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Abstract
B. Alspach, C.C. Chen and Kevin Mc Avaney [1] have discussed the Hamiltonian laceability of
the Brick product C(2n,m, r) for even cycles. In [2], the authors have shown that the (m, r)-
Brick Product C(2n + 1, 1, 2) is Hamiltonian-t-laceable for 1 ≤ t ≤ diamn. In [3] the authors have
defined and discussed Hamiltonian-t-laceability properties of cyclic product C(2n,m) cyclic product
of graphs. In this paper we explore Hamiltonian-t∗-laceability of (W1,n, k) graph and Cyclo Product
Cy(n,mk) of graph.
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1 Introduction
Let G be a finite, simple, connected and undirected graph. Let u and v be two vertices in G. The
distance between u and v denoted by, d(u, v) , is the length of a shortest u − v path in G. A graph
G is Hamiltonian-t-laceable [4] if there exists in G Hamiltonian path between every pair of vertices
u and v with d(u, v)=t, 1 ≤ t ≤ diamG, where t is a positive integer. A graph G is Hamiltonian-t∗-
laceable [2] if there exists in G a Hamiltonian path between at least one pair of distinct vertices u
and v such that d(u, v)=t, 1 ≤ t ≤ diamG. In [1] B. Alspach, C.C. Chen and Kevin McAvaney have
explored Hamiltonian Laceability in the Brick Products of even cycles. In [3], Leena Shenoy and R.
Murali have discussed the (m, r)-Brick Product of odd cycles C(2n + 1,m, r). Using this concept
we define (W1,n, k) graph and Cyclo product, Cy(n,mk) of graph and explore Hamiltonian laceability
properties.
First we recall the following definitions.
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2 Hamiltonian Laceable Graph
Definition 2.1. Let G be a finite, simple, connected undirected graph. A graph G is Hamiltonian
laceable if there exists a Hamiltonian path between every pair of vertices at an odd distance in G.

Example: Hamiltonian laceable graph is shown in figure 1.

Definition 2.2. Let G be a finite, simple, connected undirected graph. The graph G is Hamiltonian−
t −laceable if there exist a Hamiltonian path between every pair of distinct vertices ai and aj in G
with the property d(ai, aj) = t; 1 ≤ t ≤ diamG and Hamiltonian − t∗ − laceable if there exists a
Hamiltonian path between at least any one pair of distinct vertices ai and aj such that d(ai, aj) = t;
1 ≤ t ≤ diamG.

Example: Hamiltonian − 3 − laceable and Hamiltonian − 2∗ − laceable graphs are shown in
figure 2.
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Figure 2: Hamiltonian-2∗- laceable graph and Hamiltonian-3-laceable graph
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3 The Graph (W1,n, k)

Let W1,n be a wheel graph. We shall denote the vertices of W1,n by < ai >, 1 ≤ i ≤ n and a root
vertex a0.
Let G = (W1,n, k) be a graph obtained by taking disjoint union of k copies of cycle Ck with the vertices
ak1 , ak2 , ak3 , ak3 ........akn .
If k=1 , For 1 ≤ i ≤ n, draw an edge connecting vertices ai of W1,n to a1i of C1.
If k ≥2, starting from k=2 proceed recursively joining the vertices a(k−1)i to aki by an edge. Where
1 ≤ i ≤ n.
Example: The graph (W1,n, k) is shown in figure 3.

Theorem 3.1. The graph G = (W1,n, k), n ≥ 3, k ≥ 1 is Hamiltonian-t∗-laceable for 1 ≤ t ≤ 3.

Proof. Let G = (W1,n, k). The vertices of interior cycle (W1,n) be a1, a2, a3, a4.........an−1, an and
vertices on the kth cycle be ak1 , ak2 , ak3 , ak4 .............akn−1 , akn . The graph G has n(k + 1) + 1
number of vertices and 2(k+ 1)n number of edges. To establish the result, we consider the following
cases,
Case(i): For t=1
In G, let d(a0, a1)= 1 then the path
P : (a0, a2)∪{(a2, a3)∪(a3, a4)∪............∪(an−1, an)}∪(an, a1n)∪{(a1n , a1(n−1)

)∪(a1n−1 , a1(n−2)
)∪

.........∪(a13 , a12)}∪(a12 , a22)∪{(a22 , a23)∪(a23 , a24)∪(a24 , a25)∪..........∪(a2(n−1)
, a2n)}∪(a2n , a3n)∪

{(a3n , a3n−1) ∪ (a3n−1 , a3n−2) ∪ (a3n−2 , a3n−3) ∪ .......... ∪ (a33 , a32)} ∪ (a32 , a42) ∪ .......... ∪ T ∪
(ak1 , a(k−1)1) ∪ (a(k−1)1 , a(k−2)1) ∪ ........ ∪ (a21 , a11) ∪ (a11 , a1) is a Hamiltonian path from a0 to a1.

