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Abstract 
Long-term studies aiming soil quality evaluation under different soil management strategies are no common. 
Long-term evaluations provided more reliable contributions to decision-making and practices adoption. This 
study evaluated the soil physical quality of a Brazilian Cerrado Latosol after 21 years of three different soil 
management strategies: disc plowing (DP), no-tillage (NT), and disc harrowing+subsoiling (DHS). In 
comparison to the reference, a soil from a native Cerrado area, the removal of the original vegetation and the 
implementation of the three soil management strategies increased the soil bulk density (Bd) and reduced soil 
porosity, macroporosity, soil organic carbon (SOC) and the size of water-stable aggregates, but did not change 
the glomalin-related soil protein (GRSP) contents and clay flocculation. Similar effects were diagnosed on soil 
physical quality when is considered only the three different management strategies, especially on soil porosity, 
Bd, size of water-stable aggregates, SOC and GRSP contents. Strategies of DP and NT increased soil resistance 
to penetration in the superficial layers, while the annual use of DHS reduced this soil mechanical characteristic. 
The NT system did not provide increasing of soil organic carbon in comparison to other management practices 
evaluated. In conclusion, removing the native vegetation affected soil physical quality, but the Brazilian Cerrado 
soil is resilient to physical damage even when different intensive farming practices are implemented for more 
than two decades. The limitation of the NT system in improving the soil physical quality is related to climate 
conditions that determine the non-maintenance of straw on the soil surface. 
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1. Introduction 
The Latosols in the Cerrado biome located in the central region of Brazil are well-developed pedogenetically, 
homogeneous, and present small variations between horizons. The natural fertility of these soils is low; however, 
physical characteristics such as drainage and depth are adequate, which make them very useful for agricultural 
production. The soil management systems adopted in this region have been more focused on increasing 
productivity by adopting technological innovations and intensifying land use. In contrast, the Brazilian Cerrado 
is considered one of the world’s biodiversity hotspots, constituting the second largest biome of the South 
American continent and covering an area of 2,036,448 km2 in states in the north, northeast, midwest, south, and 
southeast regions of Brazil (MMA, 2018). 

In contrast to air and water quality, which is measured by its degree of contamination (Andrews et al., 2002), soil 
quality is defined by its ability to function within the limits of the ecosystem and land use to ensure biological 
productivity, maintaining environmental quality, and promoting plant and animal health (Doran & Parkin, 1994). 

The conversion of native vegetation areas into cultivated areas changes the physical, chemical, and biological 
characteristics of the soils. A common trend is the worsening of attributes related to the soil physical quality, 
especially the increase in soil compaction, and consequently the increase in erosion and decrease in infiltration 
rate, and the reduction of soil volume explored by plants (Spera et al., 2004). Only the cultivation practices can 
promote soil losses from erosion, as indicated by Doetterl et al. (2016) as the tillage erosion. This type of erosion 
produced by intensive and mechanized management can reach levels similar to those of water erosion. 
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Loss of soil physical quality is relatively higher in clay soils, where compaction is higher (Horn, 1988). In Brazil, 
clayed soils are typical in the Cerrado area where technological innovations in agriculture are responsible for 
success and a significant percentage of the national gross domestic product. Therefore, adopting management 
and agricultural practices that depreciate the soil physical quality may decrease productivity in this important 
agricultural region of Brazil. 

Soil erosion and degradation are minimized or reduced by using conservative management practices, with an 
emphasis on no-tillage systems (Wang et al., 2017). According to the Brazilian Federation of No-Tillage Systems, 
approximately 32 million hectares were planted with summer crops in Brazil before the 2013/2014 harvest under 
no-tillage systems, and these area size has increased since the beginning of the practice in 1972 (FEBRAPDP, 
2018). 

Conservation agriculture represented by no-tillage minimizes soil disturbance by reducing the mineralization of 
organic matter, consequently increasing the organic carbon content and improving soil aggregation and 
infiltration (Guo et al., 2016). 

