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Abstract 
 
In this paper, we prove the global convergence of the Perry-Shanno’s memoryless quasi-Newton (PSMQN) 
method with a new inexact line search when applied to nonconvex unconstrained minimization problems. 
Preliminary numerical results show that the PSMQN with the particularly line search conditions are very 
promising. 
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1. Introduction 

We consider the unconstrained optimization problem: 

  min nf x x R ,           (1.1) 

where : nf R R is continuously differentiable. Perry 
and Shanno’s memoryless quasi-Newton method is often 
used to solve the problem (1.1) when n  is large. The 
PSMQN method was originated from the works of Perry 
(1977 [1]) and Shanno (1978 [2]), and subsequently de-
veloped and analyzed by many authors. Perry and Shan-
no’s memoryless method is an iterative algorithm of the 
form 

1k k k kx x d   ,           (1.2) 

where k  is a steplength, and kd is a search direction 
which given by the following formula: 

1 1d g  ,              (1.3) 
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where 1 1,k k k k k ks x x y g g     and jg  denotes the 

gradient of f  at jx . If we denote 
2 2
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and 
1

1 1k kH B
  , 

then 

 1 2 2
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By (1.4) and (1.5), we can rewrite 1kd   as 

1 1 1k k kd H g    . 

In practical testing, it is shown that the memoryless 
method is much more superior to the conjugate gradient 
methods, and in theoretic analysis, Perry and Shanno had 
proved that this method will be convergent for uniform 
convex function with Armijor or Wolfe line search. 
Shanno pointed out that this method will be convergent 
for convex function if the Wolfe line search is used. De-
spite of many efforts has been put to its convergence 
behavior, the global convergence of the PSMQN method 
is still open for the case of f is not a convex function. 
Recently, Han, Liu and Yin [3] proved the global con-
vergence of the PSMQN method for nonconvex function 
under the following condition 

lim 0k
k

s


 . 
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The purpose of this paper is to study the global con-
vergence behavior of PSMQN method by introducing a 
new line search conditions. The line search strategy used 
in this paper is as follows: find kt  satisfying 

      42
1min ,T

k k k k k k k k k kf x t d f x t g d g t d
      

  (1.7) 
and 

 T T
k k k k k kg x t d d g d  ,         (1.8) 

where  1 0,1   s a small scalar and  1,   is a 
large scalar. It is clear that (1.7) and (1.8) are a modifica-
tion of the weak Wolfe-Powell (MWWP) line search 
conditions. 

This paper is organized as follows. In Section 2, we 
present the PSMQN with the new line search MWWP. In 
Section 3, we establish the global convergence of the 
proposed method. The preliminary numerical results are 
contained in Section 4. 

 
2. Algorithm 
 
By combining the PSMQN and the MWWP, we can ob-
tain a modified Perry-Shanno’s memoryless quasi-Newton 
method as follows: 

Algorithm 1 (A Modified PSMQN method: MPS- 
MQN) 

Step 0: Given 1
nx R , set 1 1, 1d g k   . If 1 0g  , 

then stop. 
Step 1: Find a 0kt   satisfying MWWP. 
Step 2: Let 1k k k kx x t d    and  1 1k kg g x  . If 

1 0kg   , then stop. 
Step 3: Generate 1kd   by the PSMQN formula (1.4). 
Step 4: Set : 1k k  , go to Step 1. 
 

3. Global Convergence 
 
In order to prove the global convergence of Algorithm 1, 
we will impose the following two assumptions, which 
have been used often in the literature to analyze the glo- 
bal convergence of conjugate gradient and quasi-Newton 
methods with inexact line searches. 

