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ABSTRACT 
 

The transition to circular economy has become a sustainable technique to plastic waste 
management. This makes recycling a key driving machinery for achieving sustainable plastic waste 
management. However, most of the models that predict the volume of plastic products and its waste 
generation do not reflect the role of the recycling rate and its correlates. The objective of this study 
is to develop a simple two-dimensional cyclical dynamic closed (CDC) model that reflects the plastic 
life cycle to predict the volume of annual plastic production and plastic waste generation. The CDC 
model was formulated using a time-dependent linear system of ordinary differential equations; and 
the solution methodology was based on the Laplace transform technique. A programme was written 
using excel implementation codes to compute the models’ parameters and predict the values of 
global annual plastic production and waste generation; while implementation codes in R were 
applied to predict and forecast with the models. A global data on plastic waste management was 
used; it was sourced from the annual reports of the Plastic Europe (the Association of Europe 
Plastic Manufacturers), the Plastic Europe marketing Research Group, and research publications 
on plastics. The results revealed that the long-run equilibrium solutions of the models are zeros, 
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which also have a practical implication under the context of a closed model. The performances of 
the models were investigated via the criterion of the mean absolute percentage error (MAPE), which 
measures the predictive power of the models. MAPE values of approximately 13% and 18% were 
obtained, respectively, for the global annual plastic production and plastic waste generation models. 
These values indicate that on average, the model for global annual plastic production can predict 
with an accuracy rate of 87%; while that for the global annual plastic waste generation can predict 
with an 82% accuracy rate. The outperformance of the CDC model was established by comparing 
with the best performing solid waste model developed in 2017. The model was used to forecast 
from 2022 to 2050. The models have significant policy implications for waste managers and all 
stakeholders. 
 

 

Keywords: Cyclical dynamics; closed model; mean absolute percentage error; plastic waste 
management; recycling. 

 

1. INTRODUCTION 
 
As a major constituent of conventional solid 
waste management, plastic waste management 
presents an unwarranted environmental 
challenge because of its inherent property of 
being biologically undegradable as against the 
case of biodegradability associated with many 
solid wastes. Thus, the entire process of 
managing plastic waste can be described as a 
complex one relative to other solid wastes. The 
complexity that enclaves plastic waste 
management can be explained not only by their 
undegradable nature but also their heterogeneity 
in polymers, which necessitates sorting at the 
recycling and recovery stages of plastic wastes 
leading to exorbitant cost of recycled plastics; 
and the adverse repercussion on human health 
and wildlife [1-6].  
 
It is imperative to refer to the global demand for 
plastics, which increased from about 1.5 million 
tonnes in 1950 to approximately 322 million 
tonnes in 2015 with an average approximated 
growth rate of nine percent per annum. In the 
global market, the dominant customer sector in 
the plastic industry is packaging applications with 
a percentage share of approximately 39.9 in 
Europe, just as the same situation applies in the 
UK [3].  It is significant, however, to reflect on the 
adverse environmental consequences that 
associate with the continuous increase in the 
global demand for plastic applications [7, 8]. For 
instance, since plastic is derived from petroleum, 
an increase in the demand for plastics and 
consequently its application may lead to the 
depletion of petroleum which is a nonrenewable 
fossil fuel. Moreover, the high consumption of 
plastics by the end-user consumer may result in 
the upsurge of solid waste by means of suffusing 
millions of tonnes of plastic waste into the chain 
of solid waste generated annually. Citing the UK 
as a case in point, out of approximately 3.7 

million tonnes of plastic waste estimated in 2014, 
as large volume as 2.2 million tonnes of 
packaging waste could not be recycled right 
away as a result of contamination with various 
residues. Plastic waste therefore constitutes a 
major component of municipal and industrial 
wastes that end up perpetually in the landfill in all 
most every economy around the globe. This has 
unleashed damage on aquatic food chains, 
resources and creatures caused by the disposal 
of substantial volumes (closely eight million tons) 
of plastic waste comprising more than 5 trillion 
smithereens into the world’s oceans and other 
water bodies [8, 9]. The global challenges that 
emanate from managing plastic waste are 
heightened in urban areas of third world 
countries not only due to increased industrial and 
consumer applications, increased demand, but 
also inadequate data on the volume of plastic 
waste generated [1, 8-12]. This situation 
aggravates in the event of a rapidly growing 
population coupled with the complexities of 
increased urbanisation and industrialisation 
which make it tough for authorities to regulate 
[13,14].  
 
