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Abstract 
 
In this article, we study the conformal mean curvature equation in Thurston’s geometries of Sol 
space. The classification of revolution surfaces with mean curvature was obtained by studying 
the corresponding profile curves in Sol space. According to the characteristics of the conformal 
metric, the revolution surfaces in Sol manifold were obtained through a profile curve revolving 
respectively. Assumes that the mean curvatures of these revolution surfaces were certain 
functions, the corresponding differential equations about the profile curves can be obtained. By 
solving these differential equations, the classification of the revolution surfaces with conformal 
mean curvature was achieved. 
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1 Introduction 
 
With the development of mathematics, hyperbolic geometry has become an important branch of 

mathematics. Hopf conjecture [1] states that a compact surface immersed in nR with constant 

mean curvature (CMC) is the standard (round) sphere. It can be viewed as a generalization of 

Alexandrov’s theorem which asserts that every compact embedded CMC surface in 3R is the round 

sphere. This conjecture has been disproved by Hsiang [2] who constructed a counterexample in
4R and then by Wente [3] who produced an immersion of a compact oriented two-dimensional 
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surface of genus 1 into 3R with constant mean curvature. Finally Kapouleas ([4,5]) constructed 

examples of CMC surfaces for every genus 2g  . In non-Euclidean manifold, Thurston Sol 

manifold geometry is the study of a wide range of space. Because it has the same with Euclidean 
space, mathematics workers have done a lot of research work [6-8]. Kenmotsu respectively 

discussed constant mean curvature surfaces in 3R  and the given mean curvature revolution 

surfaces in 3R [9]. We have not discussed revolution surfaces with given mean curvature function 

in Thurston’s geometries of Sol space. In this note, we will prove the existence of revolution 
surfaces with conformal mean curvature in Sol space. 
 
Theorem: For every rotationally invariant compact smooth surface S embedded in Thurston’s 

geometries of Sol space there exists a conformally flat metric g of 3R such that S has constant 

mean curvature with respect to g. 
 

Sol space, one of Thurston’s eight 3-dimensional geometries, can be viewed as 3R provided with 

Riemannian metric
222222 dzdyedxedsg zz

Sol  
, where (x,y,z) are the standard 

coordinates in 3R . Note the Sol metric can also be written as: 

 

 

 
where 
 

 

 
and the orthonormal basis dual to the 1-form is  
 

1 2 3, , ,z ze e e e e
x y z

   
  

  
 

 
With respect to this orthonormal basis, the Levi-Civita connection and the Lie brackets can be 
easily computed as:  
 

 

 

 

 
We adopt the following notation and sign convention for Riemannian curvature operator. 
 

 

 
The Riemannian curvature tensor is given by 
 

( , , , ) ( ( , ) , ) ( ( , ) , ),R X Y Z W g R Y X Z W g R X Y Z W    

 
A direct computation using the formula gives the following non-zero components of Riemannian 

curvature of Sol space with respect to the orthonormal basis 1 2 3{ , , }e e e : 

3
2

1

,i i
i

d s  


 

1 2 3, , ,z ze dx e dy dz    

31 2

1 1 13 1, 0, ,ee e
e e ee e       31 2

2 2 23 20, , ,ee e
e e ee e       31 2

3 3 3
0, 0, 0,ee e

e e e     

     1 2 2 3 2 1 3 1, 0, , , , .e e e e e e e e   

[ , ]( , ) ,X Y Y X X YR X Y Z Z Z Z       
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and 

 

 

 

 

 

 

The proof is done by solving for g the equation gH c , where gH is the mean curvature of S in

3( , )R g [10], which we will compute with the formula 

 

   1 2

1 2

1
[ , , ].
2

e e
g e eH g v g v     

 

Hence we first need to find an orthonormal basis 1 2{ , , }e e v for 3( , )R g (such that 1 2{ , }e e is an 

orthonormal basis for the tanget space of S) and the covariant derivatives 1

1

e
e  and 2

2

e
e  for which 

we need the Christoffel symbols 
m
ij . 

 

2 Preliminaries 
 
In 3R consider the cylindrical coordinates ),,( x corresponding to the cartesian coordinates

)sin,cos,(   zyx  [5]. The surface of revolution S obtained by rotating the graph of the 

function ( )r x  around the x -axis is given by the immersion: 

 

 ( , ) , ( ), ,
X

x x r x   

i.e. 

        xrRxxxS    2,0,,, 21  

 

for some 1 2x x , where the following closing condition holds: 

 

       2121 0,,,0 xrxrxxxxr  . 

