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ABSTRACT 
 

Aims: The purpose of this paper was to continue the previous study of arm rotation movement 
where A.V. Hill’s force-velocity relationship was transformed into a constant maximum power model 
consisting of three different components of power.  
Methodology: In the present study a new model of Hill’s equation was applied for accelerated 
motions. This theoretically derived model of further development of Hill’s force-velocity relationship 
was tested by fitting it into two arm push measurements of shot put experiments. The results of the 
further development of Hill’s equation for accelerated motions were compared with the mechanics 
of the constant power model of the previous study. 
Results: The analyses of the present study verified that this theoretically derived equation for 
accelerated motions was in agreement with the measured data of shot put experiments. The fittings 
succeeded and they coincided with the velocity curves of the measured shot put experiments and 
the constant power model of the previous study. 
Conclusion: In the present study the progress of movement was concluded to be as follows: 1) the 
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state of low speed, maximal acceleration which applies to the hypothesis of constant force, 2) the 
state of high speed, maximal power which applies to the hypothesis of constant power, where the 
constant power model of previous study and the present development of Hill’s equation for 
accelerated motion were acting. This is a new approach to Hill’s equation. 

 
 
Keywords: Muscle mechanics; muscle power; force-velocity relationship; Hill’s equation; arm 

movement; arm push in shot put. 
 

1. INTRODUCTION 
 
British Nobel laureate A.V. Hill invented the 
famous model of muscle mechanics which 
describes the force-velocity relationship of 
skeletal muscle contraction. The equation of this 
model is (F + a)(v + b) = b(F0 + a), where F is 

maximum force in muscle contraction, a is 
constant force and b is constant velocity, F0 is 

isometric force of muscle or the constant 
maximum force generated by muscle with zero 
velocity and v is velocity ([1,2], Fig. 1). This 
equation was based on the laboratory 
measurements in which the force (F) of activated 
muscle was measured as the muscle was 
contracting at a constant speed in an isolated 
condition. In the equation the vectors of forces 
and velocities have the same direction and 
therefore Hill’s equation can be presented in a 
scalar form. Other early experiments of force-
velocity relationship of skeletal muscle were 
done by e.g. Fenn and Marsh [3] and good 
reviews are also available (e.g. [4,5]). 
 

 
 

Fig. 1. Hill’s force-velocity curve with the 
corresponding power P 

 
The arm rotation experiments of Rahikainen et 
al. [9] followed the theory, where movement was 
described to have four (4) different phases:             

1) start of motion 2) movement proceeds at 
constant maximum rotational moment during the 
first part of the movement 3) movement proceeds 
at constant maximum muscular power during the 
second part of the movement 4) stopping of 
motion. For validation of these assumptions the 
equation was solved for angular velocity-time 
function: 
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This theoretically derived equation with constant 
maximum power (phase 3 above) was in good 
agreement with the experimentally measured 
results.   
 
The study of Rahikainen and Virmavirta [6] 
continued the experiments of the previous study 
[7]) and further developed its theory of 
mechanics resulting in further solution of Hill’s 
equation. The results were based on the 
assumption that in muscle mechanics there is a 
constant maximum power which the muscle is 
able to generate within a certain range of 
velocity. The principle of constant maximum 
power is also in Hill’s equation and in this respect 
the two models can be considered the same. In 
the left side of Hill’s equation the term (F + a)(v + 
b) is muscles’ total power including Fv, which is 
the power of moving the external load. The right 
side of the equation, b (F0 + a), includes only 

constants and thus the equation can be 
considered as a constant power model. 
However, the constant maximum power in the 
study of Rahikainen and Virmavirta [6] is a 
characteristic of whole muscle group instead of 
separate muscle fibers as in the Hill’s equation. 
The model was based on the muscular system’s 
ability to transfer chemical energy and, therefore, 
it is not necessary to know the contribution of the 
individual muscles involved. The constant power 
of Hill’s equation presented by Rahikainen and 
Virmavirta [6] is not the power of Hill’s original 
curve as it is usually considered in biomechanics, 
but it is the sum of three different power 
components. It was inferred that the constant 
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power model of the study of this paper acts 
during high speed movements with no external 
load, where Hill’s equation does not seem to fit 
the experimental points ([2], p. 32, Fig. 3.2) very 
well. As an explanation for this mismatch Hill 
mentioned that “sharp rise at the end of the curve 
in the region of very low tension was due to the 
presence of a limited number of fibers of high 
intrinsic speed and no such equation could fit the 
observed points below P/P0 = 0.05”. Because 