Considering the enormity of environmental and 
ecological threats, the aligned adverse 
consequences for both present and future 
generation, and the fact that plastic waste is a 
source of precious raw materials [4, 8, 10,15-17], 
there is a need for waste managers to adopt 
proactive and sustainable approaches to waste 
management and integrate global strategies to 
reduce the stream of generated volume of plastic 
wastes [18-20].   
 
We emphasize that any sustainable strategic 
approach to plastic waste management must be 
backed by effective and efficient optimal 
decisions and planning based on predictions (or 
estimates) from mathematical models with high 
predictive accuracy. Thus, adequate and reliable 
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data are functions of best predicting 
mathematical models. Unfortunately, just as it 
applies to solid waste management, the 
sustainability of plastic waste management has 
been mitigated by lack of data [13]. This 
necessitates the need to develop robust                    
models that can predict and forecast, with high 
predictive power the volume of plastic                      
products and plastic wastes generated                  
over the years. This will surmount the  
challenges imposed by data unavailability and 
unreliability. 
 
In the literature, more emphasis was placed on 
optimal decisions and planning of the volume of 
municipal solid waste [21-23]; and the volume of 
recycled plastics [5, 24-26], with a dominant 
application of optimization models. In addition to 
the fact that these optimization models do not 
reflect the periodicity or time heterogeneous 
properties of plastic products and wastes, none 
attempted to develop models to reflect the plastic 
life cycle. It is rational to contend that efficient 
optimal decision and planning in connection to 
the volume of plastic waste and recycled plastics, 
as well as facility location, inter-alia, depends on 
a reliable and timely data which can be derived 
from accurate predictions and forecasts of the 
volume of plastic products (primary production or 
recycled) and wastes generated from models 
typified by the plastic-life-cycle. It is our candid 
view that every optimal decision towards 
achieving a plastic circular economy must 
depend on a time-dependent model that 
integrates the roles of waste generation, 
recycling, incineration, and discarding, which 
constitutes a significant accomplishment of this 
present study. 
 
The study therefore proposes a two-state (or 
decentralized) cyclical dynamic closed model for 
plastic waste management. The motivation was 
driven out of the reports of various studies that 
have uncovered the alarming rate of plastic 
pollution in the environment and the ocean as a 
result of the high global volume of mismanaged 
plastic waste. Another motivation emanated out 
of the fact that the global data on plastic waste 
still have incineration as a treatment option as 
against the EU’s data on plastic waste 
management.  Finally, most of the models that 
predict the volume of plastic products and its 
waste generation do not reflect the role of the 
recycling rate and its corelates, albeit the fact 
that recycling remains the key driving machinery 
for achieving sustainable plastic waste 
management. 

The main aim is to develop a two-state closed 
model that reflects the cyclical dynamics of 
plastic waste management to account for the 
roles of plastic: recycling, incineration and 
discard rates in determining the volume of plastic 
production and waste generation. The specific 
objectives are of fourfold to: develop closed 
cyclical linear models, find analytical solutions to 
the models, fit the models to a global data to 
validate and predict or forecast the global annual 
volume of plastic production and waste 
generation. It is expected that a model with high 
predictive accuracy will be developed to inform 
efficient planning and optimal policy formulation 
in solid waste management. 
 
