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We propose a method for multimodal concept formation. In this method, unsupervised
multimodal clustering and cross-modal inference, as well as unsupervised representation
learning, can be performed by integrating the multimodal latent Dirichlet allocation (MLDA)-
based concept formation and variational autoencoder (VAE)-based feature extraction.
Multimodal clustering, representation learning, and cross-modal inference are critical for
robots to form multimodal concepts from sensory data. Various models have been
proposed for concept formation. However, in previous studies, features were extracted
using manually designed or pre-trained feature extractors and representation learning was
not performed simultaneously. Moreover, the generative probabilities of the features
extracted from the sensory data could be predicted, but the sensory data could not
be predicted in the cross-modal inference. Therefore, a method that can perform
clustering, feature learning, and cross-modal inference among multimodal sensory data
is required for concept formation. To realize such a method, we extend the VAE to the
multinomial VAE (MNVAE), the latent variables of which follow a multinomial distribution,
and construct a model that integrates the MNVAE and MLDA. In the experiments, the
multimodal information of the images and words acquired by a robot was classified using
the integrated model. The results demonstrated that the integrated model can classify the
multimodal information as accurately as the previous model despite the feature extractor
learning in an unsupervised manner, suitable image features for clustering can be learned,
and cross-modal inference from the words to images is possible.

Keywords: concept formation, symbol emergence in robotics, probabilistic generative model, deep generative
model, unsupervised learning, representation learning, cross-modal inference

1 INTRODUCTION

Not only multimodal clustering and cross-modal inference but also representation learning is critical
for robots to form multimodal concepts from sensory data. We define multimodal categories that
enable multimodal clustering and cross-modal inference as concepts. Cross-modal inference enables
a robot to infer unobserved information from limited observed information, and this ability allows
robots to respond to uncertain environments. Various models have been proposed for concept
formation (Nakamura et al., 2014; Taniguchi et al., 2017). These models perform clustering and
cross-modal inference based on the multimodal latent Dirichlet allocation (MLDA) (Nakamura
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et al., 2009). However, pre-designed or pre-trained feature
extractors are used, and representation learning is not
performed simultaneously. Feature learning is an ability
required for robots to obtain environment-dependent
knowledge and adapt to the environment. Moreover, in these
previous studies, the generative probabilities of the features
extracted from sensory data could be predicted, but the
sensory data could not be predicted in the cross-modal
inference. Therefore, a method that can perform clustering,
feature learning, and cross-modal inference of the sensory data
is required for concept formation.

In this study, we focus on concept formation from image and
word information, and propose a method to perform clustering
and to learn suitable feature extractors simultaneously by
integrating the MLDA-based concept formation and
variational autoencoder (VAE)-based (Kingma and Welling,
2013) feature extractor. Figure 1 presents an overview of this
study. A robot forms concepts from the images captured by the
camera and words given by the human user who teaches the
object features. Furthermore, the formed concepts influence the
learning of the feature extractor, making it possible to extract
suitable features for concept formation in the environment.

Intelligent robots that learn from the information obtained
from the environment and the humans (Ridge et al., 2010;
Taniguchi et al., 2010; Mangin et al., 2015; Wächter and
Asfour, 2015) have been developed in the field known as
symbol emergence in robotics (Taniguchi et al., 2016, 2018).
This field includes various research topics, such as concept
formation (Nakamura et al., 2007; Ridge et al., 2010; Mangin

et al., 2015), language acquisition (Mochihashi et al., 2009;
Neubig et al., 2012), learning of interaction (Taniguchi et al.,
2010), and segmentation and learning of actions (Wächter and
Asfour, 2015; Nagano et al., 2019). The symbol emergence system
was proposed by Taniguchi (Taniguchi et al., 2016, 2018), and it
was inspired by the genetic epistemology proposed by Piaget
(Piaget and Duckworth, 1970). In the symbol emergence system,
robots self-organize into symbols from the multimodal sensory
information obtained from the environment in a bottom-up
manner. In this case, bottom-up means learning knowledge
only from the sensory information obtained from the
environment, without hand-crafting it or training it with
artificial disambiguated information such as teacher signals
and labels, which cannot be used in the human learning
process. Furthermore, the symbols (e.g., language) are shared
with others and the self-organization is influenced by the shared
symbols through communication with others in a top-down
manner. The symbols emerge from these bottom-up and top-
down loops.

We believe that it is important for robots to learn such symbols
autonomously and in an unsupervised manner in this loop to
coexist with humans. Accordingly, we have proposed models that
allow robots to acquire concepts and language by clustering the
multimodal information that is obtained through sensors
mounted on the robots in an unsupervised manner
(Nakamura et al., 2014; Taniguchi et al., 2017).

