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ABSTRACT 
 

In this paper a genetic algorithm to solve the problem of load balancing in green cloud computing 
environment was proposed. For a specified total load on N clouds, the proposed algorithm finds an 
optimal load vector of length less than or equal to N. It helps in avoiding overheating by balancing 
the workload across all the clouds, hence reducing the amount of energy consumed. In addition, the 
proposed genetic algorithm may converge to a number of clouds less than or equal to N, so that a 
substantial reduction in energy consumption can be made by powering down servers when they are 
not in use. 
 

 

Keywords: Green cloud computing; load balancing; genetic algorithm. 
 

1. INTRODUCTION 
 

The main appeal of cloud computing is that 
customers only use what they need, and only 

pay for what they actually use. Resources are 
available to be accessed from the cloud at any 
given time, and from any location via the internet. 
However, Internet Data Centers (IDCs) use a 
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significant and growing portion of energy, 
therefore, Energy-intensive IDCs are a major 
source of CO2 emission. Internet data centers 
(IDCs) have become an integral component to 
operate Internet services and scientific 
computation. Since they have been increasing in 
scale and complexity, they consume a growing 
and visible portion of energy supply [1]. In cloud 
computing, service requests have heterogeneous 
resource demands because some services may 
be CPU intensive whereas others are I/O-
intensive. Cloud resources need to be allocated 
not only to satisfy Quality of Service (QoS) 
requirements specified by users via SLAs, but 
also to reduce energy usage and improve the 
profits of the service providers [2]. Cloud 
computing is highly dynamic, and hence, 
resource allocation problems have to be 
continuously addressed, as servers become 
available/non-available while at the same time 
the customer demand fluctuates. Before 
scheduling tasks on cloud computing, the 
characteristics of the cloud should be taken into 
account. Some of the characteristics of cloud 
include [3]: On-demand self-service, Ubiquitous 
network access, Location independent resource 
pooling, Rapid elasticity and Pay per use. Since 
cloud computing is generally characterized as an 
IT service (with the vendor providing and 
maintaining the software and hardware 
infrastructure), the ability of the client 
organization to integrate and utilize the vendor’s 
services determines the extent IT benefits are 
likely to be achieved. Organization- specific 
capabilities related to implementation, 
integration, and utilization of cloud services play 
a key role in deployment performance [4]. There 
are three IT-related capabilities-technical, 
managerial, and relational-characterized as a 
major potential source of competitive advantage 
[5]. 

 
Load balancing in clouds is a mechanism that 
distributes the excess dynamic local workload 
evenly across all the nodes. It is used to achieve 
a high user satisfaction and resource utilization 
ratio, making sure that no single node is 
overwhelmed, hence improving the overall 
performance of the system. Proper load 
balancing can help in utilizing the available 
resources optimally, thereby minimizing the 
resource consumption. It also helps in 
implementing failover, enabling scalability, 
avoiding bottlenecks and over-provisioning, 
reducing response time etc. Load balancing can 
be one such energy-saving solution in cloud 
computing environment. Thus load balancing is 

required to achieve Green computing in clouds 
which can be done with the help of the following 
two factors [4]:  
 

1. Reducing Energy Consumption - Load 
balancing helps in avoiding overheating by 
balancing the workload across all the 
nodes of a cloud, hence reducing the 
amount of energy consumed. 

2. Reducing Carbon Emission - Energy 
consumption and carbon emission go hand 
in hand. The more the energy consumed, 
higher is the carbon footprint. As the 
energy consumption is reduced with the 
help of Load balancing, so is the carbon 
emission helping in achieving Green 
computing.  

 
The aim of this paper is to achieve green cloud 
computing by satisfy the above two factors. 
Although there are many works in this area (as 
described in section 2), however the key 
problems of the previous works is the 
applicability in real time. Our work uses an 
efficient fitness function to find an optimal 
distribution of the workload into some nodes in 
real time. The proposed algorithm avoids 
overheating by balancing the workload across all 
the nodes, hence reducing the amount of energy 
consumed. Obviously, a substantial reduction in 
energy consumption can be made by powering 
down servers when they are not in use. The 
proposed clouds minimization step is satisfied 
when the total load is low with respect to the 
current assigned clouds as described in section 
3.1. 
 

