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Catalysts play an important role in the preparation of biodiesel. It is of great significance to study catalysts with high efficiency, low
cost, and easy preparation. Compared with the homogeneous catalyst system, the heterogeneous catalyst is easy to separate and
has a better catalytic effect. In heterogeneous catalysts, supports and preparationmethods have important effects on the dispersion
of active centers and the overall performance of catalysts. However, the supports of existing solid catalysts have defects in porosity,
structural uniformity, stability, and specific surface area, and the preparation methods cannot stabilize covalent bonds or ionic
bonds to bind catalytic sites. Considering the activity, preparation method, and cost of the catalyst, biomass-based catalyst is the
best choice, but the specific surface area of the biomass-based catalyst is relatively low, the distribution of active centers is uneven,
and it is easy to lose. 1erefore, the hybrid carrier of biomass-based catalyst and other materials can not only improve the specific
surface area but also make the distribution of active centers uniform and the catalytic activity better. Based on this, we summarized
the application of chitosan hybrid material catalysts in biodiesel. 1e preparation, advantages and disadvantages, reaction
conditions, and so on of chitosan-based catalysts were mainly concerned. At the same time, exploring the effects of different types
of chitosan-based catalysts on the preparation of biodiesel and exploring the process technology with high efficiency and low
consumption is the focus of this paper.

1. Introduction

In recent decades, with the accelerated development of
industrialization, global fossil fuel consumption and
greenhouse gas emissions have increased rapidly. Scientists
predict that the total global energy consumption will in-
crease by 28% from 2015 to 2040 [1]. However, traditional
energy, which is the main source of global energy supply, is
constantly consumed, leading to energy shortage. 1is
problem has attracted the attention of researchers all over
the world, who are looking for sustainable and ecofriendly
alternative energy [2, 3]. 1erefore, scientists try to replace
fossil fuels by developing renewable green energy, among
which biofuels are the most competitive. Biodiesel is the

most representative liquid biofuel among biofuels. It has the
advantages of green, renewable, nontoxic, and environ-
mental protection [4]. Meanwhile, biodiesel is almost free of
sulfur and aromatic substances, biodegradable, and belongs
to truly renewable “green energy” [5].

First of all, the main raw materials used to prepare
biodiesel are rapeseed oil, soybean oil, and other edible oils,
but this has an impact on national food safety and there is a
problem of competing with people for food. Later, further
research showed that nonedible oils are also used as the raw
materials for biodiesel production, such as Jatropha curcas,
Euphorbia lathyris [6], Xanthium sibiricum [7], Firmiana
platanifolia [8], and Koelreuteria integrifoliola [9]. 1is
expands the raw material source of biodiesel and greatly
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reduces the cost. After that, to further reduce the cost,
biodiesel was prepared fromwaste cooking oil and animal fat
with high acid value [10]. In addition, microalgae are also
used as biodiesel raw materials, which is effective to reduce
the cost of biodiesel, but the cultivation of microalgae also
requires additional costs. In short, the new raw materials of
biodiesel are of great significance for alleviating the energy
crisis, protecting the ecological environment and adjusting
the agricultural structure [11–13].

Biodiesel is generally a mixture of fatty acid methyl ester
or ethyl ester, mainly because the raw materials for its
synthesis contain many types of triglycerides [5]. 1e
conventional method of synthesizing biodiesel are esterifi-
cation and transesterification. Generally, acids [14], bases
[15], and enzymes [16] are used as catalysts for biodiesel
synthesis. Heterogeneous catalysts have gradually replaced
homogeneous catalysts, which is mainly because heteroge-
neous catalysts can be reused many times, which can ef-
fectively reduce the cost [11]. Nowadays, different kinds of
heterogeneous catalysts have been used to prepare biodiesel,
including carbon materials [17], SiO2 materials [18], oxides
[19], ion exchange resins [20], magnetic materials [21], and
supported enzymes [22]. However, the traditional solid
catalyst has the disadvantages of easy loss of active sites and
poor reusability.1erefore, looking for a green, efficient, and
stable heterogeneous catalyst to prepare biodiesel has be-
come one of the research hotspots for the preparation of
high-performance heterogeneous catalysts [1].

