
*Corresponding author: E-mail: nada.alsalami@yahoo.com, nadaabbas@zuj.edu.jo;

British Journal of Applied Science & Technology
7(2): 179-185, 2015, Article no.BJAST.2015.135

ISSN: 2231-0843

SCIENCEDOMAIN international

 www.sciencedomain.org

A Genetic Algorithm in Green Cloud Computing

Nada Al Sallami1* and Sarmad Al Aloussi2

1Department of Multimedia, Faculty of Science and Information Technology,

 Al-Zaytoonah University of Jordan, Amman, Jordan.
2Computer Information Systems Department, University of Financial and Banking Sciences,

Amman, Jordan.

Authors’ contributions

This work was carried out in collaboration between both authors. Author Nada Al Sallami designed the
study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript

and managed literature searches. Author Sarmad Al Aloussi evaluated the protocol, managed the
analyse of the study and literature searches. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJAST/2015/15412

Editor(s):
(1) Wei Wu, Applied Mathematics Department, Dalian University of Technology, China.

Reviewers:
(1) Tuan Anh Nguyen, Department of Computer Engineering, Korea Aerospace University, South Korea.

(2) Tansel Dökeroğlu, Middle East Technical University, Turkey.
(3) Anonymous, Malaysia.

(4) A. Shajin Nargunam, Noorul Islam Centre for Higher Education, Noorul Islam University, India.
Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=771&id=5&aid=7955

Received 24
th

 November 2014
Accepted 15th January 2015

Published 30
th

 January 2015

ABSTRACT

In this paper a genetic algorithm to solve the problem of load balancing in green cloud computing
environment was proposed. For a specified total load on N clouds, the proposed algorithm finds an
optimal load vector of length less than or equal to N. It helps in avoiding overheating by balancing
the workload across all the clouds, hence reducing the amount of energy consumed. In addition, the
proposed genetic algorithm may converge to a number of clouds less than or equal to N, so that a
substantial reduction in energy consumption can be made by powering down servers when they are
not in use.

Keywords: Green cloud computing; load balancing; genetic algorithm.

1. INTRODUCTION

The main appeal of cloud computing is that
customers only use what they need, and only

pay for what they actually use. Resources are
available to be accessed from the cloud at any
given time, and from any location via the internet.
However, Internet Data Centers (IDCs) use a

Original Research Article

Sallami and Aloussi; BJAST, 7(2): 179-185, 2015; Article no.BJAST.2015.135

180

significant and growing portion of energy,
therefore, Energy-intensive IDCs are a major
source of CO2 emission. Internet data centers
(IDCs) have become an integral component to
operate Internet services and scientific
computation. Since they have been increasing in
scale and complexity, they consume a growing
and visible portion of energy supply [1]. In cloud
computing, service requests have heterogeneous
resource demands because some services may
be CPU intensive whereas others are I/O-
intensive. Cloud resources need to be allocated
not only to satisfy Quality of Service (QoS)
requirements specified by users via SLAs, but
also to reduce energy usage and improve the
profits of the service providers [2]. Cloud
computing is highly dynamic, and hence,
resource allocation problems have to be
continuously addressed, as servers become
available/non-available while at the same time
the customer demand fluctuates. Before
scheduling tasks on cloud computing, the
characteristics of the cloud should be taken into
account. Some of the characteristics of cloud
include [3]: On-demand self-service, Ubiquitous
network access, Location independent resource
pooling, Rapid elasticity and Pay per use. Since
cloud computing is generally characterized as an
IT service (with the vendor providing and
maintaining the software and hardware
infrastructure), the ability of the client
organization to integrate and utilize the vendor’s
services determines the extent IT benefits are
likely to be achieved. Organization- specific
capabilities related to implementation,
integration, and utilization of cloud services play
a key role in deployment performance [4]. There
are three IT-related capabilities-technical,
managerial, and relational-characterized as a
major potential source of competitive advantage
[5].