However, these models are not truly bottom-up because
suitable feature extractors for forming concepts are not
obtained in a bottom-up manner, but provided manually.

FIGURE 1 | Overview of study: (A) system and (B) corresponding integrated model proposed.
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Furthermore, although concept formation is an unsupervised
process, the feature extractors include supervised learning,
such as a pre-trained convolutional neural network (CNN).
These models are based on the MLDA and the relationships
among the modality features are learned. The model proposed in
(Nakamura et al., 2014) enables robots to acquire object concepts
and language simultaneously by mutual learning of the MLDA
and language model from multimodal information. The
multimodal information is composed of visual, auditory, and
tactile information obtained by robots, as well as speech uttered
by a human. They are obtained by observing, shaking, and
grasping objects, and the human teaches object features
through speech. The features are extracted from the visual,
auditory, and tactile information by using the dense scale
invariant feature transform (Vedaldi and Fulkerson, 2010),
sigmoid function approximation, and the Mel-frequency
cepstrum coefficient, respectively, which are used for the
observation of the model. The model of (Taniguchi et al.,
2017), combines the MLDA, simultaneous localization and
mapping, the Gaussian mixture model (GMM), and language
models to acquire the spatial concept and vocabulary. The human
speech to describe the location, visual information of the location,
and position of the robot are used to train the model. Similar to
the previous method, the features are extracted from each set of
information. For example, one of the observations of the model is
the feature extracted by the pre-trained CNN known as
Places205-AlexNet (Zhou et al., 2014).

In this study, we propose a method that enables unsupervised
multimodal clustering, unsupervised feature learning, and cross-
modal inference by integrating the MLDA-based concept
formation and VAE-based feature extractor. The latent
variables in the normal VAE are assumed to follow a Gaussian
distribution and these cannot be used for MLDA observations
because the observations are assumed to follow multinomial
distributions. Jang et al. realized sampling from a categorical
distribution using the Gumbel-Softmax distribution (Jang et al.,
2017). However, the latent variables were sampled from a
categorical distribution and not from a multinomial
distribution. Therefore, we extend the VAE to the multinomial
VAE (MNVAE), the latent variables of which follow a
multinomial distribution, by modifying the method proposed
in (Jang et al., 2017). Thereafter, we construct an integratedmodel
of the MNVAE and MLDA and demonstrate that it can classify
multimodal information that is composed of images and words.
The integrated model performs clustering and learns features
simultaneously by communicating the parameters computed in
eachmodel. Themain contributions of this study are summarized
as follows:

• We extend the VAE to the MNVAE, the latent variables of
which follow a multinomial distribution, thereby enabling
its combination with the MLDA.

• We demonstrate that the clustering performance can be
improved and suitable features can be learned by interaction
between the MNVAE and MLDA.

• We demonstrate that the cross-modal inference of images
from words is possible while learning with a small dataset.

Moreover, we consider that the integration of the MLDA and
representation learning is also significant in terms of leveraging
past research. Although pre-designed or pre-trained feature
extractors have been used, various studies (Attamimi et al.,
2014; Nakamura and Nagai, 2017; Hagiwara et al., 2019;
Miyazawa et al., 2019) in addition to the above have revealed
the effectiveness of theMLDA for multimodal concept formation.
That is, the integration of the MLDA and representation learning
makes it possible to develop these studies further. Another
advantage of the MLDA is that it can be interpreted easily and
trained with a small-scale dataset, as indicated in our previous
studies. Although it is possible to construct such a model using
only deep neural networks (DNNs), it becomes more difficult to
interpret the model as its size increases and a larger dataset is
required for its training.

In the experiments, we demonstrated that suitable features for
clustering images can be learned by the interaction between the
MNVAE and MLDA in an unsupervised manner using our
integrated model. Furthermore, the integrated model can
generate images from the features that are estimated from the
words using theMLDA.We used a multimodal dataset composed
of images and teaching utterances, which were obtained by the
robot observing the objects and the human teacher teaching the
object features using speech (Aoki et al., 2016). Because the
human teacher did not necessarily utter the words
corresponding to the object labels, the teaching utterances
included words that were not related to the labels, and speech
recognition errors consequently occurred. Moreover, we assumed
that the robot did not have a feature extractor for the images in
advance. Therefore, the robot was required to learn important
words and features in an unsupervised manner from this
ambiguous dataset.

2 RELATED WORK

Stochastic models and non-negative matrix factorization have
been used in several studies to learn the relationships among
multimodal information (Ridge et al., 2010; Nakamura et al.,
2014; Mangin et al., 2015; Taniguchi et al., 2017). However, in
these works, the feature extractor was designed or learned in
advance and it did not learn suitable features using only the
training dataset.

