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ABSTRACT 
 

A variety of biotic and abiotic stress conditions result in the production and accumulation of 
pathogenesis related (PR) proteins in plant. Transcriptional regulation of PR genes plays a vital role 
in defense response in plant. In rice, the role of the PR1 gene in defense response have been 
studied, but critical examination of the OsPR1a gene after a treatment with defense responsive 
phytohormones and their regulation via promoter analysis have not been examined indepth. 
Several signalling mechanisms are involved in the induction and repression of defense genes, 
which are mediated by salicylic acid (SA) and jasmonic acid (JA). Expression profiling was carried 
out to determine the effects of phytohormones, salicylic acid (SA), and jasmonic acid (JA) at 12 h, 
24 h, and 48 h after treatment. Expression profiling indicates cumulative upregulation of OsPR1a 
gene at 12 h after SA and JA treatments, whereas it downregulates at 24 h and 48 h after JA 
treatment. We also performed a comprehensive in silico analysis of the promoter region of OsPR1a 
gene to predict how the transcription factor binding site (TFBS) regulate its expression.  
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1. INTRODUCTION 
 
Plants are constantly under threat from several 
phytopathogens and biotic stresses because 
they are immobile. Plants' ability to endure 
environmental stress indicates that they are 
impervious to them [1]. Several studies have 
demonstrated that plants respond to these 
environmental stresses through complex defence 
signalling pathways [1,2]. It has been studied for 
decades how host-pathogen interactions lead to 
plant susceptibility or resistance. As stress 
stimuli are recognized early and defense 
responses are activated, these interactions take 
place in a well-organized fashion [1,2]. The 
defense response is affected by many factors. 
There are several key factors responsible for 
pathogenesis, including reactive oxygen species 
production (ROS), the activation of 
hypersensitive responses (HR), phytohormone 
interaction, and the synthesis of pathogenesis-
related proteins (PR). In response to biotic and 
abiotic stresses, PR proteins accumulate in 
plants. They also accumulate during specific 
stages of physiological development, such as 
fruit ripening, pollen development, and leaf 
senescence [3–6]. Different types of proteins are 
derived from these proteins: transcription factors, 
metabolism-promoting enzymes, protease 
inhibitors, and hydrolases [3–6]. Tobacco mosaic 
virus isolates PR1-a was the first protein isolated 
from tobacco leaves. The PR1 group was 
isolated from several plant species after this 
isolation [3], but little else is known about the 
other members of the PR1 group. As the first PR 
protein to be discovered, PR1 serves as a 
molecular marker for systemic acquired 
resistance (SAR), and it plays a role in both biotic 
and abiotic responses to stress. There are 12 
OsPR1 genes in rice that are well characterized 
for disease resistance [7, 8], out of 32 predicted 
PR1 genes [9]. Identifying ideal promoters 
depends largely on identifying pathogen-resistant 
genes. Pathogen-inducible promoters are 
characterized by rapid activation when multiple 
phytopathogens are present. In rice, the PR1 
gene is known to play a role in defense 
response, but the OsPR1a gene after exposure 
to defense-responsive phytohormones and its 
regulation via promoter analysis hasn’t been 
examined thoroughly. The study of gene 
expression regulation of PR proteins is crucial to 
understanding plant defense mechanisms. The 
responses of plants to pests and diseases are 
controlled by transcription factors that bind to cis-

acting regulatory elements (5–20 bp) associated 
with specific genes [10]. A comprehensive in 
silico study of OsPR1a genes was performed to 
learn how transcription factor binding sites 
(TFBSs) in OsPR1a promoter sequences 
regulate gene expression. 
 

2. MATERIALS AND METHODS 
 

2.1 Defense Responsive Phytohormones 
Treatment 

 

A rice variety, Rajendra Kasturi, was grown to 
the four-leaf stage and used for SA. We sprayed 
the four-leaf stage plants with 3 mM sodium 
salicylate containing 0.05% Triton-X-100, while 
control plants were treated with distilled water 
containing 0.05% Triton X-100 and covered with 
polythene. We collected the treated leaf samples 
after 12 h, 24 h and 48 h of incubation [8].  
 