Load balancing in clouds is a mechanism that
distributes the excess dynamic local workload
evenly across all the nodes. It is used to achieve
a high user satisfaction and resource utilization
ratio, making sure that no single node is
overwhelmed, hence improving the overall
performance of the system. Proper load
balancing can help in utilizing the available
resources optimally, thereby minimizing the
resource consumption. It also helps in
implementing failover, enabling scalability,
avoiding bottlenecks and over-provisioning,
reducing response time etc. Load balancing can
be one such energy-saving solution in cloud
computing environment. Thus load balancing is

required to achieve Green computing in clouds
which can be done with the help of the following
two factors [4]:

1. Reducing Energy Consumption - Load
balancing helps in avoiding overheating by
balancing the workload across all the
nodes of a cloud, hence reducing the
amount of energy consumed.

2. Reducing Carbon Emission - Energy
consumption and carbon emission go hand
in hand. The more the energy consumed,
higher is the carbon footprint. As the
energy consumption is reduced with the
help of Load balancing, so is the carbon
emission helping in achieving Green
computing.

The aim of this paper is to achieve green cloud
computing by satisfy the above two factors.
Although there are many works in this area (as
described in section 2), however the key
problems of the previous works is the
applicability in real time. Our work uses an
efficient fitness function to find an optimal
distribution of the workload into some nodes in
real time. The proposed algorithm avoids
overheating by balancing the workload across all
the nodes, hence reducing the amount of energy
consumed. Obviously, a substantial reduction in
energy consumption can be made by powering
down servers when they are not in use. The
proposed clouds minimization step is satisfied
when the total load is low with respect to the
current assigned clouds as described in section
3.1.

2. RELATED WORK

In recent years, a lot of attention has been paid
to the artificial intelligence methods such as
genetic algorithms by researchers because of its
intelligence and inferred parallelism. Genetic
algorithm has been extremely usage to solve the
problem of cloud resources scheduling and has
obtains perfect effects. Specifically, authors in [6]
with the use of Genetic algorithm proposed a
cloud scheduling approach for VM load
balancing. Li et al. [7] proposed a job oriented
based model for cloud resource scheduling. This
model assigns jobs to the resources according to
the rank of the job. Singh et al. [8], describe
several job scheduling algorithms and compare
between these algorithms. As it is mentioned in
this paper, a good cloud job scheduling algorithm
increases should schedule the resources to
optimize the usage of the resources. Various

Sallami and Aloussi; BJAST, 7(2): 179-185, 2015; Article no.BJAST.2015.135

181

scheduling algorithms are presented for resource
scheduling but each one has its own restriction.
In [9], Fang et al. proposed a model to deal with
the job scheduling problems for a group of cloud
user requests. Each datacenter has different
services with various resources. This plan
assumes resource provisioning as an important
issue for job scheduling. The main goal of this
model is reducing the average tardiness of
connection requests. It presents four merged
scheduling algorithms to schedule virtual
machine on data centers. The mentioned model
reduces the average tardiness of connection
requests and the connection blocking
percentage. In [10] Chen et al. proposed a
Genetic algorithm based job scheduling. The
fitness function is divided into three sub-fitness
functions and then linear combination of these
sub-fitness value is carry out for obtaining the
fitness value. They use a strategy which is based
on three load dimensions: CPU network
throughput, disk I/O rate. To achieve a nearly
optimum solution this plan applies the hybrid
genetic algorithm merged with knapsack problem
with multiple fitness. The author claims that the
algorithm can obtain the goal of raising resources
utilization efficiency and lower energy
consumption. The algorithm reduces energy
consumption and also the utilization of the
resources. In [11], with the aid of genetic
algorithm and fuzzy theory, the authors present
a hybrid job scheduling approach, which
considers the load balancing of the system and
reduces total execution time and execution cost.
They define two types of chromosomes with
different QoS parameters; Then with the aid of
fuzzy theory they obtain the fitness value of all
chromosomes for the mentioned two types.
Pushpendra et al. [12] developed a load
balancing algorithm using Divisible load
scheduling theorem to maximize or minimize
different performance parameters (throughput,
latency for example) for the clouds of different
sizes (virtual topology depending on the
application requirement). Sahu et al. [13]
introduced a threshold based Dynamic compare
and balance algorithm for cloud server

optimization. It minimizes the number of host
machines to be powered on, for reducing the
cost of cloud services.