Deep generative models such as the VAE and generative
adversarial network (Goodfellow et al., 2014) have attracted
increasing attention as methods to obtain features. These
methods can deal with complicated high-dimensional data in
an end-to-end unsupervised manner. In particular, the VAE
encoder models the inference process of the latent variables
from observations, whereas its decoder models the generative
process of the observations from the latent variables. Therefore,
the encoder can be used for feature extraction.

The VAE has also been extended to models that can learn the
relationships among multimodal information (Suzuki et al., 2017;
Wu and Goodman, 2018). In these studies, the features of
multimodal information were extracted in an end-to-end
manner using multiple encoders and decoders. However, a
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large amount of data was required to train the models, and these
were evaluated using a large-scale dataset such as MNIST. It is
very difficult to construct a large-scale multimodal dataset using
sensors on the robot, and no such dataset exists at present. In our
proposed method, the relationships among the multimodal data
can be learned from a relatively small-scale multimodal dataset by
integrating the MNVAE and MLDA, without designing a feature
extractor.

Although the latent variables follow a Gaussian distribution in
the normal VAE, models have been proposed in which other
distributions were assumed (Jang et al., 2017; Srivastava and
Sutton, 2017; Joo et al., 2019). These models made it possible to
sample from the distribution, except for a Gaussian distribution,
by formulating the sampling procedure into a differentiable form.
Jang et al. proposed sampling from a Gumbel-Softmax
distribution to obtain samples from a categorical distribution
using the Gumbel-Max trick (Gumbel, 1954; Maddison et al.,
2014), in which a Gumbel distribution was used instead of the
indifferentiable argmax operation (Jang et al., 2017). In the
Gumbel-Softmax distribution, the samples became one-hot
vectors when the temperature parameter was lower; therefore,
the generated samples could be treated as samples from a
categorical distribution. Srivastava et al. used the Laplace
approximation, whereby the parameters of a Dirichlet
distribution were approximated by the parameters of a
Gaussian distribution, making it possible to sample from a
Dirichlet distribution by adding a softmax layer to the normal

VAE (Srivastava and Sutton, 2017). Joo et al. applied parameter
estimation of a multivariate Gamma distribution using an inverse
Gamma cumulative distribution function approximation to
enable sampling from a Dirichlet distribution (Joo et al.,
2019). In this study, we used the Gumbel-Softmax distribution
to obtain samples from a multinomial distribution.

Furthermore, clustering methods using features extracted by
DNNs have been proposed (Huang et al., 2014; Xie et al., 2016;
Yang et al., 2017; Abavisani and Patel, 2018; Hu et al., 2019).
Huang et al. added new regularization terms to the feature
extraction network to enable the learning of k-means-friendly
feature extraction (Huang et al., 2014). Abavisani et al. used
DNNs to compute a suitable similarity matrix as an input for
spectral clustering (Ng et al., 2002) from multimodal data
(Abavisani and Patel, 2018). Although these methods enabled
the computation of suitable features for clustering, they did not
consider the interaction between clustering and feature
extraction. Xie et al. proposed a method to learn the feature
extractor and perform clustering simultaneously by fine-
tuning the pre-trained autoencoder using the Student’s
t-distribution (Maaten and Hinton, 2008) and
Kullback–Leiblier (KL) divergence (Xie et al., 2016). Yang
et al. and Hu et al. enabled the simultaneous learning of the
feature extractor and clusters based on DNNs and k-means,
respectively (Yang et al., 2017; Hu et al., 2019). Hu et al. dealt
with the multimodal information of images and audio. Such
deep clustering models enable the clustering of complicated
data owing to the expressive power of deep neural networks.
However, these are deterministic methods that focus only on
the task of clustering and cannot perform probabilistic
inference, generation, and prediction among multimodal
information. Moreover, large datasets are required for
training the models. It is difficult to construct such large
datasets that are obtained by the robots.

3 INTEGRATED MODEL OF MULTINOMIAL
VAE AND MULTIMODAL LATENT
DIRICHLET ALLOCATION
Figure 2 presents a graphical illustration of the integrated model
of the MNVAE and MLDA. In Figure 2, α, βv, and βw are the
hyperparameters that determine the Dirichlet priors. Moreover,
π, φv, and φw are the parameters of the multinomial distribution,
whereas θ is a parameter of the MNVAE. o and ww are
observations such as an image and a word included in
teaching an utterance. wv is a feature extracted from o, and z
is a category obtained by clustering wv and ww. The parameters of
the integrated model are listed in Table 1. We aim to extract the
image featurewv and to form the object category z from the object
image o and word ww in an unsupervised manner. In this section,
we first explain the components of the integrated model, namely
the MNVAE and MLDA, and subsequently describe the
parameter estimation of the integrated model. Finally, we
clarify the data generation by the MNVAE from a feature
predicted by the MLDA.