2. RELATED WORK 
 
In recent years, a lot of attention has been paid 
to the artificial intelligence methods such as 
genetic algorithms by researchers because of its 
intelligence and inferred parallelism. Genetic 
algorithm has been extremely usage to solve the 
problem of cloud resources scheduling and has 
obtains perfect effects. Specifically, authors in [6] 
with the use of Genetic algorithm proposed a 
cloud scheduling approach for VM load 
balancing. Li et al. [7] proposed a job oriented 
based model for cloud resource scheduling. This 
model assigns jobs to the resources according to 
the rank of the job. Singh et al. [8], describe 
several job scheduling algorithms and compare 
between these algorithms. As it is mentioned in 
this paper, a good cloud job scheduling algorithm 
increases should schedule the resources to 
optimize the usage of the resources. Various 
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scheduling algorithms are presented for resource 
scheduling but each one has its own restriction. 
In [9], Fang et al. proposed a model to deal with 
the job scheduling problems for a group of cloud 
user requests. Each datacenter has different 
services with various resources. This plan 
assumes resource provisioning as an important 
issue for job scheduling. The main goal of this 
model is reducing the average tardiness of 
connection requests. It presents four merged 
scheduling algorithms to schedule virtual 
machine on data centers. The mentioned model 
reduces the average tardiness of connection 
requests and the connection blocking 
percentage. In [10] Chen et al. proposed a 
Genetic algorithm based job scheduling. The 
fitness function is divided into three sub-fitness 
functions and then linear combination of these 
sub-fitness value is carry out for obtaining the 
fitness value. They use a strategy which is based 
on three load dimensions: CPU network 
throughput, disk I/O rate. To achieve a nearly 
optimum solution this plan applies the hybrid 
genetic algorithm merged with knapsack problem 
with multiple fitness. The author claims that the 
algorithm can obtain the goal of raising resources 
utilization efficiency and lower energy 
consumption. The algorithm reduces energy 
consumption and also the utilization of the 
resources. In [11], with the aid of genetic 
algorithm and fuzzy theory, the authors  present 
a hybrid job scheduling approach, which 
considers the load balancing of the system and 
reduces total execution time and execution cost. 
They define two types of chromosomes with 
different QoS parameters; Then with the aid of 
fuzzy theory they obtain the fitness value of all 
chromosomes for the mentioned two types. 
Pushpendra et al. [12] developed  a load 
balancing algorithm using Divisible load 
scheduling theorem to maximize or minimize 
different performance parameters (throughput, 
latency for example) for the clouds of different 
sizes (virtual topology depending on the 
application requirement). Sahu et al. [13] 
introduced a threshold based Dynamic compare 
and balance algorithm for cloud server 

optimization. It minimizes the number of host 
machines to be powered on, for reducing the 
cost of cloud services.  
 

3. PROPOSED GENETIC ALGORITHM 
 
Genetic Algorithm are adaptive heuristic search 
algorithm based on the evolutionary ideas of 
natural selection and genetics. It is a rapidly 
growing area of artificial intelligence. Genetic 
algorithms belong to lot of best characteristics 
that decides it’s a good option when someone 
needs to solve very complicated problems or NP 
hard problems. The simplicity and robustness of 
the algorithm has made it popular among 
developers. Genetic algorithm mimics the 
process of natural evolution based on a 
population of candidate solutions. In the process 
of evolution, a modification is performed by using 
genetic operators on each individual. Each 
chromosome represents a Load balancing result, 
and an evaluation fitness function is called to 
evaluate the offspring. 
 

3.1 Individual Encoding 
 
Before a genetic algorithm can be put to work on 
any problem, a method is needed to encode 
potential solutions to that problem in a form so 
that a computer can process. Each individual is 
expressed as a vector of (k) entries, where (k) 
must be more than or equal 1 and less than or 
equal the current assigned clouds number (n). 
Each entry denotes a cloud or a cluster of clouds 
and stores a positive integer number more than 
or equal to zero, which represent the current load 
in that cloud or cluster of clouds. Fig. 1 shows an 
individual example with (k=8, n=8). The loads are 
distributed unevenly across the nodes. Fig. 1-b 
shows approximately balanced vector (obtained 
from the proposed algorithm). The total load is 
distributed near the average load. Load of size 
16 is assigned to cloud number 1; load of size 23 
is allocated to cloud number 2, and so on. The 
total load is distributed optimally across all 
nodes. 