Nowadays, people realize that the development of re-
newable and biodegradable biomass-based catalysts is more
conducive to green environmental protection [23]. 1e ex-
cellent performance of functionalized biomass-based catalysts
has attracted much attention [24]. In terms of biomass,
chitosan prepared from shrimp shells and crab shells is a high
molecular polymer biomass-based material. Chitosan has a
large number of active −OH and −NH2 groups and has strong
modification ability. At the same time, chitosan is a cheap
polymer material, which has natural advantages as a catalyst
material in industrial production. Chitin, the raw material of
chitosan, is a natural polymer compound second only to
cellulose in nature. It is not only rich in resources but also
widely used in medicine, food, chemical industry, cosmetics,
water treatment, and other fields because of its biological
function, compatibility, safety, and biodegradability [25–29].

1is paper focuses on the research progress of chitosan-
based catalysts in biodiesel. 1e synthesis method, physi-
cochemical properties, catalytic efficiency, and reaction
conditions of chitosan-based catalysts were also discussed.
We hope that through this paper, we can provide new ideas
for the preparation of biomass-based catalysts and obtain
more efficient, green, and environmentally friendly new
catalysts for the industrial synthesis of biodiesel.

2. Chitosan Derivatives

Because chitosan is easy to be modified, there are many
derivatives of chitosan, which makes it possible to prepare a
variety of chitosan-based catalysts, with more and more
applications for the production of biodiesel.

Zhao et al. [30] prepared CoFe2O4-CS-SO3H chitosan
solid magnetic sulfonic acid catalyst for the synthesis of
compounds. 1e preparation process of the catalyst is
simple, and the obtained catalyst has strong magnetism
(Figure 1).

Chitosan is a kind of polysaccharide that is easy to graft.
Some researchers have tried to graft sulfonic groups onto
chitosan monomers and synthesized several chitosan sulfate
membranes. 1is makes the catalyst contain the sulfonic
group and amino functional group, which further improves
the activity of the catalyst [31]. Gu et al. [32] prepared
chitosan-doped polyvinyl alcohol films by the blending
heating method. 1e surfaces of these membranes are
usually wrinkled and have excellent separation performance.
1ey can be used for pervaporation to separate methanol-
biodiesel mixtures. Gupta and Jabrail [33] used
the glutaraldehyde crosslinking method to prepare
chitosan microspheres (in Figure 2). Usually, glutaraldehyde
condenses with the amino group of chitosan ammonia to
form a network polymer, and the formed chemical bond
crosslinks and solidifies the microspheres. In this process,
the loaded particles can be wrapped in the microspheres or
adsorbed on the surface of the microspheres. 1is is con-
ducive to the encapsulation of internal magnetic particles
and the adsorption of external catalyst particles.

Liu et al. [34] introduced a simple method for preparing
magnetic chitosan Fe3O4 nanoparticles. Immobilized lipase
was prepared by a glutaraldehyde crosslinking reaction
under a 0.45 T static magnetic field. 1e results show that
there is no significant difference in the structure of nano-
particles, the morphology of nanoparticles changes from
spherical to a rod, and the magnetic properties change
significantly.

Li et al. [35] prepared a series of chitosan hybrids based
on polyoxometalates by anion exchange of a novel cross-
linked chitosan ionic polymer with H3PW12O40. Bodmeier
et al. [36] first proposed the preparation of chitosan mi-
crospheres by the ionic gel method (in Figure 3). 1e
polyanion of sodium tripolyphosphate is used as a cross-
linking agent, which is combined with the positively charged
amino group after the protonation of the chitosan molecular
chain. 1rough the electrostatic interaction, the physical
crosslinking of the molecules can be reversible, intra-
molecular or intramolecular, so that the chitosan can be
gelated into spherical particles.

Huang et al. [37] prepared N-doped carbon prepared by
chitosan with a large specific surface area. Chitosan is dis-
solved in acetic acid and carbonized to form porous carbon.
After KOH activation, its specific surface area can reach
3532m2/g. 1e carbon-based catalyst is relatively stable and
has a large specific surface area.