FIGURE 2 |Graphical representation of integrated model of MNVAE and
MLDA.

TABLE 1 | Parameters of integrated model.

Parameter Explanation

O Image observation
Wv Image feature
ϕ, θ Parameters of MNVAE encoder and decoder
Ww Word observation
Z Category
Π Parameter of multinomial distribution for category
φv Parameter of multinomial distribution for image feature
φw Parameter of multinomial distribution for word observation
α, βv, βw Parameters of prior distributions
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3.1 Multinomial VAE
In the MNVAE, an observation o is compressed into an arbitrary-
dimensional latent variable wv through a neural network known as
an encoder. Thereafter, wv is reconstructed into the original
dimensional value ô through a neural network known as a
decoder. In this case, ϕ and θ denote the parameters of the
encoder and decoder, respectively. The parameters are learned
such that ô becomes the same as o. However, in the normal
VAE, it is assumed that a prior follows a Gaussian distribution,
and therefore it cannot share a latent variable with the MLDA, in
which it is assumed that the observations follow multinomial
distributions. To address this problem, the MNVAE computes λk,
which are the parameters of the multinomial distribution qϕ(w

v|o),
where k � 1, 2, . . . , K, and K is the number of dimensions.
Subsequently, sampling from the multinomial distribution is
performed according to the following operation:

un,k ∼ Uniform(0, 1), (1)

gn,k � −log −log un,k( )( ), (2)

wv
n,k �

exp log λk( ) + gn,k( )/τ( )
∑K

k�1 exp log λk( ) + gn,k( )/τ( )
. (3)

wv � ∑
N

n�1
wv

n, (4)

where N is the number of samplings and τ is the temperature. By
setting τ to a small value, wv

n becomes a one-hot vector.

3.2 Multimodal Latent Dirichlet Allocation
TheMLDA is a model that extends the LDA (Blei et al., 2003) and can
classify multimodal information. In the MLDA, it is assumed that the
observations wv � {wv

1, . . . ,w
v
Nv } and ww � {ww

1 , . . . ,w
w
Nw } are

generated as follows, in which Nv and Nw are the total numbers of
features for each observation.

• The category proportion π is determined by the Dirichlet
prior P (π|α):

π ∼ P(π|α). (5)

• The following procedure is repeated Nm times form ∈ {v, w}
to generate the observations.

• A category z is sampled from the multinomial
distribution P (z|π):

z ∼ P(z|π). (6)

• The observation wm
nm corresponding to the category z is

generated from the multinomial distribution P(wm|φm
z ):

wm
nm ∼ P wm|φm

z( ). (7)

The observations wv and ww are classified by estimating
the category z and parameters π, φv, and φw using Gibbs
sampling in an unsupervised manner. Sampling is conducted

such that the category zmij is assigned to the ith feature of the
modalitym ∈ {v, w} information wm of the jth object from the
conditional probability, where π and φm are marginalized
out as follows:

P zmij � c|z−mij,wm, α, βm( )∝ N−mij
cj + αc( )

N−mij
mwm

i c
+ βmi

N−mij
mc + Dmβmi

, (8)

in which Dm is the dimension number of the observation of
modalitym. Moreover, a negative superscript indicates that the
information is excluded. For example, z−mij represents the
remainder of the set of categories assigned to all objects,
excluding zmij. Nmwm

i cj
is the number of times that category c

is assigned to wm
i , which is the ith feature of modality m of the

jth object. Furthermore, Nmwm
i c
,Ncj,Nmc are computed as

follows:

Nmwm
i c

� ∑
j

Nmwm
i cj
, (9)

Ncj � ∑
m,wm

i

Nmwm
i cj
, (10)

Nmc � ∑
wm
i,j

Nmwm
i cj
.

(11)

That is, Nmwm
i c

is the number of times that category c is
assigned to the ith feature wm

i of modality m of all objects, Ncj

is the number of times that category c is assigned to all
modalities of the jth object, and Nmc is the number of
times that category c is assigned to the observation wm of
the modality m of all objects. By means of repeated sampling
according to Eq. 8, N* converges to �N* and the parameters are
computed as follows:

φ̂mwm
i c

�
�Nmwm

i c
+ βmi

�Nmc + Dmβmi
, (12)

FIGURE 3 | Exchange of parameters between MNVAE and MLDA.
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π̂cj �
�Ncj + αc

Nj + Cαc
, (13)

where Nj is the total number of features of all modalities of the jth
object and C is the number of categories. Finally, category zj of the
jth object can be determined as follows:

zj � argmaxcπ̂cj. (14)

3.3 Parameter Estimation of Integrated
Model
In this section, we discuss the parameter estimation of the
integrated model. It is desirable for the model parameters
illustrated in Figure 2 to be optimized by directly maximizing
the likelihood. However, it is difficult to estimate the latent variable
wv because it is shared between the MNVAE and MLDA.
Therefore, in this study, the MNVAE and MLDA are learned
independently, and all parameters are optimized approximately by
exchanging the parameters computed in each model.

