the

Figure 13. Distribution of the estimated mean curvature, the
histogram represents the total area of triangulations within a given
curvature range.

flat areas such as the processing traces by the diamond tool
shown in figure 11(a) are averaged and neglected in the adapt-
ive grid. This problem can be solved easily with finer initial
gird covering the feature size of such traces, but for large area
profiling, such problems have limited impact.
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4. Conclusion

In this paper, we proposed a novel convergent criterion on
the adaptive grid generation algorithm for SPMs. For sur-
faces with large regular areas, the use of this adaptive scanning
algorithm, rather than using traditional equidistant grid scan-
ning, can save the total measurement time without losing sig-
nificant information about the properties of interest. Further-
more, unlike the contemporary height convergence algorithm,
this method captures the curvature information and controls
the estimation accuracy of surface profiles related to curvature
properties. Further, the combined algorithm with edge identi-
fication can distinguish edges from regular surfaces, leading
to more accurate identification of fast surface variations. The
contribution of each part of the algorithm can be termed as
follows:

• The iterative point refinement process saves the total trav-
eling and data acquisition time simultaneously by reducing
the total number of points to be measured.

• The TSP solution used in the path planning process can
reduce the traveling time further, especially when the sur-
face feature points are sparse and the total movement time
between consecutive sample points governs.

We also presented a simulation process to theoretically
show the convergent performance of the algorithm and verified
the algorithm on a micro-structured surface by using an iterat-
ive measurement process with exceedingly higher resolution
on the critical surface regions, performed on a self-built met-
rological STM. The results demonstrate the efficiency of the
developed algorithm in reduction of the total acquisition time.
Equipped with the space-filling curve solution for the shortest
scanning path, the total measurement time can be reduced fur-
ther, and the stability of the entire system is improved.
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