3. PROPOSED GENETIC ALGORITHM

Genetic Algorithm are adaptive heuristic search
algorithm based on the evolutionary ideas of
natural selection and genetics. It is a rapidly
growing area of artificial intelligence. Genetic
algorithms belong to lot of best characteristics
that decides it’s a good option when someone
needs to solve very complicated problems or NP
hard problems. The simplicity and robustness of
the algorithm has made it popular among
developers. Genetic algorithm mimics the
process of natural evolution based on a
population of candidate solutions. In the process
of evolution, a modification is performed by using
genetic operators on each individual. Each
chromosome represents a Load balancing result,
and an evaluation fitness function is called to
evaluate the offspring.

3.1 Individual Encoding

Before a genetic algorithm can be put to work on
any problem, a method is needed to encode
potential solutions to that problem in a form so
that a computer can process. Each individual is
expressed as a vector of (k) entries, where (k)
must be more than or equal 1 and less than or
equal the current assigned clouds number (n).
Each entry denotes a cloud or a cluster of clouds
and stores a positive integer number more than
or equal to zero, which represent the current load
in that cloud or cluster of clouds. Fig. 1 shows an
individual example with (k=8, n=8). The loads are
distributed unevenly across the nodes. Fig. 1-b
shows approximately balanced vector (obtained
from the proposed algorithm). The total load is
distributed near the average load. Load of size
16 is assigned to cloud number 1; load of size 23
is allocated to cloud number 2, and so on. The
total load is distributed optimally across all
nodes.

Cloud number 1 2 3 4 5 6 7 8 Total load
Load 0 55 0 74 0 10 1 10 150

a: individual with k=8 (unbalanced)

Cloud number 1 2 3 4 5 6 7 8 Total load
Load 16 23 17 19 19 20 19 18 150

b: individual with k=8 (balanced)

Fig. 1. Individuals encoding example

Sallami and Aloussi; BJAST, 7(2): 179-185, 2015; Article no.BJAST.2015.135

182

An important operation in the proposed algorithm
is clouds minimization. Minimization is satisfied
when the total load is low with respect to the
current assigned clouds. Genetic Algorithm may
converge on an optimal vector with less assigned
clouds (i.e. k<n). A substantial reduction in
energy consumption can be made by powering
down servers when they are not in use to
achieve green computing. Fig. 2 shows the
clouds minimization, a vector of length equal to
eight is minimized to five.

Cloud
number

1 2 3 4 5 6 7 8 Total
load

Load 3 5 2 19 1 8 1 1 40
a: Individual with k=8 (unbalanced)

Cloud number 1 2 3 4 5 Total load
Load 9 11 13 10 8 40

b: Individual with k=5 (balanced)

Fig. 2. Cloud minimization

3.2 Fitness Function

The fitness function is deduced from the energy
consumption, the cloud’s load and the average
load arL (For Fig. 1 avL ≈ 19). Each individual in
the population of size M has fitness value
assigned to it by using the following equation:

‘
fitness (x) = ∑ ABS(��� − ��

���
���) (1)

Where: Li is the current workload of cloud i in the
current individual (x), k is the length of current
individual (x), n/2 <= k <= n

Individual with small fitness value has high
probability to transform to the next generation. To
give rise to the fitness variation in the overall
population from one generation to the next, the
fitness of each individual is computed
proportional to the fitness summation of all
individuals in the population as follows:

fitness(x) = ‘�������(�)

∑ ′�������(�)�
���

 (2)

Individual with smallest fitness value is
regenerated to the next generation as it in the
reproduction genetic operation.

3.3 Crossover Operator

The crossover operator uses two individuals s1,

s2 to generate two new individuals s1
‘
, s2

‘
. The

parent and children individuals are typically of

different size but with the same total load. For
individual s1, first randomly generates two
integers i, j, where, 1<= i<= j<=z (z is the size of
the smaller individual); then, copy the load in s1

to s2
‘in the same position. The same operation is

repeated with s2to generate s1
‘
 If the total load of

any child is not equal the actual total load, then
add or subtract the difference in load to a
randomly selected point in this child, as shown in
the following example (Fig. 3), where i =3, j = 5,
z=5:

s1 40 5 23 33 67 0 0 89 Total=
257

S2 30 100 100 20 7 Total= 257

After crossover operation:

s1
‘
 36 5 100 20 7 0 0 89 Total=

257

s2

‘
 30 104 23 33 67 Total= 257

Fig. 3. Crossover operation example for total

load equal to 257

3.4 Mutation Operation

The mutation is asexual operation, it operates on
one individual. It randomly selects two mutation
points in the selected individual from the current
generation. Then sum their loads and distribute
the result approximately equally between the
original two nodes, as shown in Fig. 4.