For JA treatment, 21 days old seedlings grown in 

black portrays (9 cm diameter  9 cm height) 

containing a small hole (1 cm diameter) at the 

bottom for water absorption from a tray (20 14

7 cm) containing 1 liter of water. Seedlings were 

then placed on another tray (20 14 7 cm) 

containing 100 µM JA [11]. Seedlings placed in 
distilled water were acted as mock. Leaves 
tissues of JA and mock treated were collected at 
12, 24 and 48 h for gene expression studies. 
 

2.2 Analysis of cis-regulatory Elements  
 

The 1000 bp upstream FASTA files of the 
promoter sequence of OsPR1a retrieved from 
Rice Annotation Project Database (RAP-DB) 
(http://rapdb.dna.affrc.go.jp/tools/dump) and 
retrieved sequences were analysed for the 
presence of TFBSs using the PlantPan3.0 
(http://plantpan3.itps.ncku.edu.tw/) tool. The 
promoter sequences were further used for 
PlantCARE databases of plant cis- regulatory 
DNA elements analysis. Promoter analysis tools 
provides an informative resource for detecting 
transcription factor binding sites (TFBSs). 
PlantPan3.0 contains maximum number of TFs 
and matrices of TFBSs among 76 plant species 
covering major families of plants. 
 

2.3 RNA Isolation and Quantitative Real-
time RT-PCR (qRT-PCR)  

 

The relative expression of OsPR1a genes in 
treated rice seedlings after SA, JA, and EBR, 
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treatments is measureed by qRT-PCR. The total 
RNA was extracted from frozen plant tissue 
using the SV Total RNA Isolation System 
(Promega, Madison, WI). Total RNA (1µg) was 
reverse transcribed for cDNA synthesis using 
random hexamer primers by following the 
manufacture’s protocol (Promega, Madison, WI). 
qRT-PCR was carried out using SYBR Green 
dye on Light Cycler system (Applied Biosystem). 
Each qRT-PCR quantification was carried out 
using three biological replication using gene 
specific primers. The PCR program initial 
denaturation at 95°C for 2 min, followed by 
amplification of 40 cycles of denaturation (95°C 
for 20 s), annealing (53°C for 30 s), and 
extension (72°C for 30 s). The specificity of 
amplification was confirmed by melting curve 
analysis after 40 cycles. The expression value of 
ACTIN was used to normalize the expression 
data of genes. The expression levels of genes 
investigated in this study were calculated with the 
formula given by [12]. 
 

3. RESULT 
 
3.1 OsPR1 a Gene Expression in 

Response to Hormonel Treatment 
 
Plant hormones SA and JA are the known 
modulators of plant defense system. The 
expression studies of OsPR1a after defense 
hormone treated rice seedlings were performed 
at 12 h, 24 h and 48 h dpi. using qRT-PCR. The 
upregulation of OsPR1a in all the time points 
analyzed indicates the onset of plant defense 
mechanism after SA and JA treatments. The 

differential expression of all the OsPR1a was 
shown in Fig. 1. OsPR1a gene was upregulated 
after SA and JA treatment at 12 h dpi, whereas 
at 24 h and 48 h dpi shows antagonistic relation. 
OsPR1a gene was downregulates after JA 
treatment at 24 h and 48 h dpi. 
 
Leaf samples were collected at the 12 h, 24 h, 48 
h time points. Transcript levels were analyzed by 
qRT-PCR analysis and expressed relative to the 
mock treatment at each time point. Results are 
representative of three independent experiments. 
Error bars represent standard error (SE) of mean 
for three replicates. 
 