A new type of sustainable catalytic material was prepared
from biological waste (chitosan) and rare earth–rich cobalt
salt (in Figure 4). 1rough the chelation of chitosan with Co,
the carbonized catalyst has a carbon shell containing N and
encapsulates Co and Co3O4, which can improve the per-
formance of the catalyst and effectively reduce the loss of
active components.1e catalyst has been reusedmany times,
and the efficiency has not changed significantly [38].
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Roosen et al. [39] prepared SiO2 chitosan composite
mesoporous material with a specific surface area of 219m2/g,
pore volume of 1.036 cm3/g, and pore size of 9.5 nm, which
belongs to mesoporous structure and is more suitable as a
catalyst support material. Sana et al. [40] prepared chitosan
microspheres supported a Pd catalyst, including the direct
complexation of Pd2+ with the amino group on chitosan and
the complexation of chitosan modified by glutaraldehyde
with Pd2+, and the complexation of chitosan modified by
glutaraldehyde with Pd2+. c-1iobutyrolactone-modified

chitosan has three kinds of catalysts: sulfhydryl group and
Pd2+. 1e specific surface areas of the three catalysts are 239,
239, and 302m2/g, respectively. c-1iobutyrolactone-
modified chitosan microspheres have a higher specific
surface area. Also, the catalyst is used in the mixed solution
of water and ethanol, so it has strong hydrophobicity. It is
expected that the modified biodiesel can be used in the
preparation of water-containing biodiesel.

3. Chitosan Gel and Chelating Metal Catalysts

3.1. ChitosanGel. To reduce the production cost of biodiesel,
more and more kitchen waste oil, non-edible vegetable oil,
and microalgae oil are used as raw materials of biodiesel.
However, these raw materials contain a large amount of free
fatty acids (FFA). 1e key to the synthesis of biodiesel is to
find heterogeneous catalysts that can simultaneously catalyze
esterification and transesterification. Kayser and Pienkoß [41]
evaluated the transesterification with chitosan and frozen gel
as catalysts for different oils and methanol. As a green waste
and a catalyst for biofuel production, chitosan can increase
new possibilities for local value. Chitosan freeze-gel suc-
cessfully catalyzed transesterification of three oleic glycerin
and soybean oil with methanol and achieved a yield of 90% of
biodiesel at 8 to 32 hours at 100–150°C. 1e chitosan beads
were washed with tertbutyl alcohol and methanol, and the fat
and glycerin were desorbed. To achieve practical use, further
research and development opportunities can be identified at
the catalyst design level, and new catalysts based on chitosan,
such as aerogels, layers, and chitosan derivatives can be used
to achieve more efficient catalytic activity and will show a
greater degree of recyclable results.

3.2. Chitosan Chelating Metal Catalysts. Da Silva et al. [42]
used chitosan-adsorbed Cu (II) and Co (II) catalysts for
transesterification of soybean and babassu oil. 1e maxi-
mum adsorption capacities of copper and cobalt ions were
1.584 and 1.260mg, respectively, while the oil conversion of
biodiesel was higher when using chitosan-adsorbed Co (II)
as a catalyst.

4. Acidic Modified Chitosan Catalysts

4.1. Sulfonic Acid. Based on the fact that chitosan is easy to
crosslink, a new type of acidic chitosan membrane (ACM)
was formed by crosslinking chitosan with sulfosuccinic acid
(SSA). 1e esterification reaction of oleic acid and methanol
was carried out to test the catalytic effect (in Figure 5).1e acid
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density of ACM was 4.62mmol/g, which was only slightly
lower than that of Amberlyst-15 (4.76mmol/g). Under the
same conditions, the catalytic efficiency of Amberlyst-15 was
only 44.30%, while that of ACM was 98.76%. 1e reaction
conditions were optimized by combining a single factor test
with the response surface method. 1e catalytic activity of
ACM for esterification of fatty acids with alcohols was studied.
In addition, the reusability of ACM is also studied [43]. In
conclusion, the active sites are more exposed after chitosan
crosslinking, which is beneficial to the catalytic reaction, which
is also the reason why ACM has higher catalytic efficiency.