Where,

T =

{
(akn , akn−1) ∪ (akn−1 , akn−2) ∪ ........... ∪ (ak3 , ak2) ∪ (ak2 , ak1), if k is odd ;
(ak2 , ak3) ∪ (ak3 , ak4) ∪ ........... ∪ (akn−1 , akn) ∪ (akn , ak1), if k is even .

Case(ii): For t=2
In G, let d(a0, a11)= 2 then the path
P : (a0, a1) ∪ {(a1, a2) ∪ (a2, a3) ∪ (a3, a4) ∪ ............ ∪ (an−2, an−1) ∪ (an−1, an)} ∪ (an, a1n) ∪
{(a1n , a1(n−1)

) ∪ (a1(n−1)
, a1(n−2)

) ∪ (a1n−2 , a1(n−3)
) ∪ ......... ∪ (a14 , a13) ∪ (a13 , a12)} ∪ (a12 , a22) ∪

{(a22 , a23)∪(a23 , a24)∪(a24 , a25)∪..........∪(a2(n−1)
, a2n)}∪(a2n , a3n)∪{(a3n , a3n−1)∪(a3n−1 , a3n−2)∪

(a3n−2 , a3n−3)∪..........∪(a34 , a33)∪(a33 , a32)∪(a32 , a42)∪..........∪T∪(ak1 , a(k−1)1)∪(a(k−1)1 , a(k−2)1)∪
........ ∪ (a21 , a11) is a Hamiltonian path from a0 to a11 . Where

T =

{
(akn , ak(n−1)

) ∪ (ak(n−1)
, ak(n−2)

) ∪ ........... ∪ (ak3 , ak2) ∪ (ak2 , ak1), if k is odd ;

(ak2 , ak3) ∪ (ak3 , ak4) ∪ ........... ∪ (ak(n−1)
, akn) ∪ (akn , ak1), if k is even .

Case(iii): For t=3
In G, let d(a3, a11)= 3 then the path
P : {(a3, a4)∪{(a4, a5)∪ (a5, a6)∪ ............∪ (an, a1)}∪ (a1, a0)}∪ (a0, a2)∪{(a2, a12)∪{(a12 , a13)∪
(a13 , a14)∪(a14 , a15)∪...........∪(a1(n−1)

, a1n)}∪(a1n , a2n)∪{(a2n , a2n−1)∪{(a2n−1 , a2n−2)∪..........∪
(a24 , a23) ∪ (a23 , a22)} ∪ (a22 , a32) ∪ {(a32 , a33) ∪ {(a33 , a34) ∪ (a34 , a35) ∪ .......... ∪ (a3n−1 , a3n)} ∪
(a3n , a4n) ∪ .......... ∪ T ∪ (ak1 , a(k−1)1) ∪ (a(k−1)1 , a(k−2)1) ∪ ........ ∪ (a21 , a11) is a Hamiltonian path
from a3 to a11 . Where

T =

{
(ak2 , ak3) ∪ (ak3 , ak4) ∪ ........... ∪ (ak(n−1)

, akn) ∪ (akn , ak1), if k is odd ;

(akn , ak(n−1)
) ∪ (ak(n−1)

, ak(n−2)
) ∪ ........... ∪ (ak3 , ak2) ∪ (ak2 , ak1), if k is even .

Hence the proof.

Figure 4, shows a Hamiltonian path between a0 to a11 in (W1,8, 3). This path is
P : (a0, a1)∪(a1, a2)∪(a2, a3)∪........∪(a7, a8)∪(a8, a18)∪(a18 , a17)∪(a17 , a16)∪...........∪(a13 , a12)∪
(a12 , a22)∪ (a22 , a23)∪ (a23 , a24)∪ .........∪ (a27 , a28)∪ (a28 , a38)∪ (a38 , a37)∪ (a37 , a36)∪ (a31 , a21)∪
(a21 , a11).
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Figure 3: Hamiltonian laceable graph (W1,8, 3)
.

    

 

a0 

a1 

a5 

a8 

a11 

a15 

a38 

a21 

a25 

a18 

a32 

a34 

 

a36 

Figure 4: Hamiltonian path from a0 to a11 is shown by dark lines in (W1,8, 3)1860
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4 Cyclo Product
Definition 4.1. Let n, k be positive integers and m ≥ 2. The cycloproduct Cy(n,mk) is defined by
joining each vertex ai in Cn to ai+mk under modulo n.

Cyclo product Cy(15, 3k) under modulo 15 is shown in fig 5.
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Figure 5: Cyclo product Cy(15, 3k) under modulo 15

Theorem 4.1. The graph Cy(n, 3k), n ≥ 6 is Hamiltonian-t-laceable for t =1, 2.