s 40 5 23 33 67 0 0 89 Total=

257

s ‘ 64 5 23 33 67 0 0 65 Total=

257

Fig. 4. Mutation operation example

3.5 The Proposed Algorithm

Algorithm: GA Cloud load Balancing (N, t, g)

Input: (Vector of length N contains the current
load on N clouds, the total load t and the
maximum generation limit g)
Output: Vector of length k contains the balanced
workload on k clouds

Create m vectors of variable lengths km (N/2<= k
<= N)

Sallami and Aloussi; BJAST, 7(2): 179-185, 2015; Article no.BJAST.2015.135

183

In each vector Store: random integer numbers
(the sum of these numbers must equal to t) and
av L.

Do while not (converge OR reach g limit)
Use Eq. 2 to evaluate all individuals in
the current generation
If there is at least one individual with
optimal fitness value, then converge with
that individual.
Otherwise
Do
Apply the following Genetic Operations
to produce a new generation Contains m
vectors:

 Reproduction: the
individual with best
fitness value is
transmitted to the next
generation.

 Crossover: between two
selected individuals
(based on their fitness
values).

 Mutation: on a randomly
selected individual.

End Do
End While

Instead of waiting for the GA to converge, it will
be allowed to run for a fixed number of g cycles.
The decision was made because solutions
generated in less than g generations may not be
good enough. On the other hand, running the GA
for more than g generations may not be very
feasible; too much time will be devoted to genetic
operations. Although we limited k between two
values, however its value must be selected by
using heuristic algorithm as specified in the next
subsection. Time complexity analysis can be
used to predict the growth behavior of an
algorithm and is useful for analyzing and
optimizing the real time efficiency of the
algorithm. There are two importance parameters
affecting time complexity of GA: population size
m and the maximum number of generation g.
The evaluations of the fitness function also affect
the time complexity. Because our fitness function
is simple so that the time complexity is equal to
O (mg).

4. RESULTS

First generation affects the quality of the future
generations, and it is an important step in the
whole algorithm. In this paper, this step is
conducted by combing the random and greedy

initialization methods. Each load represents
either the current server’s workload or the current
average workload of a cluster of servers.
Table 1; show some results (for the same
number of clouds), the number of generations
vary according to the average number of load.

Table 1. Simulation results for different
workload size with k=8

Average No. of load k No of generation
20 8 500
50 8 1000
100 8 1060
120 8 10090
150 8 12040

Table 2; show some result (for different number
of clouds), the number of generation vary
according to the average number of load and the
number of cloud.

Table 2. Simulation result for different cloud
number

Average No. of load k No of generation
20 4 434
50 6 808
100 10 967
120 12 1874
150 14 1421

However, the proposed algorithm converges to
wrong states as one in Fig. 5, where the length of
the output vector is equal to one. To avoid such
wrong cases, individual’s length is set to be more
than or equal to (N/2) and less than or equal to
N. However, a good heuristic algorithm must be
used to find the optimal value for k.

Cloud minimization is satisfied when the
workload is low with respect to N, the algorithm is
converges with k less than N, because the
fitness values of lower length individuals is
better than that of higher length individuals, as
shown in Table 3. Of course, a substantial
reduction in energy consumption can be made by
powering down servers when they are not in use.

Table 3. Cloud minimization
 (N is minimized to k)

Workload N k
10 20 10
30 60 35
60 100 67
90 200 115
100 250 133

Sallami and Aloussi; BJAST, 7(2): 179-185, 2015; Article no.BJAST.2015.135

184

Cloud number 1 2 3 4 5 6 7 8 Total load
Load 12 300 500 88 7 0 3 69 979

a: individual with k=10 (unbalanced)

Cloud number 1 Total load
Load 979 979
b: individual with k=1 (balanced)