 
Cloud number 1 2 3 4 5 6 7 8 Total load 
Load 0 55 0 74 0 10 1 10 150 

a: individual with k=8 (unbalanced) 
 

Cloud number 1 2 3 4 5 6 7 8 Total load 
Load 16 23 17 19 19 20 19 18 150 

b: individual with k=8 (balanced) 

 
Fig. 1. Individuals encoding example 
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An important operation in the proposed algorithm 
is clouds minimization. Minimization is satisfied 
when the total load is low with respect to the 
current assigned clouds. Genetic Algorithm may 
converge on an optimal vector with less assigned 
clouds (i.e. k<n). A substantial reduction in 
energy consumption can be made by powering 
down servers when they are not in use to 
achieve green computing. Fig. 2 shows the 
clouds minimization, a vector of length equal to 
eight is minimized to five. 
 

Cloud 
number 

1 2 3 4 5 6 7 8 Total 
load 

Load 3 5 2 19 1 8 1 1 40 
a:  Individual with k=8 (unbalanced) 

 
Cloud number 1 2 3 4 5 Total load 
Load 9 11 13 10 8 40 

b: Individual with k=5 (balanced) 

 
Fig. 2. Cloud minimization 

 

3.2 Fitness Function 
 
The fitness function is deduced from the energy 
consumption, the cloud’s load and the average 
load arL (For Fig. 1 avL ≈ 19). Each individual in 
the population of size M has fitness value 
assigned to it by using the following equation: 
 

‘
fitness (x) = ∑ ABS(��� − ��

���
��� )                   (1) 

 
Where: Li is the current workload of cloud i in the 
current individual (x), k is the length of current 
individual (x), n/2 <= k <= n 
 
Individual with small fitness value has high 
probability to transform to the next generation. To 
give rise to the fitness variation in the overall 
population from one generation to the next, the 
fitness of each individual is computed 
proportional to the fitness summation of all 
individuals in the population as follows: 
 

fitness(x) = ‘�������(�)

∑ ′�������(�)�
���

                                (2) 

 
Individual with smallest fitness value is 
regenerated to the next generation as it in the 
reproduction genetic operation.  

 
3.3 Crossover Operator 
 
The crossover operator uses two individuals s1, 

s2 to generate two new individuals s1 
‘
, s2

‘
. The 

parent and children individuals are typically of 

different size but with the same total load. For 
individual s1, first randomly generates two 
integers i, j, where, 1<= i<= j<=z (z is the size of 
the smaller individual); then, copy the load in s1 

to s2 
‘in the same position. The same operation is 

repeated with s2to generate s1 
‘
 If the total load of 

any child is not equal the actual total load, then 
add or subtract the difference in load to a 
randomly selected point in this child, as shown in 
the following example (Fig. 3), where i =3,  j = 5, 
z=5: 
 

s1 40 5 23 33 67 0 0 89 Total= 
257 

 
S2 30 100 100 20 7 Total= 257 

 
After crossover operation: 
 

s1 
‘
 36 5 100 20 7 0 0 89 Total= 

257 

 
s2

‘
 30 104 23 33 67 Total= 257 

 
Fig. 3. Crossover operation example for total 

load equal to 257 
 
3.4 Mutation Operation 
 
The mutation is asexual operation, it operates on 
one individual. It randomly selects two mutation 
points in the selected individual from the current 
generation. Then sum their loads and distribute 
the result approximately equally between the 
original two nodes, as shown in Fig. 4. 
 
s 40 5 23 33 67 0 0 89 Total= 

257 

 
s ‘ 64 5 23 33 67 0 0 65 Total= 

257 

 
Fig. 4. Mutation operation example 

 

3.5 The Proposed Algorithm 
 
Algorithm: GA Cloud load Balancing (N, t, g) 
 
Input: (Vector of length N contains the current 
load on N clouds, the total load t and the 
maximum generation limit g) 
Output: Vector of length k contains the balanced 
workload on k clouds 

 
Create m vectors of variable lengths km (N/2<= k 
<= N) 
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In each vector Store: random integer numbers 
(the sum of these numbers must equal to t) and 
av L. 
 