 

Moreover since S is supposed to be smooth, the tanget line to ( )r x at , 1,2ix i  has to be vertical; 

finally to avoid self-intersections the two endoponits ix are the only points where r vanishes. In this 

coordinate system, the euclidean metric has matrix. 
 

 

















200

010

001



 ij , 

121 2 131 3 122 1, , ,R e R e R e    232 3 133 1 233 2, , ,R e R e R e    

1212 1 2 1 2 2 2( ( , ) , ) ( , ) 1,R g R e e e e g e e     

1313 1 3 1 3 3 3( ( , ) , ) ( , ) 1,R g R e e e e g e e     

2323 2 3 2 3 3 3( ( , ) , ) ( , ) 1.R g R e e e e g e e     
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in fact: 

zyzy    cossin,sincos , 

 

We will modify the euclidean metric of 3R by adding to it a rotationally invariant smooth function

( , ) :M M x R R R    . The new metric will be  

 

 

 













),(

,2

,

),(

00

00

00
xf

xf

xf

xf

ij e

e

e

e

g 
















 , 

 

Note that ( , )f xg e   , hence the new metric is conformal to the euclidean one. 

 

We will need a basis 1 2{ , , }e e v for 3R , orthonormal in the metric g, such that 1 2{ , }e e is an 

orthonormal basis for the tanget space pT S at the point ( , )p X x v . As usual we will obtain

1 2{ , }e e by normalizing the two vectors 1 2{ , }e e  that generate pT S , which are  

 

   ,1,0,0~,0,,1~
21 













X
er

x

X
e  

 
Hence 
 

         , ,2 2
1 1 2 2, 1 , , ,

f x f x
g e e e r g e e e

         

 

which yield 
 

 
   1 2 ( , )( , ) 2

1 1
1, ,0 , 0,0,1 ,

1
f xf x

e r e
ee r

 
 


 

 

In the last expression we used{ , , }x     as a basis for pT S . To find v we can use the vector 

product as in the euclidean case, since a conformal change in the meric does respect the angles, 
hence: 
 

 
 .0,1,

1

1
2),(

21

21 






 r

reee

ee
xf 

  

 

3 Christoffel Symbols 
 
We are now in the position to compute the Christoffel symbols for the connection induced on S by 
the metric g; we will adopt the notation 

1 2 3, , ,x x x x     

and use the formula [6] 
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1
,

2
m km
ij jk ki iji j k

k

g g g g
x x x

   
    

   
  

 

where as usual ( )ijg is the inverse matrix of ( )ijg , so in the cylindrical coordinates 

 

   

 

( , )

1 ,

,

2

0 0

0 0 ,

1
0 0

f x

f xij
ij

f x

e

g g e

e











 



 
 
 

   
 
 
 
 

 

 

For 1m  the above formula simplifies to: 

 

 1 11
1 1

1
,

2
ij i i j j x ijg g g g        

So we get: 
 

.
2

1
,

2

1
,0,0,

2

1
,

2

1 21
33

1
22

1
32

1
23

1
31

1
13

1
21

1
12

1
11 xxx ffff    

 

In the same way for 2m  the formula becomes  

 

 2 22
2 2

1
,

2
ij i j j i r ijg g g g        

and we obtain: 
 

 .2
2

1
,

2

1
,0,0,

2

1
,

2

1 22
33

2
22

2
31

2
13

2
32

2
23

2
21

2
12

2
11   ffff x   

 
Finally, for 3m  

 3 33
3 3

1
,

2
ij i j j i ijg g g g        

 
that gives: 

.0,
2

2
,

2

1
,3,,0 3

33
3
322

2

3
23

3
31

3
13

3 





 f
fji xij

 

 

4 Covariant Derivatives and the Mean Curvature 
 

To compute the mean curvature gH of the surface S in the metric g we will use the formula [11]: 

 

   1 2

1 2

1
[ , , ].
2

e e
g e eH g v g v     
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where  is the Levi-Civita connection of 3( , )R g . To simplify the computations we are going to 

adopt the notation: 
3 3

1 2
1 1

, ,i i i i
i i

e E e F
 

      

 

    

  
   ,22

2

2

3
1

3
23

323
13

31

2
1

2
33

332
22

222
11

112
12

21

1
1

1
12

211
33

331
22

221
11

11
1

1

1



















  