This study will contribute significantly to science 
or theory in the following perspectives; it 
introduces a complete representation of the time 
dynamics of the plastic-life-cycle which has not 
been covered in the literature, especially in the 
mathematics literature. Additionally, the idea of 
the closed model which places a restriction on 
the production of virgin plastic has been 
introduced in this study so that the sustainability 
of plastic recycling in the event of higher waste 
incineration and discarding rates can be 
assessed; this has also received little or no 
attention in the literature. The plastic: recycling 
rate, waste incineration, and discarding rates are 
jointly formulated in this study as corelates of 
both plastic: production and waste generation, 
but this has not been dealt with in the literature. 
Finally, the models were formulated using a 
system of time-dependent linear differential 
equations, which has attracted little or no 
attention in the area of plastic waste 
management vis-á-vis waste management in 
general. 
 

1.1 Conceptual Frame Work 
 

Some studies have focused on predicting the 
volume of generated municipal solid wastes of 
which plastic waste is a constituent. Least square 
regression approach by [27] to predict the 
volume of residential solid waste (RSW) 
generation was proposed. The goal was to 
confirm the mathematical model that expresses 
such variables as education, income per 
household, and number of residences as 
correlates of RSW generation. The data applied 
originates from a study on generation, 
quantification, and composition of residential 
wastes in a Mexican city in three stages. Five 
other variables were further identified for 
inclusion in the models to define prediction 
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models. A separate mathematical model was 
developed at each sampling stage to determine a 
model that exhibited the best linear relation in 
predicting RSW generation. Normality, 
multicollinearity, and heteroskedasticity tests 
were conducted, models exploring the 
combination of included variables with higher 
values of    were selected. Finally, a general 
mathematical model which was proposed to 
predict RSW generation accounted for 51% of 
the total. Apart from the fact that this study 
concentrated on the volume of generated RSW, 
the model is time independent, which makes it 
inadequate for predicting the volume of 
generated RSW which is inherently time 
dependent. Again, nonlinear regression models 
have demonstrated superior predictive 
performance over linear regression models [28]. 
ARIMA/ARMA and exponential smoothening 
models were introduced by [29] to predict the 
volume of solid waste generation using monthly 
data of solid waste collected by city or municipal 
authorities that spans a six-year period. Another 
ARIMA time series model has been applied to 
study the dynamics of solid waste management 
[30] based on a monthly solid waste volume 
generated. In respect of performance 
assessment metrics such as MAPE, MAD, and 
RSE, ARIMA (1, 1, 1) was revealed to be the 
best performing model amidst all parametric-
characterised time series models. 
Notwithstanding, the outperformance of ARIMA 
(1, 1, 1) is associated with an intrinsic 
biasedness driven by the underlying axiom of a 
stationary stochastic process, which expressly 
implies constant mean and variance. Thus, 
automatically, the volume of generated 
solid/plastic waste is subject to flow in a similar 
fashion albeit its nonparametric nature which 
confers time-dependency, seasonality, or time-
heterogeneity [31]. As it is for solid waste, the 
same applies to plastic waste and so it will be 
inappropriate to fit a parametric model to a 
plastic-based nonparametric data. To explore 
predictive accuracy, a grey fuzzy dynamic 
modelling was proposed by [32] in a study to 
forecast the volume of solid waste generation in 
general. In this study, extensive parameters were 
proposed to investigate a fuzzy logic intelligent 
system, where data was generated from a spatial 
geodatabase integrated in a GIS environment. 
However, the application of various fuzzy 
systems is subject to the choice of the 
researcher and the interpretation of fuzziness. 
For a continuous time-dependent data that 
cannot be discretized as characterised by 
monthly generation of plastic wastes, continuous 