Caetano et al. [44] studied the esterification of palmitic
acid with methanol at 60°C. 1e sulfonic group was intro-
duced into chitosan (CT) by crosslinking with sulfosuccinic
acid (SSA). With the increase of sulfonic group content in
chitosan, the catalytic activity increased. However, with the
increase of sulfonic group content, the catalytic activity
decreased. 1is kind of behavior can be explained by the
factors of limiting diffusion. 1e catalytic stability of CT4
(2.08mmol sulfonic group/g) was evaluated by using the
same catalyst samples for continuous batch operation. After
the second batch reaction, the catalytic activity tends to be
stable. CT4 catalyst is also used for esterification of oleic acid
and stearic acid with methanol. CT4 has good catalytic
activity for different substrates used in esterification. It is
confirmed that chitosan is a kind of biopolymer rich in the
sulfonic group, and it is an efficient and environmentally
friendly heterogeneous catalyst.

Wang et al. [45] prepared a chitosan sulfonic acid catalyst
by a relatively simple method. 1e specific method is to
disperse chitosan with dichloromethane as the solvent and
then sulfonate chitosan with chlorosulfonic acid to obtain a
biomass-based catalyst with an acid density up to 3.81mmol/g.
SEM results show that CS-SO3H is spherical with a diameter of
about 10μm. After four times of reuse, the yield of the catalyst
can still reach 85.7%, which indicates that this kind of sulfonic
acid catalyst has a good application prospect.

4.2. Heteropoly Acid. Tong et al. [46] used H3PW12O40,
chitosan, and Ti4+ as carriers to prepare water-insoluble
multifunctional active sites and H3PW12O40/Ti/chitosan

hybrid materials (in Figure 6). Due to the presence of B acid
from H3PW12O40, Lewis acid from Ti4+, and base from
−NH2 group of chitosan, the catalyst showed high activity in
the esterification reaction, all of which was due to the pore
formation in chitosan by introducing Ti ions. Moreover,
H3PW12O40/Ti/chitosan can be reused at least 6 times as a
heterogeneous catalyst; the activity reduction is not obvious,
and only a small amount of Ti4+ and H3PW12O40 are leached
from the carrier chitosan.

Han et al. [47] prepared organic-inorganic hybrid cat-
alysts by glycine (Gly) and phosphotungstic acid (TPA),
namely [GlyH]xH3-xPW12O40 (x� 1.0−3.0), and studied the
catalytic performance of various Gly-TPA catalysts in the
esterification of palmitic acid with methanol to produce
methyl palmitate. Under the optimum conditions, the yield
of biodiesel can reach 93.3%.

4.3. Chitosan Magnetic Acid. Wang and his colleagues [48]
synthesized a new magnetic mesoporous solid acid catalyst
(FCHC-SO3H) (in Figure 7). 1e catalyst was prepared from
biodegradable chitosan with a double-shell hollow structure,
which increased the active sites, and the synthesis process
was mild and environmentally friendly. More importantly,
the catalyst has good catalytic performance for the esteri-
fication of oleic acid andmethanol to biodiesel, which can be
reused 5 times without a significant decrease in activity and
can be easily separated by an external magnetic field.

5. Basic-Modified Chitosan Catalysts

5.1. InorganicBase. Used waste cooking oil (WCO) or frying
oil is considered to be a rich source of economic raw ma-
terials for biodiesel production. Zeolite/chitosan/KOH
composite was used as a solid heterogeneous catalyst for
transesterification of WCO to methyl ester (biodiesel) (in
Figure 8). 1e results show that the treatment of natural
zeolite (clinoptilolite) with KOH can significantly reduce the
silicon content and increase its K+. 1e content is deter-
mined by the formation of hydroxy calcium carbonate.
Electrolysis (EM) is used as a suitable technology for energy
and resource recovery in waste treatment. In theory, EM can
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convert any biodegradable waste into H2, O2, biofuel,
glycerol, and other byproducts. However, the effectiveness
of the system may vary greatly in different situations. In the
presence of water, the conversion of biodiesel from WCO
was obtained with 93% yield within 3 hours with 1%
catalyst concentration and 1 : 70 alcohol/oil ratio (at 40 V)
and 2% of the total solution. 1e best conversion process
can be achieved by using acetone as the cosolvent [49].