EeEEEE

EeEEEEEEEE

EeEEEEEEEEEeEE xk
k

k

ij

k
ij

jie
e

 

    

            
,

1

1

11

1

1

1
2,2,2,2,

1
3

3
2

2
1

11
1













































rere

r

rere

EEEEEe

xfxfxfxxf 

 

 
           

,
1111

1
2,2,2,2,

2
1 














































re

r

re

r

re

r

re
Ee

xfxfxfxxf 
 

  ,03
1 Ee  

 
where the partial derivatives are: 
 

   
 

   
,

12

21

1

1
32,

2

2,
re

rrrf

re xf

x

xfx























      
,

121

1
2,2, re

f

re xfxfr

























 

   
 

  
,

12

12

1 32,

2

2,
re

rrfr

re

r

xf

x

xfx

























      
,

121 2,2, re

rf

re

r
xfxf 



























  

 

Hence, by substituting into the formula for 1

1

e
e the expressions found for

1
1( )e E  and

2
1( )e E , as 

well as those for the corresponding Christoffel symbols, we finally obtain: 
 

            
,

112112 22,2,22,2,

2

1

1 





 












































re

r

re

ffr

re

rr

re

frfr

xfxf

x

xxfxf

xe
e  

 
Let us proceed in the same manner for the other covariant derivative we need: 

    .
2

2

2 ,2

2

,
2

2 



 







xfxxf
xe

e
e

f

e

f
 

 

Since 2 ( ) 0ie F  for 1, 2,3i  . 

 
For the scalar products we obtain: 
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 
     

,
112

,
32,2,

1

1

re

r

re

frf
vg

xfxf

xe
e














 

 
and 

 
   

2

2 , 2

2
, .

2 1

xe
e

f x

r f f
g v

e r





 



  
 


 

 
Hence, by multiplying the two terms and performing the obvious semplifications, the formula for the 

mean curvature gH becomes [12]: 

 

   
  

   
1 2

1 2

2

3, 22

1 11
[ , , ] .
2 2 1

xe e
g e e

f x

r f f r r
H g v g v

e r





  



      
    


 

 

5 Proof of the Theorem 
 
Since the last formula gives the mean curvature of the surface S as a function of its generating 

curve ( )r x and of ( , )f x  , we can use it to solve =cgH (constant) for the function ( , )f x  . To do 

that it is convenient to introduce the following change of variable: 
 

 xrt   , 

 

So that the curve  xr is mapped to the line 0t . Hence in the new coordinates 

    xrxtx  ,,~  the partial derivatives of f are: 

 

,, ~ txxt frffff   

 

and the mean curvature gH is: 

    
   

2

3, 22

1 1
( , ( )) ( ,0) .

2 1

x t t

g g
f x r

r r f r f rf r rr
H x r x H x

r e r

        
 





 

 

A priori f is the most general function of two variables, but to simplify the computations we restrict 

our attention to those functions which vanish on S. We now choose any extension of tf for 0t  , 

compatible with the condition  ,0 0, 0, 0xf x f f   , that gives. 

 

 

2 2 2 2

322

(1 ) (1 ) 1
.

22 1

t t
g

r rr rf r f r
H H

r r


       
  


 

 

where H is the mean curvature of S in the euclidean metric. 
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6 Remarks 
 
(1) If we choose  ,f x t k a constant we obtain [13]. 

 

.
1

g k

H
H

e




 

 

which is the known scaling formula for the mean curvature under homothety. 
 

(2) If  RSS  is the sphere of radius R: 

 

 

2 2
2 2 2

32 2
2 2 2

1
,1 , , .

R R
r R x r r H

R x R
R x




      




 

 

hence  
 

   
2 2

2

2( 1)
, , .

R R x
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In this way we immerse  S R in 3( , )R g for ( , )f xg e   a conformally flat metric which is not 

obtained as homothetic expansion of the euclidean one. 
 

7 Conclusion 

 
An algorithm of rotation surfaces with given principal curvature function is presented. The vector of 
the rotation surfaces is obtained by solving a second-order differential equation with proper initial 
condition, so we can get the rotation surfaces which satisfied the conditions. Some practical 
examples are given to indicate the algorithm is feasible and is carried out easily. A new method for 
engineering design and surface modeling of rotation surfaces is presented.  
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