Hill’s equation is also a constant power model, it 
is acting only in a certain state of motion, which 
is constant power movement at low speed of 
motion decelerated by counter force. Therefore it 
is not a model of motion which is suitable for 
every state of muscle motion. 
 
Although Hill’s force-velocity relationship has 
been an important part of muscular mechanics 
models, it has deficiencies which to a great 
extent restrict its application for the real muscular 
mechanics of human motion. Hill’s equation is a 
constant power model and it has no term for the 
power of acceleration and therefore it cannot be 
applied within accelerated motions. Also at the 
point of maximum speed, where force is zero, 
Hill’s equation does not seem to fit the 
experimental points well. The third reason for the 
deficiencies of the models based on Hill’s 
equation is that they take no account of the effect 
of the elastic properties of muscle-tendon unit. 
The purpose of the present study was to further 
develop Hill’s equation and to create a model, 
which could be applied to accelerated motions, 
and to test its function in arm push of the 
Olympic winner in shot put. 
 

2. METHODS 
 
2.1 Hill’s Equation in Accelerated Motion 
 
In order to find out the function of Hill’s force-
velocity relationship in accelerated motion, 
equation of motion was derived from Hill’s 
equation. In the present study Hill’s equation is 
presented in a form 

 

    baFbvaF  0H                         (1) 

 
where 

 
F is the muscular force in Hill’s equation. The 
force F must be constant during the whole 
muscle contraction. If it is not, the equation of 
motion of muscle contraction will be much more 
complex. 

vH is constant velocity in Hill’s equation, and 

during the muscle contraction the muscular force 
F corresponds to the velocity vH in Hill’s 

equation.  
 
The results of Hill’s experiments could be 
transformed into hyperbola equation describing 
force-velocity dependence of the movement. The 
left side of Hill’s equation represents the 
maximum total power consumed into muscle 
contraction, and the right side of Hill’s equation 
indicates that this maximum total power is 
constant. In the following this maximum total 
power is divided into three power components. 
Hill’s equation, the motion with maximum 
constant power is the second state of motion. 
The first state of motion is with the maximum 
constant force, and in that state of motion 
acceleration is constant. Fig. 2 represents a 
further development of Hill’s force-velocity 
relationship. Hill’s equation, (F + a) (vH + b) = 

constant, implies that the area of the rectangle (F 
+ a) (vH + b) is constant. The total power of the 

muscle is comprised of three different 
components represented by rectangles A, B and 
C. The area of rectangle A = FvH represents the 

power needed from muscle against an external 
load (see the power curve in Fig. 1). If there is no 
external load, this power is consumed by 
acceleration. The area of rectangle B = (F + a) b 
represents the power of muscle’s internal loss of 
energy. This power creates a counter force 
against an external load. As the velocity is zero, 
this power B is highest and, therefore, it is not 
related to external movement. When velocity 
increases, this power decreases rapidly initially, 
then slowly at higher velocities. The area of 
rectangle C = vH a represents the power of 

friction due to the motion of the muscle – load 
system. Because power is force multiplied by 
velocity, the force of friction is a. This is not force 
directly proportional to velocity, generally known 
as liquid friction (which is the friction used in the 
present study in paragraph 2.3), but constant 
force of friction which is known as glide friction. 
Now we can see that there are three different 
states of motion: 1) at the beginning of motion 
characterized by a state of low speed constant 
maximal acceleration, then 2) as the motion 
continues a state of high speed, constant 
maximal power, which applies to motion of Eq. 
(21) and to Hill’s equation. The maximum power 
is due to the fact that the transfer of energy 
within the muscle system must have a maximum 
rate and, therefore, muscle’s power generation 
must also have a certain maximum rate. 
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Fig. 2. Hill’s force-velocity relationship 