Correia et al. [50] think that chitosan can be used as a
structural agent by inserting calcium oxide and as a catalyst
in transesterification. 1ese calcium-doped chitosan spheres
were calcined to obtain porous calcium catalyst without
organic matter. 1e materials were characterized by X-ray
diffraction, thermogravimetric analysis, Fourier-transform
infrared spectroscopy, X-ray photoelectron spectroscopy,
temperature-programmed CO2 desorption, scanning
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electronmicroscopy, and specific surface area analysis.1en,
the calcined calcium/chitosan spheres were used for the
transesterification of sunflower oil with methanol. Sunflower
seed oil was converted to methyl ester (FAME) under the
optimal reaction conditions: 3 wt%; time, 4 h; temperature,
60°C; magnetic stirring (1000 rpm) was 56.12± 32% by
weight. 1ese results indicate that chitosan can be used as a
precursor for the formation of calcium/chitosan spheres to
produce porous calcium oxide (with a high surface area)
which can be used as an alkaline catalyst for biodiesel
production.

Liang et al. [51] prepared a new polymer-based alkaline
biodiesel catalyst from epichlorohydrin (ECH)-crosslinked
n-[(2-hydroxy-3-trimethylammonium) propyl] chitosan
chloride (HTCC) and sodium silicate (Na2SiO3). 1e struc-
ture and properties of the catalyst were studied by Fourier-
transform infrared spectroscopy, thermogravimetry-mass
spectrometry, and transmission electron microscopy. 1e
effects of various factors on the preparation of biodiesel by
transesterification of soybean oil were studied. 1e results
show that Na2SiO3 is bridged on the HTCC chain by ECH
and dispersed in the HTCC matrix in nanoscale. Under the
optimum reaction conditions (6/1 methanol/oil mole ratio
and 4wt% catalyst dosage at 55°C for 1 h), a high biodiesel
yield of 97.0% was obtained. After the second reaction, the
catalyst activity remained stable, which was conducive to the
stability and dispersion of Na2SiO3 in the catalyst.

Fu et al. [52] used chitosan as a new substrate for im-
mobilization of CaO. Biodiesel was produced by trans-
esterification of soybean oil with methanol, and Cao
immobilized on chitosan beads was used as a heterogeneous
catalyst. To obtain a stable immobilized catalyst, chitosan
beads with immobilized CaO were crosslinked with glu-
taraldehyde. Two crosslinking parameters, crosslinking time
and glutaraldehyde concentration were studied to reveal the
optimal immobilization conditions, which were 30min and
0.22mol/L−1, respectively. Under those conditions, the
immobilized catalyst with a very low CaO leaching rate can
be obtained. 1e immobilized CaO catalyst was prepared by
transesterification of soybean oil with methanol. 1e
transesterification rate was studied by response surface
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methodology, which was affected by catalyst loading,
methanol-oil molar ratio, and temperature. 1e maximum
reaction rate was 0.6H−1, the molar ratio of methanol to oil
was 13.4 at 60°C, and the catalyst loading was 13.78 wt%.
Under these conditions, the equilibrium conversion of
soybean oil was 97% after 3 hours. In addition, the
fixed catalyst can be reused at least five times. 1is study
developed a simple and energy-saving method to prepare
chitosan-based immobilized CaO catalyst, which is expected
to be used in potential applications including biodiesel
production.

5.2. Organic Base. He et al. [53] synthesized guanidine
chitosan (GCS) as the heterogeneous basic catalyst for
transesterification of soybean oil with methanol using amino
methylene sulfonic acid as a graft (in Figure 9).1e structure
and properties of GCS films were studied by Fourier-
transform infrared spectroscopy, thermogravimetric anal-
ysis, and X-ray photoelectron spectroscopy. Under the
conditions of catalyst dosage of 20%, methanol-oil ratio of
2.5 :1, reaction temperature of 60°C, and reaction time of 6 h,
the conversion of soybean oil reached 98.8% for the first
time, and 96.6% for the fifth time. 1e results showed that
the transesterification mainly occurred on the surface of the
catalytic membrane. 1e kinetics of transesterification was
studied by a pseudohomogeneous model. 1e reaction was a
first-order reaction with an activation energy of 76.95 kJ/mol
and a pre-exponential factor of 7.94×109min−1.