3.2 Retrieval of Promoter Regions and 
Analysis of Plant cis-acting 
Regulatory Elements (PCAREs) and 
Transcription Factor Binding Sites 
(TFBSs) in Rice 

 

Promoter sequences up to 1 kb upstream from 
the translation start site of each PR gene of O. 
sativa were scanned using PlantCARE and 
PlantPAN 3 programmes for the identification of 
PCAREs and TFBSs. Several important defense 
responsive TFBSs (bHLH, bZIP, C2H2, EIN3, 
GATA, LEA, MYB, Myb/SANT, NAC, NAM, and 
WRKY) were identified in the promoter 
sequences of OsPR1a genes (Fig. 2). The 
maximum number of developmental related 
TFBSs SBP (62), TBP (41), TCP (34) and TBP 
(34) are present in OsPR1a gene. This gene 
does not contain WRKY, MADF, and MADS 
TFBSs. 

 

 
 

Fig. 1. Response of OsPR1a in salicylic acid (SA) and jasmonic acid (JA) treated rice seedlings 
Leaf samples were collected at the 12 h, 24 h, and 48 h time points. Transcript levels were 
analyzed by qRT-PCR analysis and expressed relative to the mock treatment at each time 

point. Results are representative of three independent experiments. Error bars represent the 
standard error (SE) of the mean for three replicates
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Table 1. List of Cis-Regulatory elements in OsPR1a 
 

Site Position Strand (+) Position Strand (-) sequence Functions 

ABRE 139, 137, 140 136, 303, 705 GACACGTACGT Abscisic acid responsiveness 
ABRE3a 139 705, 303 TACGTG  
ABRE4 139 705, 303 CACGTA  
ACE  137 GACACGTATG light responsiveness 
ATCT-motif 831  AATCTAATCC part of a conserved DNA module 

involved in light responsiveness 
AT~ABRE 139  TACGTGTC  
AT~TATA-box 43, 220, 218, 327 757, 563, 810, 759, 751, 755, 761, 

680, 753 
TATATA  

Box 4  620, 644, 636, 804, 624, 640 ATTAAT part of a conserved DNA module 
involved in light responsiveness 

CAAT-box 7, 359, 247, 829, 241, 
830, 261, 246, 778, 285, 
510, 214, 746 

774, 264, 13, 685, 815, 883, 9, CCAAT common cis-acting element in 
promoter and enhancer regions 

CGTCA-motif 176, 573  CGTCA MeJA-responsiveness 
G-box 139, 300, 705, 144, 303 TACGTG, TAACACGTAG, 

CACGAC 
light responsiveness 

GTGGC-motif 16  GATTCTGTGGC part of a light responsive element 
MYB 916 542 CAACCA  
MYC 7 713 CAATTG  
Myb-binding site 916  CAACAG  
TATA-box 27, 33, 43, 45, 216, 218, 

219, 220, 221, 222, 232, 
233, 316, 318, 327, 329, 
379, 465, 749, 

29, 30, 31, 32, 217, 317, 562, 563, 
565, 680, 681, 682, 750-763, 809-
812, 833, 965, 982, 984 

TATACA, TATATAA core promoter element around -30 of 
transcription start 

TC-rich repeats 418  GTTTTCTTAC defense and stress responsiveness 
TCA 452  TCATCTTCAT  
TGACG-motif  176, 573 TGACG MeJA-responsiveness 
Unnamed__4 49, 869, 956, 450, 783, 

402, 597 
661, 886, CTCC  

as-1  176, 573 TGACG  
dOCT 586  CACGGATC  
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Fig. 2. Putative cis-acting defense related TFs identified in the promoter of OsPR1a genes 
                                   
In addition, this study revealed a total of 21 
PCAREs found in OsPR1a and their length 
varied from 4–10 bp. The frequency of 
occurrence of different cis-elements at different 
positions in the 1 kb of both reverse and forward 
strands is almost the same. The majority of the 
defense responsive cis-elements were located 
between 16–493 bp on the forward strand (+) 
and 546–842 bp on the reverse strand (-) (Table 
1). The numbers of cis-elements TATA, CAAT 
box, and Box 4, were greater in OsPR1a genes. 
The phytohormones MeJA-responsiveness 
consensus sequence CGTCA-motif, TGACG-
motif present in the positive and negative strands 
of 176, 573. This gene also contains defense 
responsive TC-rich repeats (GTTTTCTTAC) 
present at 418 positions. OsPR1a gene was 
enriched with abscisic acid responsiveness and 
maximally found at proximal region (<500) of 
promoter (Table 1). 
 