presented with asymptotes (broken lines) and 
three rectangles of power. In traditional 
presentation of hyperbola a and b are 

negative, but here they refer to the positive 
constant terms of Hill’ equation 

 
Application of Hill’s equation into human 
movement is problematic. Hill’s force-velocity 
relationship has no power term for acceleration, 
and therefore it is not valid in accelerated 
motions. Hill’s force - velocity relationship was 
measured with a measuring device in which the 
muscle force is measured at constant velocity. Its 
applications must also be constant velocity 
movements. 
 
Herein theoretical experiment is performed: A 
mass m is accelerated by a muscle contraction. 
The force generated by the muscle is F and its 
counter force is – F. In the beginning velocity is 
zero, and the movement is at a state of high 
acceleration. As the movement continues, 
velocity v increases and acceleration decreases, 
and if the movement continues sufficient long 
distance at some point the movement can be 
regarded as constant. Then there is force F 
corresponding to velocity vH as it is in Hill’s force 

– velocity relationship. The total power of Hill’s 
equation can be divided into three separate 
power components (Fig. 2): the power of the 
work done against counter force FvH, the power 

of friction avH and the power consumed within 

generation of muscle force (F + a) b. Because 
the muscle force F is constant and a and b are 
also constants, the power (F + a) b is also 
constant. The total power at the phase of 

constant velocity is the sum of the three 
rectangles A, B and C (Fig. 2) which is 
 

F vH + avH + (F + a) b = (F + a)(vH + b) = (F0 + a) b

 (2) 
 

At the phase of acceleration the power 
consumption into acceleration is 
 

v
dt

dv
mP acc                                              (3) 

 

where v is general velocity in movement 
containing also accelerated phase of motion. 
 
Because at the phase of acceleration the velocity 
v is less than the constant velocity vH, the power 

of the work done against counter force Fv and 
the power of friction av are less than that at the 
velocity vH. The difference of these powers is 

equal to the power into acceleration. We obtain 
the equation of motion 
 

       vvavvFbaFbaF

avavFvFvv
dt

dv
m


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 (4) 

 

Solution 
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constant C = 0 
 
ln (1) = 0 

 

  HH 1ln vvvv
aF

m
t 


           (11) 

 
This is the equation of motion as mass m is 
accelerated by muscle contraction. Hill’s velocity 
vH corresponds to muscle force F in Hill’s 

equation. Hill’s velocity is the velocity after the 
phase of acceleration as the motion can be 
regarded as constant velocity movement. 
Calculation of the values of Hill’s velocity vH and 

muscular force F (Eq. 1) are 
 
 

    baFbvaF  0H  

 

 
bv

avbF
vF






H

H0
H                                   (12) 

 
Substituting F = 0 into Hill’s equation 

bFva 0H0                                               (13) 

 

0

H0

F

av
b                                                  (14) 

 

2.2 Numerical Calculations of Hill’s 
Equation in Accelerated Motion 

 

Theoretical velocity functions of the mass lifted 
against gravity force by muscle contraction are 
determined by selecting constant values F0 = 1 N 

and vH0 = 1 m/s (for convenience), and a / F0 = 

0.27 ([8], p. 194). Moving mass m is equal              
to force divided by gravitational coefficient                 
m = F / g. 
 

First Hill’s velocities are chosen for the curves of 
contraction equations which will be calculated 
(vH = 0.2 m/s, 0.4 m/s, 0,6 m/s, 0.8 m/s, 0.9 m/s, 

Fig. 3). Then the values of constant force a = 
0.27 F0 and constant velocity b using Eq. (14) 

are chosen (a = 0.27, b = 0.27). After that the 
corresponding values of force F using Eq. (12) 
are calculated (F = 0.460 N, 0.242 N, 0.124 N, 
0.051 N, 0.023 N, Fig. 3). Finally corresponding 

 

 
 

Fig. 3. Velocity curves of moving mass accelerated in muscle contraction resisted by counter 
force which is equal to the force of gravitation. Hill’s velocity vH is the limit velocity that the 

velocity of the moving mass approaches. Hill’s velocity vH corresponds to the velocity in the 

Hill’s force velocity relationship and the force F corresponds to the force of Hill’s force 
velocity relationship 
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values of force F and Hill’s velocity vH are 
substituted into equation of muscle contraction 
(Eq. 11), and the velocity curves of mass 
accelerated in muscle contraction resisted by 
constant counter force F are obtained, (Fig. 3). 
 