Impacts resulting from intensive soil management practices have decreased crop productivity, especially when 
the soil structure is damaged and soil organic matter concentration is decreased (Zhang et al., 2017). In this 
context, management practices that have a lower impact on the soil and that maintain or increase organic matter 
concentration are recommended. 

The soil organic matter is a critical component associated with the development and maintenance of soil 
structure and is the focus of different management practices. Several studies demonstrated the role of 
glomalin-related soil protein (GRSP) in binding soil particles. Sharifi et al. (2018) suggested the use of the ratio 
between GRSP and soil organic carbon as an indicator of the level of disturbance of crop systems. 

The no-tillage system has been highlighted as a conservative soil management practice in Brazil and worldwide, 
mainly when it is associated with increased soil mulch. This system reduces the risk and rate of erosion and 
increases soil organic matter, soil infiltration, soil fertility, and overall soil quality (Ogban et al., 2001; Iqbal et 
al., 2005). 

Most studies on the effects of soil management practices on soil quality were short-term and lacked 
methodological rigor. Long-term studies are rare because of their complexity and costs, which limits the 
obtaining of results and recommendations with a higher degree of reliability. 

The objective of this study was to evaluate the soil physical quality of a Brazilian Cerrado Latosol after 21 years 
of intensive cultivation under no-tillage and other soil management strategies. 

2. Materials and Methods 
2.1 Area Description 

This study was carried out in an experimental area of the Brazilian Agricultural Research Company (Embrapa 
Milho e Sorgo) located in the municipality of Sete Lagoas (19°27.408′ S and 44°10.939′ W; and 786 m of 
altitude), Minas Gerais State, Brazil. According to Köppen’s classification, the climate of the region is type Cwa, 
with dry winter and hot summer, and temperatures above 22 °C in the hottest month of the year. The soil of the 
experimental area was classified as clayey Red Latosol (EMBRAPA, 2013) with a very clayey texture (Table 1). 
The native soil presents limited fertility, but cultivation practices could improve its chemical attributes.  

The study area was previously occupied by pastures. From 1995 to 2016, this area was divided into 320 m2 plots 
(20  16 m) and used for cultivation under different soil management strategies. In the present study, the areas 
cultivated using disc plowing (DP), no-tillage (NT), and disc harrowing + subsoiling (DHS) were selected. A 
nearby and contiguous area with native Cerrado (NC) vegetation (not included in the original experiment) was 
used as the reference. All evaluated areas, including the NC area, presented similar soil class, slope, landscape 
position, and face of exposure to solar radiation. 

All experimental plots were cultivated with corn, except for NT soils, which was characterized by corn-soybean 
rotation. The experiment was analyzed considering a completely randomized block design with three 
replications.  

In the DP treatment, the equipment used was a disc plow with three discs (diameter of 32″). A three-shank 
subsoiler and an intermediate disc harrow with 16 discs (diameter of 28″) were used in the DHS treatment. 
Leveling procedure was performed in DP and DHS treatment using a leveling apparatus after soil preparation. 
Herbicide glyphosate was applied before cultivation in NT soils for desiccation. This same herbicide was applied 
to all cultivated areas during the offseason to manage weed growth. All operations were performed using two 
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tractors (4,150 kg and 5,500 kg). 

The corn crop was cultivated (65,000 plants/ha) in all areas using a seed and fertilizer spreader. Annual 
maintenance and cover fertilization and the application of gypsum and limestone were performed according to 
technical recommendations based on soil analyses. Phytosanitary control in the study area was carried out by 
applying insecticides, with two to three applications after cultivation according to technical recommendations. 

The corn-soybean rotation was performed in NT treatment. In the years of soybean cultivation, a total of 500 
kg/ha of NPK formulation 4-30-16 was applied to this crop at sowing (280.000 plant/ha). Millet was grown with 
irrigation in the NT areas in the off-season in the years 2008 and 2010, and the formed and incorporated biomass 
was 60 t/ha of green mass. No other crop was used in the off-season of other experiment years. 