Figure 3 presents the exchange of parameters between the
MNVAE and MLDA. The MNVAE compresses the observation o
intowv through the encoder and sends it to theMLDA. TheMLDA
considers wv as an observation, and classifies wv and observation
ww into category z. Thereafter, it sends the parameters of the
distribution p (wv|ww, Θ) to the MNVAE, where Θ is a set of
parameters learned in the MLDA. Subsequently, the parameters of
the MNVAE are optimized by the variational lower bound using
the received parameters, as follows:

L(θ,ϕ; o) � −cDKL qϕ wv|o( )‖P wv|ww,Θ( )( )
+Eqϕ wv |o( ) logpθ o|wv( )[ ], (15)

where DKL represents the KL divergence and c is the weight
thereon. In the integrated model, the MNVAE is initially
optimized by using a uniform distribution because the order
of the parameter update is MNVAE→MLDA→MNVAE→ . . .,
and p (wv|ww, Θ) has not yet been computed at this time. Thus,
a latent space that is suitable for clustering is learned by
regularizing qϕ(w

v|o), using p (wv|ww, Θ) as a prior.
We use the Symbol Emergence in Robotics tool KIT

(SERKET) (Nakamura et al., 2018; Taniguchi et al., 2020) to
implement the integrated model. SERKET is a framework for
constructing a large-scale model composed of small models.
SERKET supports independent learning in each module, the
exchange of computed parameters between modules, and
the optimization of the parameters of an entire model by
means of the interaction among modules, as described above.

3.4 Cross-Modal Inference Using Integrated
Model
It is possible to predict an observation from another observation
using the learned parameters in the integrated model. When a new
observation ww’ is obtained, the probability p (wv|ww’, Θ) that the
unobserved image feature wv will be generated from the words ww’

can be computed. The image feature ŵv is constructed by
performing the following sampling from this distribution N times:

wv∼ P wv|ww′,Θ( ), (16)

ŵv wv[ ] +�1. (17)

The constructed ŵv is input into the MNVAE decoder
pθ(o|ŵv), and an image o′ that is predicted from ww’ can
subsequently be generated.

o′ ∼ pθ o|ŵv( ). (18)

4 EXPERIMENTS

4.1 Dataset
In the experiments, we used the dataset that was used in (Aoki
et al., 2016). This dataset was composed of images, tactile sensor
values, and sound data obtained by the robot from objects and
utterances given by a human who teaches features of the objects.
The number of objects used was 499, which included a total of 81
categories, such as plastic bottles, candy boxes, stuffed animals,
and rattles. We used only the image and utterance data from the
dataset in the experiments. The images were obtained by
extracting the object region using object detection from the
scene acquired by the RGB camera. The images were resized
to 144 × 120 because the image size differed according to the
object size. We used these images as the observation o. The
teaching utterances were converted into strings using a phoneme
recognizer and then divided into words in an unsupervised
manner using the pseudo-online NPYLM (Araki et al., 2013).
These words were converted into bag of words (BoWs)
representations, and we used these BoWs as the observation ww.

4.2 Clustering and Representation Learning
We classified the multimodal dataset composed of images o
and words ww using the integrated model. We iterated the
training of the integrated model by varying the initial value
10 times, and used the average result to evaluate the proposed
method. Figure 4 presents the network architecture of the
MNVAE. We set K � 32, N � 100, and c � 1 in the first learning
and c � 104 thereafter. Moreover, learning was performed
with a batch size of 100 and 3,000 epochs. In this case, the
initial value of τ was set to 1, and it was decayed at a rate of
exp (−10−3t) for each epoch t. The MLDA was optimized by
Gibbs sampling with 100 sampling times.

As a comparison method, the features extracted by the joint
multimodal VAE (JMVAE) (Suzuki et al., 2017) were classified by
the GMM. In the JMVAE, the encoder and decoder for the images
have the same structure as those of the MNVAE; that is, the
encoder has three convolutional layers and fully connected (FC)
layers, whereas the decoder has an FC layer and seven
deconvolutional layers. The number of dimensions of the
latent variables was set to 32, as in the MNVAE. Refer to the
Appendix 1 for further details on the structure.