Assumption A. The level set 

    1
nx R f x f x     

is bounded. 
Assumption B. There exists a constant L such that for 

any ,x y , 

   g x g y L x y   .        (3.1) 

Since   kf x is a decreasing sequence, it is clear that 

the sequence kx generated by Algorithm 1 is contained 

in, and there exists a constant f  , such that 

 lim k
k

f x f 


 .            (3.2) 

Lemma 3.1 Suppose that Assumption A holds and 
there exists a positive constant   such that 

kg  .                (3.3) 

then, 
2

lim 0k k
k

t d


            (3.4) 

and 
2

lim 0k k
k

t d


 .          (3.5) 

Proof. From (3.2), we have 
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thus 

    1
1

,k k
k

f x f x
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


    

which combining with 

      42
1min ,T

k k k k k k k k k kf x t d f x t g d g t d
       

and (3.3), yields 
42

1
k k

k

t d




  ,            (3.6) 

and 

1

T
k k k

k

t g d




   .           (3.7) 

therefore, (3.4) and (3.5) hold.  
The property (3.4) is very important for proving the 

global convergence of Algorithm 1, and it is not known 
yet for us whether (3.4) holds for other types line search 
(for example, the weak Wolfe-Powell conditions or the 
strong Wolfe-Powell conditions). 

By using (3.4) and the result given in [3], we can de-
duce that Algorithm 1 is convergent globally. In the fol-
lowing, we give a direct proof for the global convergence 
of Algorithm 1. 

Lemma 3.2 Assume that kB is a positive definite ma-
trix. Then 

 
2

k
r kT

k k k

g
T B

g H g
 .          (3.8) 

Proof. Omitted.  
Lemma 3.3 Supposed that Assumption A and B hold, 

and kx  is generated by Algorithm 1.Then there exists a 
positive constant c  such that 
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1

k

k
i

t ck


 .               (3.9) 

Proof. By (1.5) and (1.6), we have 

 
2

1
k

r k T
k k

y
T B n

y s  ,           (3.10) 

and 

   
2

1 2
2 2

T

k k k
r k T

k kk

y s s
T H n

y sy
    .      (3.11) 

From  2 2 2T
k k k ky s s y , we obtain 

   
2

1 2
2 2

T

k k k
r k T

k kk

y s s
T H n

y sy
    .     (3.12) 

Using (1.8) and (3.12), we have 

 
2

1 1
k k k

r k T
k k k

t H gn
T H

g H g 


.       (3.13) 

By using the positive definiteness of kH , we have 

 
2

k k
r kT

k k k

H g
T H

g H g
 ,           (3.14) 

from which we can deduce that 

   1 1
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By the Assumption B, (3.10) and (1.8), we get 
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where
2

1 1

nL
c





. Combining with (3.15) yields 
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Adding above inequality to (3.15), we obtain 

   
 
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1 1 1
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1
1 .
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Now, if we denote the eigenvalues of kB  by 

1 2, , ,k k knh h h , then the eigenvalues of kH  are 

1 2

1 1 1
, , ,

k k knh h h
 , so we have 
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T B T H h n
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 
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Thus we have 
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Hence there exists a positive constant c such that 

1

k
k

k
i

t c


 . 

Therefore 

1

k

k
i

t ck


 . 

Theorem 3.1 Supposed that Assumption A and B hold, 
and kx  is generated by Algorithm 1.Then 

lim inf 0k
k

g


 .                (3.16) 

Proof. Suppose that the conclusion doesn’t hold, i.e., 
there exists a positive constant such that 

kg  . 

From (3.3), (3.10) and Lemma 3.3, we have 
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where 
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2 21

nL
c

 



. From (3.4) we may obtain that 
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there exists a positive constant 0k  such that 

2

2

1
i it d

c
 for all 0i k . 

Therefore 
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Hence from the above inequality and Lemma 3.2 and 
Lemma 3.3, we have 
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Therefore 

1
k

i

t




  , 

which contradicts to Lemma 3.3. Thus (3.16) holds.  
Remark: In this remark, we give a cautious update of 

Perry-Shanoo’s Memoryless quasi-Newton method (CP- 
SMQN), we do not discuss the global convergence here. 
We let it to be a topic of further research. 

Algorithm 2: (CPSMQN method) 

Step 0: Given 1
nx R , set 1 1, 1d g k   . If 1 0g  , 

then stop. 
Step 1: Find a 0kt  satisfying WWP. 