 

Table 1. Soil chemical and physical characteristics of the study areas (0-0.20 m depth) 

NC DP NT DHS 

pH (H2O) 4.97 4.79 5.86 5.14 

P (mg/dm3) 0.5 7.6 8.63 12.77 

K (mg/dm3) 16 132.33 84.67 84.67 

Ca2+ (cmolc/dm3) 1.03 3.71 3.63 3.12 

Mg2+ (cmolc/dm3) 0.12 1.15 1.12 0.9 

Al3+ (cmolc/dm3) 1.1 0.07 0.03 0.23 

H+Al (cmolc/dm3)  7.3 5.93 4.9 6.2 

SB (cmolc/dm3) 1.19 5.21 4.97 4.24 

CEC-t (cmolc/dm3) 2.29 5.27 5.01 4.48 

CEC-T (cmolc/dm3) 8.49 11.14 9.87 10.44 

V (%) 14 46.83 51.13 40.6 

m (%) 48 1.3 0.7 5.23 

Sand (kg/kg) 0.12 0.16 0.19 0.17 

Silt (kg/kg) 0.07 0.09 0.10 0.08 

Clay (kg/kg) 0.84 0.75 0.71 0.75 

Pd (kg/dm3) 2.24 2.40 2.32 2.32 

Note. NC = native Cerrado; DP: disc plowing; NT = no-tillage; and DHS = disc harrow + subsoiler. Analyses: 
pH in water-ratio of 1:2.5; P and K using Mehlich-1 extractor; Ca2+ Mg2+ Al3+ with KCl 1 mol/L; H+Al with 
calcium acetate 0.5 mol/L, pH 7.0; SB = sum of bases; CEC = cation exchange capability effective (t, at original 
pH) and at pH 7.0 (T); V = base saturation; m = aluminum saturation; Pd = particle density. All procedures are 
according to EMBRAPA (2017).  

 

2.2 Methods and Techniques 

Disturbed and undisturbed samples were collected in July 2016. The disturbed samples from 0.00-0.20 m were 
obtained using an auger probe. Three composite samples were used per treatment, corresponding to 20 single 
samples collected per plot. In the laboratory, soil samples were sieved through a 2.0 mm sieve to obtain soil 
material for the analyses. The undisturbed samples were obtained using volumetric cylinders of approximately 
0.05 m in height and diameter. In each treatment, six rings were collected in the center of the layer at a depth of 
0.00-0.10 m. 

The soil mechanical resistance to penetration (RP) was evaluated in the field in February 2017 at a depth of up to 
60 cm using a PenetroLOG digital penetrometer (model PLG1020; Falker), and measurements were performed 
every 0.01 m at a constant speed. The data were extracted from the storage unit using Penetro-LOG software and 
graphed and expressed by the mean values in 10 cm intervals, as follows: RP1 (0-10 cm), RP2 (10-20 cm), RP3 
(20-30 cm), RP4 (30-40 cm), RP5 (40-50 cm), and RP6 (50-60 cm). 

Wet aggregate stability was evaluated in samples pre-moistened and shaken in a set of sieves of different mesh 
sizes. After agitation, the weight of the samples retained in each sieve was used to calculate the mean weight 
diameter (MWD) and geometric mean diameter (GMD) according to Embrapa (2017). 
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Soil bulk density (Bd) was determined using the volumetric ring method, and particle density (Pd) was measured 
using the volumetric flask method. Microporosity (Mi) was determined in undisturbed samples after equilibrium 
to the -0.006 MPa on a tension table. Total porosity (Pt) was estimated by the equation: 

Pt = [1 – (Bd/Pd)]  100                                (1) 

Macroporosity (Ma) was calculated by the equation:  

Ma = Pt – Mi                                     (2) 

Water-dispersible clay (WDC) was determined using the pipette method. The degree of flocculation (DF) relative 
to the total clay (TC) content was calculated according to the equation:  

DF = [(TC – WDC)/TC]  100                              (3) 

All analyses were performed according to Embrapa (2017). The soil total organic carbon (TOC) was determined 
according to the Walkley & Black method (Yeomans & Bremner, 1988). 