modelling and predictive analysis come with 
some level of complexity. Improving the 
predictive accuracy of such data is subject to the 
choice of models with similar behavioural 
patterns. Such models should be nonparametric, 
time heterogeneous, and periodic as indicated in 
[33]. To say the least, [33] also proposed a 
Fourier series approach to optimize and forecast 
the volume of solid waste generated. This 
approach has proven a high degree of predictive 
accuracy as it outperforms the existing high 
performing ARIMA models in [29, 30].  The fact is 
reiterated that data on monthly volume of solid 
waste vis á vis plastic wastes and products is 
characterized by periodicity, nonparametric, and 
time heterogeneity. The Fourier series approach 
proposed in [33] fits well into these properties 
and this suggestively explains its outstanding 
performance relative to the ARIMA and time 
series models. Two limitations are clear here. 
First, by nature, the Fourier function is a 
continuous function and so it will have been 
appropriate to apply it in the stochastic sense 
with continuous time integrals. The challenge 
would have related to finding an appropriate 
numerical technique to approximate the 
predicted values. Discretization might have its 
own challenge in terms of computational 
complexities, thereby making the approach 
questionable in terms of time efficiency. The 
efficient model selected depends on the period k 
that gives the least value of MAPE and RSE. 
This makes it unsuitable for large-scale 
application. Second, the objective of optimizing 
and forecasting the volume of generated solid 
waste represented just a single phase, which 
was a partial representation of the complete 
coverage of solid waste management.  
 
Aside the few limiting factors, any of the 
aforementioned best performing models for 
predicting municipal solid wastes represents the 
general solid waste, hence, plastic waste seems 
to be overshadowed in terms of modelling and 
forecasting. This therefore, makes it imperative 
to recommend studies, particularly on model 
development, to reflect the intrinsic 
characterization of plastic products and plastic 
wastes for accurate prediction and forecasting. 
An extensive and a first global analysis of all 
mass-produced plastics ever manufactured was 
performed in 2017 [9]. In this study, dispersed 
data on the production, use, and end-of-life 
management of polymer resins, synthetic fibers, 
and additives were identified and synthesized. 
Although the study modelled and projected the 
volumes of plastic waste under various 



 
 
 
 

Addor et al.; JMSRR, 9(2): 15-36, 2022; Article no.JMSRR.86558 
 
 

 
19 

 

characterizations using discretized log-normal 
distributions, which denote the fractions of 
plastics in the industrial sector utilized over a 
specified number of years, the study does not 
reflect the complete dynamics of the plastic life 
cycle which is cyclical. Consequently, the 
transitional connections between plastic products 
and plastic wastes are mislaid. In addition, as 
indicated, all estimates made between 2014 and 
2050 in respect of growth rates of global 
recycling, incineration, and discard were based 
on a simple assumption of forward projections of 
the historical global growth trends, which 
therefore, should not be misconstrued for 
predictions or forecasts. Thus, there is a need to 
develop a model that will reflect both the forward 
and reverse transitional dynamics of plastic 
waste management with specific emphasis on 
plastic production through recycling and waste 
generation.  
 

2. MATERIALS AND METHODS 
 
We define the 2-compartment model using a 
time-dependent system of homogeneous linear 
ordinary differential equations. Linearity is 
considered under the assumption that technology 
is fixed at a value of 1. The states comprise the 
source, which is the consumption unit (or 
compartment) responsible for the consumption of 
plastic products and the generation of plastic 
waste; and the production compartment also 
responsible for the production of plastic products 
and the recycling of plastic wastes; and supply 
the same to the consumption unit. Plastic 
products can be produced from two sources, 
namely, virgin resource and plastic waste [34, 
35]. In the closed model, we ignore the role of 
virgin resource and introduce just a simple model 
that mimics the rate of transition of plastic 
products to plastic waste and the rate of 
transition of plastic waste to plastic products. To 
state in simple terms, we attempt to model the 
rate at which plastic products degenerate or 
transforms into plastic wastes; and the rate at 
which plastic wastes are converted into plastic 
products. The aim is to aid to determine in a 
simple time discrete way, the volume of plastic 
that can be recovered from a given volume of 
plastic waste. The system also neglects the role 
of a central agent (waste receptor) which serves 
as a link between the production and 
consumption units. Therefore, the closed system 
basically involves only two compartments, the 
household (consumption unit) and the production 
unit with emphasis on plastic products 
(consumable plastics) at the consumption unit 

supplied from the production unit at a given 
rate/proportion; and plastic wastes at the 
production unit supplied from the consumption 
unit at a given rate.  
 