Fig. 5. Genetic algorithm converge into wrong output

5. CONCLUSION

This paper searches to find an optimal load
vector of N nodes. This vector has variable
length so that N may be minimized. The
proposed algorithm avoids overheating by
balancing the workload across all the nodes,
hence reducing the amount of energy consumed.
Reduction in energy consumption can be made
by powering down servers when they are not in
use. The existing load balancing techniques in
clouds, consider various parameters like
performance, response time, scalability,
throughput, resource utilization, fault tolerance,
migration time and associated overhead. But, for
an energy-efficient load balancing metrics like
energy consumption and carbon emission should
also be considered which will help to achieve
Green computing. Multiple objective fitness
function will be used in the future to satisfy more
realistic result, for example the priority factors
may be consider as an objective in the fitness
function. In addition k parameter must be
selected by using heuristic algorithm especially
when the number of servers in a cloud increases
vastly.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Dung H. Phan, Junichi Suzuki, Raymond

Carroll, et al. Evolutionary multiobjective
optimization for green clouds GECCO 12:
The proceedings of the 14

th
 annual

conference companion on Genetic and
evolutionary computation. NY USA.
2012;19-26. Copyright 2012. ACM 978-1-
4503-1177-9/12/07. ISBN:978-1-4503-
1178-6. Doi:10.1145/2330784.2330788.

2. Jing Liu, Xing-GuoLuo, Xing-Ming Zhang,
Fan Zhang, Bai-Nan Li. Job scheduling
model for cloud computing based on

multiobjective genetic algorithm. IJCSI
International Journal of Computer Science.
2013;10(1No 3):1694-0814.
ISSN (Print):1694-0784 | ISSN (Online).

3. Yogita Chawla, Mansi Bhonsle. A study on
scheduling methods in cloud computing.
International Journal of Emerging Trends &
Technology in Computer Science
(IJETTCS). 2012;1:3.
Available:www.ijettcs. org

4. Truong Vinh Truong Duy, Yukinori Sato,
Yasushi Inoguchi. Performance evaluation
of a green scheduling algorithm for energy
savings in cloud computing. IEEE
International Symposium on Parallel &
Distributed Processing, Workshops and
Phd Forum (IPDPSW); 2010 .

5. Gary Garrison, Sanghyun Kim, Robin L.
Wakefield. Success factors for deploying
cloud computing. Communications of the
ACM. 2012;55:9.
DOI:10.1145/2330667.2330685.

6. Zhongni ZH, Wang R, Hai ZH, Xuejie ZH,
“An approach for cloud resource
scheduling based on parallel genetic
algorithm”. IEEE ICCRD. 2011;2:444-447.

7. Li J, Qian W, Cong W, Ning C, Kui R,
Wenjing L. “Fuzzy keyword search over
encrypted data in cloud computing”. IEEE
Infocom. 2010;15.

8. Singh RM, Sendhil Kumar KS, Jaisankar
N. “Comparison of probabilistic
optimization algorithms for resource
scheduling in cloud computing
environment”. International Journal of
Engineering and Technology (IJET).
2013;5(2):1419-1427.

9. Fang Y, Wang F, Ge J. A task scheduling
algorithm based on load balancing in cloud
computing. Springer Web Information
Systems and Mining. 2010;6318:271-277.

10. Chen SH, Wu J, Lu ZH. A cloud computing
resource scheduling policy based on
genetic algorithm with multiple fitness.
IEEE 12th ICCIT. 2012;177-184.

11. Saeed Javanmardi, Mohammad Shojafar,
Danilo Amendola, Nicola Cordeschi,

Sallami and Aloussi; BJAST, 7(2): 179-185, 2015; Article no.BJAST.2015.135

185

Hongbo Liu, Ajith Abraham. Hybrid job
scheduling algorithm for cloud computing
environment. Springer Verlag Berlin
Heidelberg; 2014.

12. Pushpendra Verma, Jayant Shekhar, Amit
Asthana. A model for evaluating and
maintaining load balancing in cloud
computing. IJCSMC. 2014;3(3):501-509.
ISSN:2320-088X.

13. Sahu Y, Pateriya RK, Gupta RK. Cloud
server optimization with load balancing and

green computing techniques using
dynamic compare and balance algorithm.
CICN' 13 Proceedings of the 2013 5th
International Conference on Computational
Intelligence and Communication Networks,
IEEE Computer Society Washington, DC,
USA. 2013;527-531. ISBN:978-0-7695-
5069-5. DOI:10.1109/CICN.2013.114.

© 2015 Sallami and Aloussi; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history.php?iid=771&id=5&aid=7955