Proof. Let G= Cy(n, 3k) be a graph with n no. vertices. Let this vertex set be V ={a0, a1, a2, a3, a4, a5..
......an−2, an}. We consider the following cases
Case(i): For t=1.
Let d(ai, aj)=1 and | i − j | =1 then we find a path P in G such that P : (ai, ai−1) ∪ (ai−1, ai−2) ∪
(ai−2, ai−3) ∪ (ai−3, ai−4) ∪ .......... ∪ (aj+2, aj+1) ∪ (aj+1, aj) is a Hamiltonian path.
Hence G is Hamiltonian-1-laceable.
Case(ii): For t=2.
Let d(ai, aj)=2 and | i − j | =2 then we find a path P in G such that P : (ai, ai+1) ∪ (ai+1, ai−5) ∪
(ai−5, ai−4) ∪ (ai−4, ai−1) ∪ (ai−1, ai−2) ∪ (ai−2, ai−3) ∪ (ai−3, ai−6) ∪ (ai−6, ai−7) ∪ (ai−7, ai−8) ∪
(ai−8, ai−9) ∪ (ai−9, ai−10) ∪ ......... ∪ (aj+2, aj+1) ∪ (aj+1, aj) is a Hamiltonian path from ai to aj .
Hence G is Hamiltonian-2-laceable.
Hence the proof.

In figure 6, a Hamiltonian path in G = Cy(15, 3k) under modulo 15, between the vertices a1 to a3

is shown. This path is P : (a1, a2)∪(a2, a12)∪(a12, a13)∪(a13, a0)∪(a0, a15)∪(a15, a14)∪(a14, a11)∪
(a11, a10) ∪ (a10, a9) ∪ (a9, a8) ∪ (a8, a7) ∪ (a7, a6) ∪ (a6, a5) ∪ (a5, a4) ∪ (a4, a3).

Theorem 4.2. The graph G= Cy(n, 2k), n ≥ 6 is Hamiltonian-t-laceable for t=1,2.
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Figure 6: Hamiltonian path from a1 to a3 is shown by dark lines in Cy(15, 3k)

Proof. Let G=Cy(n, 3k) be the graph of order n, (n ≥ 6). Let the vertex set V = {a0, a1, a2, a3, a4, a5...
.....an−2, an}
Case(i): For t=1
Let d(ai, aj)=1 and | i − j |=2,0 ≤ i, j ≤ n. There exists a path P in G such that P : (ai, ai+3) ∪
(ai+3, ai+5)∪(ai+5, ai+7)∪(ai+7, ai+9)∪(ai+9, ai+11)∪(ai+11, ai+12)∪........∪(ai−1, aj+1)∪(aj+1, ai−2)∪
(ai−2, ai−4)∪ (ai−4, ai−8)∪ .........∪ (ai−1, aj+1)∪ (aj+1, ai−2)∪ (ai−2, ai−4)∪ (ai−4, ai−8)∪ .........∪
(aj+4, aj+2)∪ (aj+2, aj) is a Hamiltonian path from ai to aj under modulo n. Hence G is Hamiltonian-
1-laceable.
Case(ii): For t=2.
Let d(ai, aj)=2 and j − i=1, 0 ≤ i, j ≤ n. There exists a path P in G such that P : (ai, ai+1) ∪
(ai+1, ai+2) ∪ (ai+2, ai−2) ∪ (ai−2, ai+1) ∪ (ai+1, ai−3) ∪ (ai−3, ai−4) ∪ (ai−4, ai−5) ∪ (ai−5, ai−6) ∪
(ai−6, ai−7) ∪ ......... ∪ (aj+3, aj+2) ∪ (aj+2, aj+1) ∪ (aj+1, aj) is a Hamiltonian path
Hence Hamiltonian-2-laceable.

In figure 7, a Hamiltonian path in G = Cy(15, 2k) under modulo 15, between the vertices a1 to a4

is shown. This path is P : (a1, a2)∪ (a2, a3)∪ (a3, a14)∪ (a14, a0)∪ (a0, a13)∪ (a13, a12)∪ (a12, a11)∪
(a11, a10) ∪ (a10, a9) ∪ (a9, a8) ∪ (a8, a7) ∪ (a7, a6) ∪ (a6, a5) ∪ (a5, a4).

5 Laceability in Square of a Graph
Let G be a simple connected graph with n vertices. G2 of G is the graph obtained by inserting edge
between every two vertices u and v at a distace d(u, v)=2.

Theorem 5.1. If G = C(2n, 1)then G2 −G is Hamiltonian-t∗-laceable for t=1,2.

Proof. Let G = C(2n, 1) be a graph of order n. Let G2 −G is the graph having same vertex as in G.
Consider the following cases
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Figure 7: Hamiltonian path from a1 to a4 is shown by dark lines in Cy(15, 3k)

Case(i): For t=1
Let d(ai, aj)=1 where i=0 and j = n+2

2
then there exists a pathP : aiJ [P ]

n−4
2 JJ [P ]

n−4
2 is a

Hamiltonian path from aitoaj . Hence G1 is Hamiltonian-1∗-laceable.
Case(ii):For t=2
Let d(ai, aj)=2 where i=0 and j = n−4

2

P : aiJP
n−4
2 JJ [P ]

n
2 KJ is a Hamiltonian path from ai to aj . Hence G1 is Hamiltonian-2∗-laceable.

6 Conclusions

In this paper we have explored Hamiltonian properties of Cyclo product, the graph G = (W1,n, k) and
square of a graph.
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