Step 2: Let 1k k k kx x t d    and  1 1k kg g x  . If 

1 0kg   , then stop. 

Step 3: Choose 1kB   by the following equation and 

Generate 1kd  , 

2 2

2 2
1

 if ,

else

T T
k k Tk k k k

k kT T T
k k k k k k k k k

k

y yy y g s
I s s m

B y s y s s y s s

B



 
   

 



 

         (3.17)  
where m  is a positive constant. 
 
4. Numerical Experiments 

In this section, we report the numerical results for PSM- 

QN, MPSMQN and CPSMQN method. The problems 
that we tested are from [4]. For each test problem, the 
termination condition is 

510)( kxg . 

We will test the following three methods: 
•PSMQN: the Perry-Shanno’s Memoryless quasi- 

Newton method with the WWP, where 0.1   and 
0.9  ; 

•MPSMQN: Algorithm 1 with 0.1  , 0.9  , 
16

1 10   and 10  ; 
• CPSMQN: Algorithm 2 with 0.1  , 0.9   and 

1810m  . 
In order to rank the iterative numerical methods, one 

can compute the total number of function and gradient 
evaluations by the formula 

,totalN NF m NG             (4.1) 

where ,NF NG  denote the number of function evalua-
tions and gradient evaluations, respectively, and m  is 
some integer. According to the results on automatic dif-
ferentiation ([5] and [6]), the value of m  can be set to 

5m  . That is to say, one gradient evaluation is equiva-
lent to m  number of function evaluations if automatic 
differentiation is used. 

Tables 1 shows the computation results, where the co- 
lumns have the following meanings: 

Problem: the name of the test problem in MATLAB; 
Dim: the dimension of the problem; 
NI: the number of iterations; 
NF: the number of function evaluations; 
NG: the number of gradient evaluations; 
SD: the number of iterations for which the steepest 

descent direction used; 
In this part, we compare the PSMQN, MPSMQN and 

CPSMQN method as follows: for each testing example i , 
compute the total numbers of function evaluations and 
gradient evaluations required by the evaluated method 

  j EM j  and the PSMQN method by the formula  
(4.1), and denote them by   ,total i EM j

N and  ,total i PSMQNN ;  

then calculate the ratio 

     

 

,

,

total i EM j

i

total i PSMQN

N
r EM j

N
 .         (4.2) 

If  0EM j does not work for example 0i , we replace 

the   0 0,total i EM j
N  by a positive constant which define 

as follows 

     1,
max : ,

total i EM j
N i j S   , 

where 

 1 , :S i j method j does not work for example i . 
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Table 1. Test results for PSMQN/MPSMQN/CPSMQN. 

  PSMQN MPSMQN CPSMQN 

Problems Dim NI/NF/NG/SD NI/NF/NG/SD NI/NF/NG/SD 

ROSE 

FROTH 

BADSCP 

BADSCB 

BEALE 

JENSAM 

HELIX 

BARD 

GAUSS 

MEYER 

GULF 

BOX 

SING 

WOOD 

KOWOSB 

BD 

OSB1 

BIGGS 

OSB2 

WATSON 

ROSEX 

 

 

SINGX 

PEN1 

PEN2 

 

VARDIM 

 

 

 

TRIG 

 

 

BV 

 

IE 

 

 

 

 

TRID 

 

 

 

BAND 

LIN 

 

 

 

LIN1 

 