2.3 Constant Power - Liquid Friction 
Model of Muscle Contraction 

 

The model used in the present study is 
constructed according to Newton’s II law, which 
was first used in linear motion of arm push in 
shot put [9] and then applied to rotational motion 
by Rahikainen et al. [7] and Rahikainen and 
Virmavirta [6]. The theory of arm movement is as 
follows: At the beginning of the movement, 
velocity is naturally zero and it takes some time 
to generate force. At that phase of motion, 
passive elements of muscle-tendon unit have 
influence on the motion, but after reaching the 
full state of tension, they have no further dynamic 
effect. After that it can be assumed that a 
maximum muscle force takes action and at that 
phase of motion constant value glide friction acts. 
Because the muscle system is able to transfer 
only a certain quantity of chemical energy during 
the time of contraction, there must be a constant 
maximum power, which the muscle is able to 
generate within a certain range of velocity. As the 
velocity increases the motion reaches the point 
where the maximum power takes action and 
acting force is less than the maximum force. This 
way power remains constant as the velocity 
increases and the force decreases. At high 
velocity phase of motion, liquid friction, directly 
proportional to velocity, acts. The constant value 

glide friction decreases as forces at the joint 
decrease and it becomes indifferent. The model 
of arm movement during constant power phase 
in shot put study was constructed as follows: 
accelerating force is mass multiplied by 
acceleration which equals muscle force minus 
the force generated by inner friction of muscle. 
The effect of gravitational force is added 
afterwards. 

 

VC
V

P

Td

Vd
m                                    (15) 

 

where 

 
The weight of the shot 7.27 kg and the weight of 
the arm approximately 3.5 kg, or total weight 
10.8 kg (Table 1). 

 
Mass of shot and arm  m 

Velocity of shot   V 

Power generated by arm  P 

Time of arm push   T 

Pushing force        P / V 

Internal friction in arm   C V 

 
Internal friction of muscle is liquid friction                  
inside muscle, which is directly proportional to 
velocity. The same liquid friction was also used               
in the study of Rahikainen et al. [7] which                     
was initially adopted from Alonso and Finn                      
[10]. 

 
Table 1. Body segment masses [11] and estimated moving mass of the shot putter (140 kg) in 

the present study 

 

 % of 
total 

mass 

mass 

(kg) 

moving 
mass  

(kg) 

1 trunk 34.70 48.6  

2 upper arm L 2.65 3.7  

3 forearm L 1.82 2.5  

4 hand L 0.50 0.7  

5 upper arm R 2.65 3.7 ¼ = 0.925 

6 forearm R 1.82 2.5 ¾ = 1.875 

7 hand R 0.50 0.7 0.7 

8 shot  7.3 7.3 

9 head 6.72 9.4  
  

  

1

2

3

4

5

6

7

8

9
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Solution of velocity in Eq. (15) 
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2                               (16) 
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
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


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


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C
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P

C
2

1
2 
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











 


T
m

C

e
C

P
V

2

1                            (21) 

 
2.4 Effect of Gravitational Force on the 

Movement in Shot Put 
 
The force which is induced by gravity was 
omitted from the motion model. The power 
generated by this gravity force is Pgr = 

mg·sin(41º)·V = 69.5 N·V, where mg is 
gravitational force of moving mass (Fig. 4), V is 
velocity of arm movement. In Fig. 6, velocity (V in 

Eq. 21) coincides the measured velocity curve 
between 4 and 6 m/s and the best fit for power 
(4750 W, Fig. 6) is in the middle of these 
velocities, at 5 m/s. As the force of gravity is 
relatively small, the power induced by gravity 
was calculated in this study as a constant factor. 
It is included in the power P as follows; 1) 
 