Physical fractionation of soil organic matter was carried out to obtain particulate organic matter (POM) and 
mineral-associated organic matter (MOM) according to the methodology proposed by Cambardella & Elliott 
(1993). The TOC in the MOM (TOC-MOM) was determined according to Yeomans and Bremner (1988). The 
TOC in the POM (TOC-MOP) was obtained by subtracting the TOC-MOM from the total soil organic carbon. 

The specific surface area (m2/g) of soil samples was quantified by measuring the water vapor sorption (Quirk, 
1955). 

The GRSP concentration, including the easily extractable glomalin (EEG) and total glomalin (TG), was 
determined according to Wright et al. (1996). For EEG processing, autoclaving was performed once. For TG, 
autoclaving was performed six times until the solution reached a light-yellow color. These two fractions were 
quantified by the Bradford (1976) colorimetric method using a spectrophotometer and bovine serum albumin as 
the standard. 

2.3 Statistical Analysis 

The data were subjected to analysis of variance to assess differences between the treatments after confirming the 
normality of residuals using the Shapiro-Wilk test (p < 0.05). Dunnett's posthoc test (p < 0.10) was used to 
compare the means of the treatments relative to the control area (NC). The mean values in the cultivated areas 
were compared using Tukey’s test (p < 0.10). All statistical analyses were performed using R software version 
3.4 (R Core Team, 2017) and the “ExpDes.pt” package developed by Ferreira et al. (2009).  

3. Results and Discussion 
The soil physical and chemical attributes are shown in Table 2. The different management practices for more 
than 20 years changed around one-third of the soil attributes in comparison to the native Cerrado (p < 0.10). 

3.1 Effects on Soil Structure 

The soil structure was used to access the soil physical quality because this parameter is highly sensitive to soil 
management practices. The native Cerrado area (NC) presented a larger and more stable aggregates as indicated 
by MWD and GMD values. Beutler et al. (2001) observed a similar result in an adjacent site of the present study. 
The authors verified higher GMD in the NC area, although the soil of no-tillage (NT) treatment has presented 
larger aggregates (> 2 mm) in a proportion similar to that of the NC area at a depth of 0 to 5 cm. 

The removal of the native vegetation in the cultivated areas and the use of maintaining soil management 
practices for two decades reduced the average size of the aggregates, although the differences between the three 
cultivated areas (NT, DP, and DHS) were not significant. The presence of larger and more stable aggregates 
increases soil pre-consolidation pressure (Letey, 1985; Dexter, 1991), facilitates water infiltration by increasing 
macroporosity, and promotes water retention in micropores (Dexter, 1988).  

The bulk density (Bd) increased with the land use and management in the three cultivated areas in comparison to 
the NC area. Nonetheless, we cannot find differences among the cultivated areas. The Bd value in soil with NT 
(1.33 kg/dm3) was 56% higher than in the NC area (0.85 kg/dm3). Increases in Bd values under NT systems have 
been reported in the literature (Sheehy et al., 2013; Domínguez & Bedano, 2016). For this reason, is usual to 
recommend periodic and minimal tillage in NT soils to improve their physical properties. Considering that, 
Camara and Klein (2005) observed the reduction of Bd values and the increase of water infiltration in soils 
submitted to the scarification and managed under NT after six years.  
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The soil porosity (P) was not decreased with cultivation using disc plowing compared with the NC area. 
However, these soil characteristics was reduced in NT soils and in the soils managed by harrowing and 
subsoiling. The increase in Bd in NT soils decreased the soil porosity, as reported in previous studies (Silveira et 
al., 1999; Silva et al., 2008). In contrast, an increase in soil porosity in the surface layer was observed by Loss et 
al. (2017) in vegetables grown under NT compared to conventional tillage, and this result was attributed to the 
higher number of roots and consequently higher occurrence of voids in the soil matrix. In turn, Costa et al. (2003) 
found no differences in total porosity, macroporosity and microporosity in a Brazilian Latosol managed in the 
long-term under NT and conventional tillage. 