LIN2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

4 

4 

4 

4 

5 

6 

11 

20 

8 

50 

100 

4 

2 

4 

50 

2 

50 

100 

200 

3 

50 

100 

3 

10 

3 

50 

100 

200 

500 

3 

50 

100 

200 

2 

2 

50 

500 

1000 

2 

10 

4 

64/133/86/0 

50/137/68/0 

161/558/324/3 

48/255/56/4 

36/74/43/0 

37/69/46/0 

53/77/57/0 

92/117/95/0 

6/14/10/0 

- 

1/4/2/0 

100/170/113/0 

147/212/159/0 

138/311/248/0 

142/200/148/0 

- 

- 

518/757/554/0 

610/717/620/0 

- 

55/115/73/0 

53/99/68/0 

75/149/97/0 

147/212/159/0 

7/13/9/0 

28/44/31/0 

481/845/539/0 

5/13/6/0 

24/65/28/0 

30/77/33/0 

40/135/41/2 

26/31/27/0 

52/59/53/0 

54/60/55/0 

26/40/27/0 

177/200/178/0 

7/9/8/0 

8/10/9/0 

8/10/9/0 

8/10/9/0 

9/11/10/0 

21/30/22/0 

30/39/31/0 

32/39/33/0 

63/74/64/0 

11/21/12/0 

1/3/2/0 

1/3/2/0 

1/3/2/0 

1/3/2/0 

2/10/3/0 

2/21/3/0 

2/11/3/0 

65/143/82/0 

34/56/35/0 

161/558/324/3 

22/35/23/0 

36/74/43/0 

37/69/46/0 

53/77/57/0 

92/117/95/0 

6/14/10/0 

- 

1/4/2/0 

100/170/113/0 

175/237/182/0 

138/311/248/0 

142/200/148/0 

- 

- 

518/757/554/0 

610/717/620/0 

- 

54/114/66/0 

53/99/68/0 

75/149/97/0 

147/212/159/0 

7/13/9/0 

28/44/31/0 

481/845/539/0 

5/13/6/0 

24/65/28/0 

30/77/33/0 

40/135/41/2 

26/31/27/0 

52/59/53/0 

54/60/55/0 

26/40/27/0 

177/200/178/0 

7/9/8/0 

8/10/9/0 

8/10/9/0 

8/10/9/0 

9/11/10/0 

21/30/22/0 

30/39/31/0 

32/39/33/0 

63/74/64/0 

11/21/12/0 

1/3/2/0 

1/3/2/0 

1/3/2/0 

1/3/2/0 

2/10/3/0 

2/21/3/0 

2/14/3/0 

64/133/86/0 

50/137/68/0 

123/408/279/1 

48/255/56/4 

36/74/43/0 

37/69/46/0 

53/77/57/0 

92/117/95/0 

6/14/10/0 

- 

1/4/2/0 

100/170/113/0 

147/212/159/0 

139/321/244/1 

142/200/148/0 

- 

- 

518/757/554/0 

610/717/620/0 

- 

55/115/73/0 

53/99/68/0 

75/149/97/0 

147/212/159/0 

7/13/9/0 

28/44/31/0 

481/845/539/0 

5/13/6/0 

24/65/28/0 

30/77/33/0 

40/135/41/2 

26/31/27/0 

52/59/53/0 

54/60/55/0 

26/40/27/0 

177/200/178/0 

7/9/8/0 

8/10/9/0 

8/10/9/0 

8/10/9/0 

9/11/10/0 

21/30/22/0 

30/39/31/0 

32/39/33/0 

63/74/64/0 

11/21/12/0 

1/3/2/0 

1/3/2/0 

1/3/2/0 

1/3/2/0 

2/10/3/0 

2/21/3/0 

2/14/3/0  
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Table 2. Relative efficiency of PSMQN, MPSMQN and 
CPSMQN. 

PSMQN MPSMQN CPSMQN 

1 0.9752 0.9963 

 
The geometric mean of these ratios for method EM( j ) 

over all the test problems is defined by 

     
1 S

i
i S

r EM j r EM j


   
 
 ,      (4.3) 

where S  denotes the set of the test problems and S  
the number of elements in S . One advantage of the abo- 
ve rule is that, the comparison is relative and hence does 
not be dominated by a few problems for which the me-
thod requires a great deal of function evaluations and 
gradient functions. 

From Table 2, we observe that the average perfor-
mances of the Algorithm 1 are the best among the three 
methods, and the average performances of the Algorithm 
2 are little better than the PSMQN method. Therefore, 
the Algorithm 1 is the best method among the three me-
thods given in this paper from both theory and the com-
putational point of view. 
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