P0 = Pacc + Pfr + Pgr                                         (22) 

     
P = P0 ‒ Pgr = Pacc + Pfr 

 

P is power in Eq. (21), P0 is muscle power, acc is 

acceleration, fr is friction, gr is gravity, force of 
gravity is F. At the point B in Fig. 5 velocity is 4 
m/s and the real power can be calculated as 
follows; 2) 
 

Preal = P + (5 – 4) m/s ·F = 4750 W + 69.6 W = 

4819.6 W 
 

The real velocity can be solved from the power 
ratio of Eq. (21); 3) 
 

0073.147506.4819
real

VV            (23) 

 

m/s029.40073.14real V  

 

which is within the accuracy of this study 4 m/s 
 

In constant acceleration phase of movement 
 

F0 = Facc + Ffr + F 

   

 
 

Fig. 4. Sideview of shot’s path during the arm push (distance of the put 19.47 m) 
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3. RESULTS 
 

3.1 Analysis of 19.47 m Put Using Eq. (21) 
 

If the time of arm push is known, it is possible to 
determine the speed of shot during the arm push 
using speed curves from Rahikainen and 
Luhtanen [9], (Figs. 5 and 6). Thereby, the part 
corresponding to the time of arm push is 
separated from the end of the speed curve (e.g. 
Fig. 5). In the path of the shot (Fig. 6) it can be 
seen that in section A - B the arm push continues 
to generate speed with the maximal pushing 
force and the inclination of the speed curve is 
almost constant. This is because the maximal 
generation of speed is limited by the shot putter’s 
maximal arm-pushing force. As the arm push 
continues, in section B - C - D, the pushing force 
accelerating the shot decreases and the 
inclination of the speed curve decreases as well. 
There are three different factors that cause the 
decrease in acceleration. First: as the speed of 
the shot increases, the rate of increase is not 
limited by a maximal pushing force, but by a 
maximal propulsive power, in which case force is 
power divided by velocity. Second: The internal 
friction of the pushing arm, which can be 
considered to be directly proportional to the 
velocity, decreases the velocity of the shot. Third: 
as the shot putter in the rotational motion turns 
sideways in respect to the direction of the arm 
push, the pushing force of the arm decreases 
and disappears and the arm just follows the shot 
without accelerating it. In Fig. 6 the broken line 
describes the effect of the first and second factor 

mentioned above. In section B – C, the 
measured speed curve and the broken line 
coincides. In this phase of the arm push, the two 
above-mentioned factors are the principal factors 
influencing the speed of the shot. In section C – 
D, the measured speed curve travels under the 
broken line. In this phase of the arm push, the 
shot putter turns so much sideways in respect to 
the direction of the arm push that the 
acceleration of the shot decreases further. If the 
shot putter would not turn (or rotate) during the 
arm push, the measured speed curve would 
combine with the broken line in section C - E. By 
fitting   Eq. (21) into the measured speed curve in 
Fig. 6 values of internal friction and power are 
obtained C = 64.8 kg/s and P = 4750 W. 
 
3.2 Analysis of Arm Push in Shot Put 

Using Hill’s Equation 
 
In Hill’s equation the velocity of muscle 
contraction vH is measured, as the force -F is 

resisting the motion. The muscle force is then F. 
In the beginning of movement the velocity of 
muscle contraction is zero, then the muscle force 
accelerates the motion, and the velocity 
increases. At some point it reaches maximum 
value, and at this constant speed phase of 
movement, velocity vH in Hill’s equation 

corresponds to the muscle force F. Theoretically 
the time of motion for the constant maximum 
velocity vH is indefinite, but if the counter force -F 

is strong enough, the movement decelerates and 
the constant maximum phase really exists in 

 

 
 

Fig. 5. The measured speed of the shot and the length of arm push (shaded area AD) in 19.47 
m put 
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Fig. 6. The measured speed of the 19.47 m shot put (curve A – B ‒ C – D) and the theoretical 
speed curves, dashed line from Eq. (21) and solid line from Eq. (11). The zero time (T = 0) for 

theoretical curves is at 0.032 and 0.030 s, respectively 
 
muscle mechanics. All the velocities v from zero 
to maximum velocity correspond to muscle 
forces greater than F (muscle force · velocity = 
constant power) and therefore in this study the 
maximum velocity corresponding F is marked as 
Hill’s velocity vH. 
 