We assume that a given volume of plastic 
products that reaches the consumption 
compartment will become (or degenerate into) 
waste overtime through disintegration or after 
usage. In this context, we define plastic waste as 
plastic products that have outstayed their original 
usage (plastic bottles, packaging, polytene, and 
others) or have disintegrated (for example plastic 
bowls, PVC among others).  
 
Other assumptions underlying the decentralized 
closed system of plastic waste management are 
as follows:  
 
Sources of virgin raw materials are ignored to 
ensure that plastics can only be produced 
through recycling, thus the models are assumed 
to operate under a closed system of plastic 
waste management. Moreover, the volume of 
plastic products and plastic wastes follow a 
Poisson process and so do their rates, which per 
time period, represent the proportion of recycled 
volume of plastic wastes and that of waste plastic 
out of plastic products. Additionally, there is no 
central agent acting as a waste receptor. This 
guarantees that plastic waste generated at the 
household is directly discharged to the 
production unit.  
 
Let us denote the volume of plastic products at 
the consumer compartment at any given time by 
     and its rate of transition into plastic wastes 

at any time be given by  . This means that at any 
point in time, the volume of plastic waste that is 
expected to be generated out of plastic products 
is   . We denote also; the volume of plastic 

wastes at the production unit per time by      
and the rate at which these plastic wastes are 
converted into plastic products through 
production by  . Thus, at any given time,    
volume of plastic products will be generated out 
of the available plastic waste at the production 
unit to be resupplied to the consumption unit. 
The volume of waste incineration also counts in 
the global annual data and becomes a source of 
decrement to the total volume of the global 
annual waste generated; denoted by   ; the rate 
at which global annual plastic wastes are 
generated, the total volume of global annual 
plastic wastes that can be incinerated within any 
specified period is    . We also denote by   ; 
the total volume of global annual wastes that are 
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discarded. Now, bringing into force the 
assumption that plastic wastes generated by the 
household are directly discharged to the 
production unit and that there is no central agent 
to act as a waste receptor who serves as a link 
between the consumption and the production 

unit, a simple cyclical dynamic model that defines 
the rates and volumes of transitions of plastic 
products into plastic wastes and plastic waste 
into plastic products is obtained as illustrated in 
Fig. 1.  

 

 
 

Fig. 1. A decentralized closed system for plastic waste management 
 
The guiding equations for the unregulated version of the decentralized open system of plastic wastes 
management are given by the system of homogeneous linear ordinary differential equations below. 

 

 

     

  
          

     

  
      

                                                                 

 
Equation 1 represents the closed model for a 2-multistate cyclical dynamics of plastic waste 
management. The linearity of (1) was obtained by adopting the popular assumption of a fixed 
technology (of unit 1) that underpins the Cobb-Douglas production function. This assumption 
transforms a general nonlinear system of ordinary differential equations (ODEs) to the form presented 
in [36]. 
 
Laplace transform (LT) is the solution technique applied in solving the system represented by 
Equation 1. Following the LT technique, we obtain as follows: 
 

  
     

  
               

 
                           

 
By applying the initial condition, we simplify to get 
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Following a similar approach, we have 
 

  
     

  
           

 
                       

 
Applying the initial value condition         and simplifying, we obtain 
 

                   

      
        

   
                                                                      

 
If Equation 2 is substituted into Equation 3, we have 
 

     
  

        

     
    

   
 

 

     
                     

            
 

 
Grouping like terms and simplifying, we have 
 

     
             

                
 

 

     
             

      
    

  

 
Where we define the following; 
 

   
 

 
  

 
        

 

  
       

 
 

 
We decompose      into a partial fraction as follows: 
 

     
             

      
    

 
    

      
    

 

 

      
  

      
    

 
 

      
    

 

 
                     
 

Thus, we have 
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Applying  
  

, the inverse Laplace transform to     , we have 
 

 
          

  
 

   

      
    

 
            

      
    

   

 

  
  

 
   

      
    

   
  

 
            

      
    

  

 

    
  

 
    

      
    

 
   

        
     

   
  

 
               

        
     

  

 
We obtain 
 

                          
  

 
                     

 
                                                                                 