6. Modified Chitosan/Enzyme Catalysts

1e unique structure of chitosan is not considered an ex-
cellent carrier for immobilized lipase, which promotes the
production of a variety of chitosan-loaded lipases. Its ad-
vantages include low reaction temperature, repeated use,
and high reaction activity.1is makes chitosan-loaded lipase
widely used in the production of biodiesel.

Rhizopus lipase was immobilized on magnetic chitosan
microspheres (MCMs), and biodiesel was prepared from
soybean oil and methanol. 1e maximum content of methyl
ester in the reaction mixture reached 91.3 (w/v) at the flow
rate of 25mL/min and the magnetic field strength of 150 Oe.
In addition, MCMs-immobilized lipase in the reactor has
excellent reusability, and it still maintains 82% productivity
even after 6 batches, which is far better than that in a tra-
ditional fluidized bed reactor. 1ese results show that
MCMs-immobilized lipase is a promising biodiesel pro-
duction method [54].

1e preparation of biodiesel from rapeseed soap residue
methanol catalyzed by chitosan-immobilized Candida lipase
(CRL) was studied by response surface methodology (RSM).
Methanol-substrate molar ratio, enzyme dosage, water
content, and reaction temperature are four important pa-
rameters. RSM analysis shows that the experimental values
are in good agreement with the predicted values. 1e results
show that the most effective parameter is water content,
which is in good agreement with the experimental values.
1e coefficient of determination (R2) of the model is 92.86%,

with a probability value of P< 0.0001. 1e optimal condi-
tions for biodiesel production by immobilized lipase were as
follows: the molar ratio of methanol to the substrate was 4 :1,
the amount of lipase was 8%, the water content was 6%, and
the reaction temperature was 45°C. After molecular distil-
lation, the content of methyl ester is more than 95% [55].

Magnetic whole-cell biocatalyst (MWCB) was prepared
using chitosan Fe3O4 microspheres as a carrier (in Fig-
ure 10).1e yield of biodiesel was 87.32% after 48 h. After 10
cycles, the yield of biodiesel was 83.57%, which was higher
than that of whole-cell biocatalyst without Fe3O4 (74.06%).
It can be seen that the introduction of magnetic particles not
only makes the catalyst easy to separate but also effectively
immobilizes the active enzyme to avoid the loss of yield.
Interestingly, in previous studies, it was not realized that the
introduction of magnetic particles can also increase the yield
[56].

Cubides-Roman et al. [57] used magnetic chitosan-
immobilized Pseudomonas fluorescens lipase as a bio-
catalyst to study the enzymatic synthesis of ethyl ester from
coconut oil and ethanol in an electromagnetic field-assisted
bioreactor. 1e results show that under the conditions of
30°C, 45°C, and 60°C, oil alcohol molar ratios of 1 : 6, 1 : 9,
and 1 :12, and magnetic induction intensity of 6.5, the
maximum conversion is about 12%. In the differential
reactor, the molar ratio of oil to alcohol was 1 : 11.25, and
the reaction time was 12 h In this unconventional biore-
actor, under the assistance of a magnetic field, the synthesis
of esters is positively affected by the molar ratio and
temperature, and magnetic induction is very important for
the establishment of a magnetically stabilized bed. In ad-
dition, magnetic biocatalysts are retained/separated for
further use. Although this interesting device did not obtain
a large yield, the application of the new device proved that
this model can be used for transesterification to synthesize
biodiesel, which added a newmethod for the preparation of
biodiesel.