Figure 5 presents the latent variables compressed into two
dimensions by t-SNE (Maaten and Hinton, 2008) for
visualization. Each point represents one object and the color
reflects its correct category. Table 2 displays the classification
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accuracies and adjusted rand indices (ARIs) (Hubert and Arabie,
1985). “MLDA” is the result of the MLDA classifying the words
and image features extracted using the pre-trained CNN model1

(Krizhevsky et al., 2012; Jia et al., 2014), as in the previous study
(Aoki et al., 2016); “JMVAE + GMM” is the result of the
GMM classifying the features extracted by the JMVAE;
“MNVAE–MLDA” is the result of the classification by the
integrated model without interaction; and “MNVAE +
MLDA” is the result of the classification by the integrated
model with 10 interactions. Moreover, the transition of the
classification accuracy of the MNVAE + MLDA by exchanging
the parameters is depicted in Figure 6. The horizontal axis
represents the number of exchange iterations and the vertical
axis indicates the accuracy. Figure 5A indicates that the data
points of the same correct category were not close to one another
when using only the MNVAE. However, they were located close
together with the interaction between theMNVAE andMLDA, as
illustrated in Figure 5B. In particular, the data points of
categories 5, 6, and 59 were relatively well separated in the
latent space. This was because the dataset exhibited a bias

FIGURE 4 |Network architecture of MNVAE: (A) encoder consisting of three convolutional layers (conv) and a fully connected layer (FC) and (B) decoder consisting
of an FC layer and seven deconvolutional layers (conv_T).

FIGURE 5 | Latent space after compression by t-SNE: (A) result of only MNVAE and (B) result of MNVAE + MLDA. The numbers at the data points represent the
correct category index.

TABLE 2 |Classification accuracies and ARIs. “MLDA” used a pre-trained CNN for
the feature extraction, and is therefore considered as the performance
upper bound.

Accuracy ARI

MLDA 0.688 ± 0.014 0.613 ± 0.026
JMVAE + GMM 0.465 ± 0.013 0.271 ± 0.016
MNVAE–MLDA 0.491 ± 0.024 0.374 ± 0.031
MNVAE + MLDA 0.660 ± 0.018 0.601 ± 0.032

1https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
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in the number of objects included in each category, and the
numbers of objects in categories 5, 6, and 59 were relatively
large compared to those of the other categories.
Furthermore, Figure 6 indicates that the classification
accuracy was improved by iterating the exchange of

parameters between the MNVAE and MLDA. Thus, the
object category and word information affected the
MNVAE through the interaction, and feature extraction
that was suitable for clustering was obtained, thereby
improving the classification accuracy. Table 2 indicates
that the classification accuracy of the unsupervised
MNVAE + MLDA was similar to that of the MLDA with
the supervised feature extraction and better than that of the
JMVAE + GMM, which is likewise a method for
unsupervised feature extraction and clustering. This
suggests the effectiveness of the proposed learning
method, in which the MNVAE and MLDA parameters are
exchanged.

4.3 Cross-Modal Inference From Words to
Images
This experiment generated images from words, and the
generated images were evaluated to show that the proposed
method can perform cross-modal inference. The moderate
quality of the generated images may be attributed to the
fact that the training dataset was not sufficiently large.
However, it is considered that MNVAE + MLDA can

FIGURE 6 | Transition of classification accuracy of MNVAE + MLDA.

FIGURE 7 | Examples of images generated from words: (A) examples of MNVAE + MLDA, (B) examples of JMVAE, and (C) examples of images with changes
owing to addition of adjectives.

Frontiers in Computer Science | www.frontiersin.org September 2021 | Volume 3 | Article 6180698

Kuniyasu et al. Robot Concept Acquisition

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


generate more word-representative images than JMVAE
because a latent space that is suitable for clustering is
learned by regularizing qϕ(w

v|o) using p(wv|ww, Θ) in Eq.
15. Therefore, we conducted a subjective experiment to
identify the method that can generate more word-
representative images.