 
Where, 
 

   
            

 
 

 

   
        

 
 

 
Similarly, we solve for      by substituting Equation 3 into Equation 2 as follows: 
 

     
  

        

   
    

     
 

 
 

     
                  

            
 

 
Simplifying, we obtain 
 

     
            

      
    

  

 
Where, 
 

   
 

 
  

 
        

 

  
       

 
 

Resolving into a partial fraction and taking the inverse LT, we have 
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Where, 
 

   
        

 
 

 

   
        

 
 

 

The solution        is the region      given by 

 
                                                                             

 
The steady state equilibrium of the system defined by 

 
   
   

        
   

       

 
The steady state solutions of both      and      are zero (0) since both solutions decay to zero as 
   . 

 
3. RESULTS  
 
Now that the models have been developed, we 
will fit them to a real data which comprises a 34-
data point of global volume of annual: plastic 
production, plastic waste generation, 
incineration, discarding and recycling all 
measured in metric tonnes (Mt). The main 
components of the data to be modelled [global 
annual plastic production and plastic waste 
generation] were sourced from various editions 
of the annual report of Plastic Europe, Plastic 
Europe Market Research Group (PEMRG) in 
conjunction with Conversio Markets and Strategy 
GmbH, which was most of the time published, for 
instance, in the form of [37, 38]; and a publication 
on plastic wastes statistics of the World Bank 
Group [39]. Data on waste incineration, 
discarding, and recycling was generated by 
applying the percentages of waste distribution by 
disposal methods in [9]. It is a publication of 
global data on the production and distribution of 
plastic wastes by disposal methods from 1950 to 
2015. It is eminent to mention that reference was 
made to [37, 38] in [9] in respect of data sources. 
For instance, data on plastic resin production 
(1950 – 2015) was obtained from the 

publications of PEMRG, while that on global 
annual fiber production (1970 – 2015) was based 
on the publication of the Fiber Year and Tecnon 
OrbiChem. This explains our decision to rely 
heavily on [37, 38] for the global data on annual 
plastic production and waste generation. 
However, the two sources were compared to 
assist in filling data gaps and updating estimates 
of the volumes of global annual plastic 
production, waste generation, and recycling. 
Based on the list of regions provided by Plastic 
Europe and its associates, we simplified the data 
distribution by region as follows: Asia, NAFTA, 
EU28+2, and the rest of the world (Middle East, 
Africa, Latin America and CIS). Worth noting is 
the fact that the EU data includes 
Thermoplastics, Polyurethanes, Thermosets, 
Elastomers, Adhesives, Coatings and Sealants 
and PP-Fibers, however, PET-, PA- and 
Polyacryl-Fibers are not included. 

 
The 34-data point for this study starts from 1988 
through to 2021. This starting point was chosen 
based on the fact that the values for recycling 
right from 1950 through to 1987 are zeroes (no 
plastic recycling), which has the possibility to 
affect the predictive power of the model when 
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considered in computing the values of the 
parameters. The first 33 data points (1988 – 
2020) for the global plastic production and waste 
generation were based on historical estimates, 
while the last (2021) was generated based on an 
extrapolated estimate of 8.5% growth [38]. 
However, for recycling, incineration, and 
discarding, the first 27 data points (1988 – 2015) 
were generated based on historical                    
estimates, while the remaining 6 (2016 – 2021) 
are based on extrapolated estimates as in [9].  It 
is also important to mention that a                    
simplified version of the data in [9] was published 
in [39].  