In arm push of shot put the corresponding 
progress of velocity does not reach the velocity 
value vH because the range of movement is too 

short for that. In that movement all the velocity 
values are calculated from Eq. (11). 
 

  HH 1ln vvvv
aF

m
t 


  

 

3.3 Determining the Constants in Eq. (11) 
 

The moving mass m is presented in Table 1. 
Gravitational force of the moving mass is mg = 
10.8 · 9.82 = 106 N and the force resisting the 
acceleration of the shot is – F = – mg · sin(41º) = 
– 69.6 N, and the muscle force of Hill’s equation 
is F = 69.6 N. 
 

The maximum muscle force F0 can be 

determined by two different ways. Shot putter’s 

maximum bench press with two hands has been 
measured 260 kg and thus the estimated result 
for one hand is 130 kg. The maximum muscle 
force is then F01 = 130 kg · 9.82 m/s2 = 1280 N. 

The other way to determine the maximum 
muscle force F02 is to use Eq. (21) which yields 

the value of power 4750 W (Fig. 6). At the 
velocity of 4 m/s this power gives the force 4750 
W / 4 m/s, and by adding the force of gravity of 
shot and hand the maximum muscle force is 
obtained F02 = 4750 W / 4 + 69.6 N = 1260 N. 

 
Constant a in Eq. (11) is the constant value glide 
friction, and it can be determined in the phase of 
constant acceleration between A and B (V 
between ~1.5 - 3.5 m/s, Fig. 6) as follows: Force 
of friction a is equal to the maximum muscle 
force F0 subtracted the gravitational force 

resisting acceleration F and the force of 
acceleration Facc. The force of acceleration Facc 

is equal to moving mass m multiplied by 
acceleration. The acceleration can be 
determined from the phase of constant 
acceleration by measuring the corresponding 
changes of velocity and time, dV/dT = 82 m/s2, 
and the force of acceleration is  
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a = 0.24 · F0 = 288 N, b = 0.24 · vH0 = 3.99 m/s 

 
Fig. 7. The measured speed of the 20.90 m shot put (curve A – B – C – D) and the theoretical 
speed curves, dashed line from Eq. (21) and solid line from Eq. (11). The zero time (T= 0) for 

theoretical curves is at 0.032 and 0.030 s, respectively 
 

Facc = 10.8 kg · 82 m/s2 = 888 N. The force of 

friction (using F02) is  a = 1260 N – 888 N – 69.6 

= 302 N and the coefficient of friction is 302 N / 
1260 N = 0.24. 
 
Hill’s velocity vH can be determined by iteration. 

Iteration can be done (for instance) so that Eq. 
(11) is calculated with proper value of vH through 

the intersection point of the measured velocity 
curve and the line of the velocity 4 m/s (point B). 
The value of vH is then found by iteration so that 

Eq. (11) matches the measured velocity curve at 
the velocity of 6 m/s (point C). Increase of the 
velocity value vH results in increase of inclination 

of the iterated velocity curve. Constant b is 
calculated from Hill’s equation. 
 

3.4 Analysis of 20.90 m Put 
 
Another shot put performance (20.90 m, [9]) was 
analyzed in order to be able to compare the two 
puts and to learn more about the characteristics 
of the arm push. Another analysis was also 
needed to confirm the validity of the equation of 

motion. Measured speed curve of this put (dots) 
is presented in Fig. 7. The speed which is 
calculated with Eq. (21) coincides with the speed 
of further development of Hill’s equation Eq. (11) 
in section B – C (Fig. 7). The propulsive power of 
the arm push is approximately P = 4520 W. The 
arm push in Fig. 6 has a greater pushing force 
1260 N than in Fig. 7 1200 N, but at the end of 
the push the decrease in acceleration in Fig. 6 is 
so great that the total velocities generated during 
both arm pushes are almost equally high. The 
reason for the large decrease in acceleration is 
probably due to muscle’s mechanics, maybe a 
pressure decrease in muscles as the turning of 
the body is getting larger. In the optimal arm 
push, this large acceleration decrease must be 
eliminated. 
 