Images were generated from words using the MNVAE +
MLDA learned in the clustering experiment. The words
included “cup noodle”, “plastic bottle”, and “candy box”.
Figure 7A,B present examples of the images generated
from the words using the trained MNVAE + MLDA and
JMVAE. To evaluate the generated images, we showed 18
subjects a word and two images generated from the word by
the MNVAE + MLDA and JMVAE, and asked them to choose
which image was more appropriate to represent the word.
This procedure was iterated for six words. The number of
subjects who selected each method is displayed in Table 3. As
illustrated in Figure 7A, the rough shapes of the objects were
produced, although they were blurry. A white cylinder object was
produced for “cup noodle” and a green bottle with a white cap was
produced for “plastic bottle”. The dataset images included numerous
white cup noodles, green plastic bottles, and biscuits and other sweets
contained in boxes, as well as yellow and blue sponges. Therefore, the
images capturing these features were generated. In contrast, many of
the images in Figure 7B were very collapsed and it was difficult to
recognize them as the objects. This is because the dataset used in this
experiment has only 499 data points, which is relatively small for
training the JMVAE. Moreover, Table 3 demonstrates that the
MNVAE + MLDA-generated images were selected as the more
word-representative images for most objects in the subjective
experiment. Although the image generated from the sponge was
comparable, this is because the sponge is a simple shaped object that
the JMVAE could generate. According to these results, theMNVAE+
MLDA was better able to perform cross-modal inference in the
environment of this experiment.

Furthermore, it was confirmed that the generated images were
changed by the addition of adjectives. Examples of this change are
presented in Figure 7C. An image of a red sponge with a slight
yellow tint was generated by adding “red” to “sponge” and “hard
sponge” generated an image of a grayish sponge. It is believed that
this was because “hard” was often taught for gray cans. Thus, the
MNVAE + MLDA could learn suitable features from the small
dataset, making it possible not only to compute the probability of
generating the feature values, but also to generate the actual
images.

5 DISCUSSION

5.1 Image Reconstruction
We computed the structural similaritie (SSIM) (Wang et al.,
2004) as a quantitative evaluation of the reconstructed images.
The transition of the SSIM of the MNVAE + MLDA by
exchanging the parameters is illustrated in Figure 8. The
horizontal axis represents the number of exchange
iterations and the vertical axis indicates the SSIMs.
Moreover, Figure 9 presents examples of images
reconstructed by the MNVAE. It can be observed from
Figure 8 that the SSIM of the MNVAE + MLDA decreased
with the interactions. This is because the latent variables
represent not only the information for reconstructing the
images, but also the features of the categories owing to the
parameters received from the MLDA. Therefore, the SSIM

TABLE 3 | Results of subjective evaluation of generated images. This table
indicates the number of subjects who selected each method as generating
more appropriate images representing the word.

Word MNVAE + MLDA JMVAE

Cup noodle 18 0
Plastic bottle 17 1
Candy box 18 0
Stuffed animal 14 4
Sponge 8 10
Spray can 17 1

FIGURE 8 | Transition of SSIM.

FIGURE 9 | Examples of reconstructed images: (A) cup noodle and (B)
candy box. Left: input image, center: reconstructed image using only MNVAE,
and right: reconstructed image using MNVAE + MLDA.
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decreased and the reconstruction error increased. Although
the SSIM was decreased, it was possible to distinguish objects
from the reconstructed images, as indicated in Figure 9,
suggesting that feature extraction that was suitable for
clustering could be performed while capturing the image
features for their reconstruction.

5.2 Classification Results
Figure 10 presents the classification results of the MNVAE +
MLDA and MLDA. Figures 10A,B are normalized confusion
matrices. The vertical axis is the index of the correct category and
the horizontal axis is the index of the classified category.
Figure 10 indicates that stuffed animals (category 7) and
rattles (category 36); cooling sprays (category 21) and spray
cans (category 15); and sponges (category 4), cushions
(Category 18), and sponge bats (category 26) were frequently
misclassified in the MNVAE + MLDA and MLDA. Examples of
the objects included in these categories are depicted in Figure 11.
As illustrated in Figure 11, the features of these objects were quite

similar. Furthermore, the features of the rattles were often taught
by using utterances such as “this is a stuffed animal that makes
sound”, whereas the features of the sponge, cushion, and sponge
bat were taught by using utterances such as “this is soft”.
Therefore, these categories had similar image features and
similar words such as “stuffed animal”, “spray”, and “soft”
were taught frequently, thereby increasing the misclassification.
In (Aoki et al., 2016), tactile and sound information was used in
addition to images and words, and the correct categories were
determined on this basis. Hence, it is possible to decrease the
misclassification by adding information that was not used in the
experiment. For example, as the sounds of stuffed animals and
rattles differ when shaking them, it is possible to classify them
correctly using sound information. Comparing Figures 10A,B, it
can be observed that the MNVAE + MLDA yielded slightly more
misclassifications than the MLDA. The MLDA used the features
extracted by the pre-trained CNN, which was effective. In
contrast, in the MNVAE + MLDA, the feature extractor was
learned at the same time by the interaction between the MNVAE
and MLDA. As a result, we consider that several objects were
misclassified because of biased words, and the features were also
learned to represent those misclassifications.