4. DISCUSSION 
 
It is undeniable that plant pathogens possess a 
greater range of ecological adaptions and 
devastation of plant growth than any other 
organism. Plants have yet to develop natural 
resistance to disease, but several strategies 
have been carried out for plant resistance such 
as signalling pathway modification, gene 
pyramiding, overexpression disease responsive 
genes including PR-genes [13]. The regulation of 
the defense network that translates the 
pathogen-induced early signaling events into 
activation of effective defense responses 

depends profoundly on the action of plant 
phytohormones [14]. The importance of SA and 
JA as primary signals in the regulation of the 
plant’s immune response is well established [14–
16]. The SA pathway is primarily induced by and 
effective in mediating resistance against 
biotrophic pathogens, whereas the JA pathway is 
primarily induced by and effective in mediating 
resistance against herbivores and necrotrophic 
pathogens [17]. In SA treatment, the induced 
expression of OsPR1a was recorded whereas, 
down regulation of OsPR1a was observed in JA 
treated samples. The relationship between 
SA/JA treatments on PR1 gene expression is 
extensively studied in plants [18]. A plethora of 
reports indicate that treatment with salicylic acid 
up-regulates the PR-1 gene expression in plants 
[18] including rice [7]. In rice, it has been 
reported that OsPR1a genes are induced 
through the coordinated action of SA, JA and 
ACC signaling pathways and underlie the 
Systemic Acquired Resistance [7]. Transcription 
factors (TFs) regulate gene expression through 
binding to cis-regulatory specific sequences in 
the promoters of their target genes [19]. During 
the last few years, the advance in the 
determination of TF-binding sites using 
bioinformatics tools has helped research to 
decipher expression of genes in different 
conditions including abiotic and biotic stresses 
[20, 21]. The expression of a large number of 
defense-related plant genes is regulated at the 
transcriptional level in response to pathogen 
infection [22]. Timely transcriptional regulation of 
defense-related genes is crucial for effective 
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responses to pathogens [23]. We analyze the 
promoter sequences of the OsPR1a using 
PlantPAN2 and PlantCare software. The basic 
region/leucine zipper motif (bZIP) regulates 
various stress and developmental responses by 
binding to various TFBSs. Plant bZIP proteins 
can recognize the ACGT core in DNA 
sequences, preferentially the A-box, C-box and 
G-box [24], CCAAT-box, TGA-element, NON, 
ABRE [24–26] AS-1 [27], TATCCAT/C-motif [28]. 
In a previous report was found that the AS-1cis 
element is an oxidative stress-responsive 
element and activated by SA by binding TGA cis 
element [29]. bZIP proteins have imparted a 
major role in activating several defense genes 
[30]. AP2/ERF TFs were known to induce the 
synthesis of ET, SA and JA which enhanced the 
expression of PR genes during pathogen 
infestation [31, 32]. It is worthy to mention that, 
presence of AP2/ERF TFBSs in defence 
responsive genes enhanced resistance against 
specific abiotic and biotic stresses [33]. In our 
study we found that Calmodulin signaling 
responsive gene is mostly associated with ABRE 
(CGTG) cis-elements [34, 35]. 
 

5. CONCLUSION 
 
This study insight light on complex view of PR1 
proteins in rice. Even though PR1 proteins are an 
important family for linking factor of biotic and 
abiotic stress but some of their characteristics 
have not been illuminated until now.  
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