 

Table 2. Physical and chemical characteristics of a Brazilian Cerrado Latosol managed using different practices 
for more than 20 years 

 NC DP NT DHS CV 

MWD (mm) 2.36±0.07 1.80*±0.04 1.90*±0.07 1.92*±0.06 3.9 

GMD (mm) 1.86±0.10 1.14*±0.06 1.20*±0.07 1.22*±0.05 6.2 

Bd (kg/dm3) 0.85±0.05 1.14*±0.04 1.33*±0.09 1.14*±0.01 7.9 

Total porosity (m3/m3) 0.62±0.01 0.53 ±0.02 0.42*±0.04 0.51*±0.01 9.7 

Microporosity (m3/m3) 0.34±0.02 0.42*±0.00 0.40*±0.02 0.42*±0.01 3.8 

Macroporosity (m3/m3) 0.28±0.02 0.11*±0.02 0.02*±0.02 0.09*±0.01 54.0 

WDC (kg/kg) 0.07±0.01 0.08±0.00 0.09±0.02 0.08±0.00 27.5 

RP1 (0-10 cm) (MPa) 0.23±0.03 0.52 b±0.06 1.68 a*±0.14 0.20 c±0.02 17.4 

RP2 (10-20 cm) (MPa) 0.51±0.10 2.48 b*±0.23 3.44 a*±0.22 0.70 c±0.02 13.07 

RP3 (20-30 cm) (MPa) 0.65±0.13 2.90 a*±0.09 3.22 a*±0.31 1.29 b*±0.26 15.8 

RP4 (30-40 cm) (MPa) 0.79±0.19 2.68*±0.13 2.47*±0.12 1.90*±0.40 21.3 

RP5 (40-50 cm) (MPa) 1.01±0.28 2.02*±0.09 1.90*±0.09 1.88*±0.33 18.3 

RP6 (50-60 cm) (MPa) 1.31±0.34 1.55±0.05 1.54±0.10 1.58±0.23 17.2 

TOC (g/kg) 44.32±2.11 31.92*±2.71 30.54*±2.32 31.94*±1.64 5.5 

TOC-MOM (g/kg) 23.65±1.32 21.55±1.62 19.69±1.79 21.35±2.17 5.5 

TOC-POM (g/kg) 20.67±3.02 10.37*±1.09 10.85±1.54 10.59*±0.54 34.0 

SS (m2/g) 114.08±4.86 98.40±4.59 95.76 ±6.78 95.24±4.37 4.6 

Note. NC = native Cerrado; DP = disc plowing; NT = no-tillage system; DHS = disc harrow + subsoiler. 

MWD = mean weight diameter; GMD = geometric mean diameter; Bd = bulk density; WDC = water-dispersible 
clay; RP = soil resistance to penetration; TOC = total organic carbon; TOC-MOM = TOC of the 
mineral-associated organic matter fraction; TOC-POM = TOC of the particulate organic matter fraction; and SS 
= soil specific surface area; Means followed by standard errors. CV = coefficient of variation in the cultivated 
areas (DP, NT, and DHS). Samples collected at a depth of 0 to 20 cm, except for the evaluation of Bd (0-0.1 m) 
and RP. The means followed by an asterisk (*) were significantly different from the reference area (NC) using 
Dunnett’s test (p < 0.10). For the cultivated treatments (DP, NT and DHS) the means followed by the same letter 
in each line were not significantly different using Tukey’s test (p < 0.10).  

 

The dynamics of soil macropores (Ma) and micropores (Mi) was affected by soil use and management. The 
removal of the NC and the implementation of treatments cultivated increased the Mi and decreased Ma. Under 
the NT system, there was a reduction in Ma values, reaching values of 0.02 m3/m3. Similarly, Stone and Silveira 
(2001) observed that Bd and Mi increase whereas Ma was decreased in NT soils in Brazilian Cerrado. Moreover, 
Costa et al. (2009) verified that Ma values were increased in a Humic Cambisol managed by plowing and 
harrowing during 15 years in comparison to soils under NT for nine years. 