5.3 Definition of Concepts
This paper uses a straightforward definition of concepts such as
the multimodal categories that enable multimodal clustering and
cross-modal inference, to present our outcome. Moreover, we
deal with categories such as discretized and symbolic to compare
them with the manually determined ground truth. This is because
we focus on evaluating our proposed method from the
perspective of engineering. By contrast, in cognitive science
(CS), the characteristics of concepts have been studied (Olier
et al., 2017), and we consider that our MLDA-based approach has
the potential to replicate some of them.

One characteristic pointed out in CS is that a concept is not
symbolic, but a distributed representation. In our approach,
although we convert categories into the symbolic
representation z by argmax p (z|wv, ww), the categories can be

FIGURE 10 | Classification results (normalized confusion matrices): (A) MNVAE + MLDA and (B) MLDA.

FIGURE 11 | Examples of objects in categories that were misclassified
many times.
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represented by the distribution p (z|wv, ww), which has a
continuous parameter. Therefore, concepts are represented in
a continuous space in MLDA, and thus it does not represent only
symbolic and static categories.

It is also pointed out that embodiment is important and that
concepts depend on action and context. An action can be easily
introduced into MLDA by considering the action a to be a single
modality as p (z|wv, ww, a) (Fadlil et al., 2013). By connecting
perception and action, it is possible to recall the unobserved
perception from the action through a simulation p (wv|a).
Furthermore, we extend our MLDA to a time-series model,
and action- and context-dependent concepts can be learned
(Miyazawa et al., 2019) to a certain extent.

Although the MLDA-based approach cannot currently describe
all cognitive phenomena, we consider MLDA to be a promising
model. In the future, by integrating our previous studies (Fadlil et al.,
2013; Miyazawa et al., 2019) and the proposals in this paper, we
would like to develop a cognitivemodel that allows robots to learn by
interacting with the environment.

6 CONCLUSIONS

We have proposed the MNVAE, which is an extension of the
VAE, the latent variables of which follow amultinomial distribution.
An integrated model of the MNVAE and MLDA was constructed,
and the multimodal information was classified. The experiments
demonstrated that the interaction between theMNVAE andMLDA
could learn the features that are suitable for clustering.Moreover, the
images representing the concepts acquired by the MLDA can be
generated from the word information. Thus, we have revealed that
combining the MNVAE and MLDA enables clustering and the
learning of features from the information obtained from the
environment in a truly bottom-up and unsupervised manner,
without the need for a manually designed feature extractor, as
used in previous studies.

We evaluated the integrated model using only image and word
information. In the future, we will incorporate not only images
and words, but also other modal information, such as tactile and
auditory information. We will construct and evaluate a model
that learns the feature extraction of the information of each
modality using the MNVAE in an unsupervised manner.
Furthermore, in this study, the BoW representation of strings
recognized by a phoneme recognizer was used, and language
knowledge (the language model) in the speech recognizer was not
updated. We believe that acquiring such language knowledge
from the information obtained by its own sensors in a bottom-up
manner is important (Tangiuchi et al., 2019). Therefore, we will
introduce mutual learning with the language model (Nakamura

et al., 2014) into the integrated model, and we will construct a
model that can learn the parameters of the speech recognizer
simultaneously. Moreover, the experimental results showed that
it was possible to learn from a small amount of data, but we found
that certain categories could not be learned correctly. We
consider that this is because the number of objects is small for
learning these categories and the bias of the number of objects
in each category is inevitable in the real environment. To
achieve learning in such a biased environment, we believe
that interactive and online learning is very important. The
learner expresses its inner state by using its current
knowledge and body, and the teacher changes his/her
actions (e.g., the object presented next in the task used in
this paper) by estimating the extent to which the learner
could acquire knowledge from its feedback. Therefore, we
plan to extend the proposed method to online learning to
realize interactive learning.
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APPENDIX 1: NETWORK STRUCTURE OF
JMVAE

In this section, we describe the network structure of the JMVAE
used in the experiment as a comparison method. Figure 12
presents the network structure of the JMVAE. The encoder
and decoder for the images have the same structure as the
MNVAE; that is, the encoder has three convolutional layers

and FC layers, and the decoder has an FC layer and seven
deconvolutional layers. The encoder and decoder for the
words are composed of an FC layer (512 nodes). The structure
of the joint encoder is shown in Figure 12A and multimodal
values can be obtained through an FC layer (512 nodes), the input
of which is the concatenated values of extracted features of images
and words. The number of dimensions of the latent variables was
set to 32, as in the MNVAE.

FIGURE 12 |Network structure of JMVAE used in experiment: (A) joint encoder, (B) image encoder, (C) image decoder, (D)word encoder, and (E)word decoder.
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