At present, the efficiency of biomass-based materials is
further improved, and the application of immobilized
enzymes in biodiesel synthesis is expanded. Batista et al.
[58] reported a new biodegradable membrane catalyst,
which is composed of chitosan, lipase, and polyvinyl al-
cohol.1e thicknesses of PVA/chitosan and PVA/chitosan/
lipase membranes were 70.4 and 79 μm, respectively. 1e
SEM images showed the formation of continuous films
without holes or cracks. It is estimated that the lipase
rejection efficiency is 92%.1emembrane can be reused for
25 hydrolysis cycles and can maintain 62% of the initial
activity. 1ese results show that PVA/chitosan/lipase is a
promising material for biodiesel production. Similarly, Xie
and Wang [25] used magnetic chitosan microspheres to
immobilize lipase to study the transesterification of soy-
bean oil. Using glutaraldehyde as a crosslinking agent,
magnetic chitosan microspheres lipase was prepared by the
chemical coprecipitation method. Using immobilized li-
pase, the yield of converted soybean oil fatty acid methyl
ester reached 87% at an alcohol-oil ratio of 4 : 1, 35°C, and
30 h. the catalyst was reused 4 times without significant
reduction inactivity.
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Undoubtedly, lipase can efficiently catalyze trans-
esterification at low temperatures, which is considered to be
the greatest advantage of lipase in biodiesel synthesis.
However, the high cost of lipase is considered to be the main
obstacle to the commercialization of enzymatic trans-
esterification. Karimi synthesized superparamagnetic iron
oxide nanoparticles (SPIONs), coated them on silica, and
then grafted aldehyde groups to immobilize Bacillus capacity
lipase, which is a promisingmethod to improve the economy
of enzymatic transesterification. 1e results show that the
average particle size of SPIONs is about 20 nm. 1e
nanoparticles linked to lipase showed almost super-
paramagnetism. Under the conditions of methanol to oil
molar ratio of 6 :1, immobilized lipase concentration of 25%,
n-hexane content of 10%, the water content of 10%, reaction
temperature at 35°C, and reaction time of 35 h, the con-
version rate of WCO to biodiesel reached 91%. 1e
immobilized lipase is easy to recover and reuse, and the
enzyme activity has hardly decreased [59].

Chitosan was tried to be used as a perfect carrier for
lipase immobilization by adsorption and crosslinking. 1e

immobilization efficiency of the crosslinking method was
99.1%, and the reusability was 12 cycles. 1e esterification of
oleic acid and transesterification of olive oil showed that the
partially purified enzyme proved its ability to catalyze the
formation of methyl oleate. 1e partially purified and
immobilized lipase of Rhizopus oryzae R1 has excellent ef-
ficiency and reusability and plays an important role in
biodiesel production [60].

7. Conclusions

1is paper reviews the application of heterogeneous catalysts
supported on biomass-based chitosan in the synthesis of
biodiesel. Chitosan has the greatest advantage of having a
large number of active amino and hydroxyl groups, easy to
modify and graft, and easy to chelate metal ions. At the same
time, it can be compounded with a variety of materials to
obtain multifunctional catalytic materials, which will un-
doubtedly improve the catalytic efficiency. At present, it is
common to prepare chitosan-based catalysts rich in acid,
alkali, metal ions, or enzyme active sites. However, these

MethanolFeedstock

Biodiesel

Magnetic whole-
cell biocatalysts

Chitosan

+

+

+

Lipase

Fe3O4

Figure 10: 1e magnetic chitosan biocatalysts. Reproduced with permission from [56] copyright 2016, Elsevier.

Membrane catalyst BiodieselPlant oil

Guanidine group

Figure 9: 1e chitosan-based membrane catalyst. Reproduced with permission from [53] copyright 2015, Elsevier.
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catalysts with different forms still have the problems of low
catalyst surface area, easy loss of active centers, and difficult
separation, and there is still a need for further improvement.

1erefore, we need to further develop new chitosan-
based materials to make this kind of catalyst not only to have
good catalytic efficiency but also biodegradable, green, and
nontoxic and can be used many times. At present, the
number of chitosan-based biodiesel synthesis materials re-
ported is limited. It is hoped that more chitosan-based
catalysts with excellent performance can be developed and
applied to the large-scale production of biodiesel based on
laboratory research.
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