Soil structure affects the growth and development of crop roots. In this context, the analysis of soil Ma is 
essential because macropores are crucial for soil water infiltration and are the preferred route for root growth 
(Calonego et al., 2011). Given that the larger pores are the most affected during soil compaction, good 
management practices should be prioritized, especially for the traffic of agricultural machines (Bergamin et al., 
2010).  

Although the average size of aggregates (WMD and GMD) was decreased by adopting cultivation practices, 
even after two decades, these practices did not affect the clay flocculation. The change in inputs, the decrease in 
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50 cm no-tillage promote higher RP values than the reference area (NC). Soil resistance to penetration with disc 
plowing and disc harrow and subsoiler was higher than that in the native Cerrado at a depth of 10-50 cm and 
20-50 cm, respectively. In the soil superficial layer (0-10 cm), the lower values of RP with DP and DHS may be 
due to soil tillage during soil preparation for cultivation. 

In general, cultivation practices increase the soil resistance to penetration until 50 cm depth. The no-tillage 
system presented the highest RP values until 30 cm depth whereas DHS-treated soils presented the lowest RP 
(Table 2). No differences among cultivated areas (NT, DP and DHS) were diagnosed after 30 cm depth. 
Treatments with soil revolving (DP and DHS) presented similar soil resistance to penetration to reference area 
(NC) in the superficial layer studied (RP1). Disc plowing treatment exhibited high resistance to penetration at 
21-30 cm depth, coinciding with the depth of cut of disc plow. 

The soil resistance to penetration verified at the no-tillage area is coherent with the Bd values. These results 
suggest the formation of a “no-till pan” as proposed by Reichert et al. (2009), which usually develops under 
long-term no-tillage and is commonly found at of 7-20 cm depth. These authors characterize this layer with high 
mechanical strength, high bulk density and low porosity. Hamza and Anderson (2005) highlight the preference of 
some farmers for conventional tillage over no-tillage systems because although can increase soil organic matter, 
it is common to find critical values of RP (> 2 MPa) in no-tillage areas and severe restrictions to root growth can 
be observed. However and in contrast to this restrictions, most parts of Brazilian farmers consider no-tillage 
promotes economic environmental and social benefits and its adoption is more than 50% of the cultivated area 
with annual crops (Freitas & Landers, 2014). 

Our results show around 3.5 MPa as the higher RP found. The critical value of RP varies among crops and for 
corn 1.5 to 4.0 MPa are usually considered critical, although values of 1.3 MPa can reduce 50% of plant growth 
(ROSOLEM et al., 1999). 

Soil moisture should be considered when evaluating RP Lower RP values in the native Cerrado and the use of 
DHS coincided with higher soil moisture (Table 3). In turn, higher RP values in no-tillage and disc plowing 
treatments were coincident with lower moisture. Therefore, considering that the treatments were close, without 
evidence of differences in rainfall, the maintenance of higher soil moisture was only achieved in the areas 
managed with harrow with the subsoiler. 

It is well known that resistance to penetration depends on soil Bd and moisture. We can assume that the 
differences in RP values were due to soil moisture because there were no differences in Bd among the three 
cultivated areas (Table 2). Therefore, a linear relationship between RP and soil moisture (Figure 2) indicates that 
a 1% rise in gravimetric moisture decrease in RP of 0.1 MPa. 

 

Table 3. Gravimetric water content during the mechanical resistance to penetration measurement 

Layer (cm) 
Gravimetric Moisture 

NC DP NT DHS 

0-20 0.40 0.21 0.22 0.36 

20-40 0.42 0.26 0.26 0.32 

40-60 0.35 0.28 0.28 0.27 
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Improvements in the physical quality of no-tillage system are limited when maintaining straw on the soil surface 
is unfeasible because of climate restrictions. 
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