Do while not (converge OR reach g limit) 
Use Eq. 2 to evaluate all individuals in 
the current generation  
If there is at least one individual with 
optimal fitness value, then converge with 
that individual.  
Otherwise  
Do  
Apply the following Genetic Operations 
to produce a new generation Contains m 
vectors: 

 Reproduction: the 
individual with best 
fitness value is 
transmitted to the next 
generation. 

 Crossover: between two 
selected individuals 
(based on their fitness 
values). 

 Mutation: on a randomly 
selected individual. 

End Do 
End While 
 

Instead of waiting for the GA to converge, it will 
be allowed to run for a fixed number of g cycles. 
The decision was made because solutions 
generated in less than g generations may not be 
good enough. On the other hand, running the GA 
for more than g generations may not be very 
feasible; too much time will be devoted to genetic 
operations. Although we limited k between two 
values, however its value must be selected by 
using heuristic algorithm as specified in the next 
subsection. Time complexity analysis can be 
used to predict the growth behavior of an 
algorithm and is useful for analyzing and 
optimizing the real time efficiency of the 
algorithm.  There are two importance parameters 
affecting time complexity of GA: population size 
m and the maximum number of generation g.  
The evaluations of the fitness function also affect 
the time complexity. Because our fitness function 
is simple so that the time complexity is equal to 
O (mg). 
 

4.  RESULTS 
 

First generation affects the quality of the future 
generations, and it is an important step in the 
whole algorithm. In this paper, this step is 
conducted by combing the random and greedy 

initialization methods. Each load represents 
either the current server’s workload or the current 
average workload of a cluster of servers.           
Table 1; show some results (for the same 
number of clouds), the number of generations 
vary according to the average number of load. 
 

Table 1. Simulation results for different 
workload size with k=8 

 

Average No. of load k No of generation 
20 8 500 
50 8 1000 
100 8 1060 
120 8 10090 
150 8 12040 

 

Table 2; show some result (for different number 
of clouds), the number of generation vary 
according to the average number of load and the 
number of cloud. 
 

Table 2. Simulation result for different cloud 
number 

 

Average No. of load k No of generation 
20 4 434 
50 6 808 
100 10 967 
120 12 1874 
150 14 1421 

 

However, the proposed algorithm converges to 
wrong states as one in Fig. 5, where the length of 
the output vector is equal to one. To avoid such 
wrong cases, individual’s length is set to be more 
than or equal to (N/2) and less than or equal to 
N. However, a good heuristic algorithm must be 
used to find the optimal value for k.  
 

Cloud minimization is satisfied when the 
workload is low with respect to N, the algorithm is 
converges with k less than N, because the 
fitness values of  lower length individuals is 
better than that of higher length individuals, as 
shown in Table 3. Of course, a substantial 
reduction in energy consumption can be made by 
powering down servers when they are not in use. 
 

Table 3. Cloud minimization 
 (N is minimized to k) 

 

Workload N k 
10 20 10 
30 60 35 
60 100 67 
90 200 115 
100 250 133 
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Cloud number 1 2 3 4 5 6 7 8 Total load 
Load 12 300 500 88 7 0 3 69 979 

a: individual with k=10 (unbalanced) 
 

Cloud number 1 Total load 
Load 979 979 
b: individual with k=1 (balanced) 

 
Fig. 5. Genetic algorithm converge into wrong output 

 

5. CONCLUSION 
 
This paper searches to find an optimal load 
vector of N nodes. This vector has variable 
length so that N may be minimized. The 
proposed algorithm avoids overheating by 
balancing the workload across all the nodes, 
hence reducing the amount of energy consumed. 
Reduction in energy consumption can be made 
by powering down servers when they are not in 
use. The existing load balancing techniques in 
clouds, consider various parameters like 
performance, response time, scalability, 
throughput, resource utilization, fault tolerance, 
migration time and associated overhead. But, for 
an energy-efficient load balancing metrics like 
energy consumption and carbon emission should 
also be considered which will help to achieve 
Green computing. Multiple objective fitness 
function will be used in the future to satisfy more 
realistic result, for example the  priority factors  
may be consider as an objective in the fitness 
function. In addition k parameter must be 
selected by using heuristic algorithm especially 
when the number of servers in a cloud increases 
vastly. 
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