4. CONCLUSIONS 
 
Rahikainen et al. [7] showed that in the first part 
of the arm rotation movement acceleration was 
constant and during the second part of 
movement equation of constant power (Eq. 21) 
fitted the measured velocity curve. The following 
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study (Rahikainen and Virmavirta [6]) continued 
the arm rotation experiments and a new 
approach to Hill’s equation was presented. The 
shot put experiments of the present study have 
the similar progress of movement with the 
previous ones, and the above mentioned 
constant acceleration and constant power 
phases have been proved to be true as well. The 
correct functioning of Eq. (21) is also proven as 
the two forces F01 = 1280 N and F02 = 1260 N 

(see paragraph 3.3) are very close to each other. 
 
In Figs. 6 and 7 the measured velocity curve has 
a phase of constant acceleration between 
velocity values ~1.5 - 3.5 m/s and it can be 
inferred that within this range of velocity constant 
maximum muscle force is produced presuming 
that the force of friction is constant value glide 
friction. The constant friction a in the phase of 
constant acceleration and in the phase of 
constant power in Eq. (11) is assumed to be the 
same and mechanics in the equation seems to 
function properly with this assumption. In 
MacIntosh and Holash [8] the values of friction 
coefficient a/P0 for human elbow flexors are 

given, 0.45, 0.4 and 0.39, in which P0 is 

maximum moment for values 0.4 and 0.45 and 
maximum force for value 0.39 and a corresponds 
to the force of friction. Values of friction 
coefficient a/P0 0.2-0.3 are also used. Proper 

functioning of Hill’s equation implies the action of 
counter force F and if the counter force is weak, 
velocity increases, and the friction coefficient 
a/P0 may be bigger 0.6 – 0.7.  

  
The original purpose of this study was to find out 
how well the models of Eq. (21) and the further 
development of Hill’s equation, Eq. (11), match 
the measured velocity in the arm pushes of two 
shot put performances. The fittings of these two 
constant power equations succeeded and they 
did function very much the same manner. Both of 
power equations fitted the measured velocity 
curve between velocity values 4 - 6 m/s and thus 
the constant power model proved to be true 
within this range of velocity. However, these two 
models of constant power (Eq. 11 and Eq. 21) 
are different and they differ at higher velocities 
significantly. The highest velocity value of the 
further development of Hill’s equation (Eq. 11) in 
Fig. 6 is vH = 13.2 m/s and the highest velocity of 

Eq. (21), after the correction presented in 
paragraph 2.4, is Vreal = 8.345 m/s. 

 
Within the present study two arm pushes of shot 
put were analyzed with success and the constant 

power model of the further development of Hill’s 
equation in maximum velocity was verified. It was 
also verified that in the phase of constant 
acceleration three different constant forces are 
acting: the force of acceleration, the force of 
friction and the force of gravity and added 
together they represent the maximum muscle 
force. The range of correspondence between the 
measured and theoretical velocities of the shot 
put experiments was long enough to confirm the 
existence of constant power models. Kinetic 
friction was assumed to be directly proportional 
to velocity at the beginning of the movement. It is 
possible that kinetic friction at small velocities is 
constant and at high velocities is directly 
proportional to velocity. This leads to a constant 
torque accelerating the movement at the 
beginning of movement. It is also possible that 
the constant acceleration phase of movement is 
rather a matter of human ability to learn effective 
modes of motion than a direct cause of natural 
laws. It may be that human nervous system 
controls the rotational moment accelerating the 
arm movement. 
 
The present application of Hill’s equation in 
accelerated motion could be worth to apply in the 
accelerated rotational movement as well. The 
analysis of additional subjects with different 
performance level would also help to better 
understand the function of Hill’s equation in 
accelerated movement. 
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