 

3.1 Data and Computation of Values of 
Parameters 

 

In this section, the values of the parameters 
which are the global: recycling rate  , waste 

generation rate   and the separation rate  , are 
computed for the simple closed model for plastic 
waste management. By applying the formulae in 
Equations 7 – 15 to the global annual volume of 
plastic: production, waste generation, and 
recycling (Table 1), we compute the values of the 
parameters as follows: 
 

 

 
   

     
   

   
  
   

                                                     

 
Table 1. Global annual volume of production, waste generation, and recycled plastics in metric 

tonnes (Mt) 
 

Year Annual Plastic 
Production 
(Mt)  

 Annual Plastic 
Wastes 
Generation (Mt)  

Annual Plastic 
Wastes 
Recycled (Mt) 

Annual Plastic 
Wastes 
Discarded (Mt) 

Annual Plastic 
Wastes 
Incinerated 
(Mt) 

1988 95000000 82900000 497400 76931200 5471400 

1989 100000000 86800000 1128400 79335200 6336400 

1990 105000000 89500000 1790000 80550000 7160000 

1991 109000000 93400000 2521800 82752400 8125800 

1992 115000000 97400000 3311600 84932800 9155600 

1993 120000000 102600000 4206600 88030800 10362600 

1994 130000000 107900000 5179200 91067600 11653200 

1995 134000000 113200000 6226000 93956000 13018000 

1996 145000000 118400000 7340800 96614400 14444800 

1997 157000000 126300000 8714700 101292600 16292700 

1998 165000000 134200000 10199200 105749600 18251200 

1999 175000000 142100000 11794300 109985400 20320300 

2000 185000000 150000000 13500000 114000000 22500000 

2001 195000000 160500000 15568500 119733000 25198500 

2002 204000000 165800000 17243200 121365600 27191200 

2003 210000000 171100000 18992100 122849800 29258100 

2004 225000000 181600000 21428800 127846400 32324800 

2005 227000000 192100000 24012500 132549000 35538500 

2006 240000000 200000000 26400000 135200000 38400000 

2007 257000000 207900000 28898100 137629800 41372100 

2008 245000000 221100000 32280600 143272800 45546600 

2009 250000000 223700000 34226100 141825800 47648100 

2010 270000000 218400000 34944000 135408000 48048000 

2011 279000000 227600000 38009200 137925600 51665200 

2012 288000000 244700000 42577800 144862400 57259800 

2013 299000000 252600000 45720600 146002800 60876600 

2014 311000000 265800000 49970400 149911200 65918400 

2015 322000000 300000000 58500000 165000000 76500000 
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Year Annual Plastic 
Production 
(Mt)  

 Annual Plastic 
Wastes 
Generation (Mt)  

Annual Plastic 
Wastes 
Recycled (Mt) 

Annual Plastic 
Wastes 
Discarded (Mt) 

Annual Plastic 
Wastes 
Incinerated 
(Mt) 

2016 335000000 242000000 48884000 129712000 63404000 

2017 348000000 261000000 54549000 136242000 70209000 

2018 359000000 269250000 58158000 136779000 74313000 

2019 368000000 276000000 61548000 136344000 78108000 

2020 367000000 275250000 63307500 132120000 79822500 

2021 398195000 298646250 70779161 139169153 88697936.25 

Total 7732195000 6299746250 922407561.3 4076946353 1300392336 
 

  
   

  
   

   
  
   

                                     

                                                                  

    
   

  
   

   
  
   

                                 

                                                                  

   
   

  
   

   
  
   

                                  

 
Where, we denote in addition; the number of 
years (  ), the volume of incinerated plastic 
wastes ( ), the volume of recycled wastes (    ), 

and the volume of discarded wastes (  ). 
 
The accuracy of the predicted values will depend 
on the values of    and  ; since both the plastics 
production and waste generation models in 
Equations 5 and 6 are interactively decay 
exponential and hyperbolic functions, higher 
values of    will produce consistently lower 

values over time. However, higher values of   
will produce consistently higher values overtime. 
Therefore, in order to obtain values with minimal 
amount of error, adjustment is required in the 
values of either    or  , or both. Considering the 
faster rate of decadence in the models as time 
grows indefinite, we chose to adjust the value of 
  after all parameter values have been 
computed. In general, the value of   was 

adjusted using     
      , which was defined 

separately for both models such that      

    
       . That is, for both models, it is required 

that      , so, based on the values of the 
computed parameters for the global annual data 
on plastic wastes management presented in 

Table 2, we select     
       to satisfy  

 

       
       

 

   
  

 
The values of the global annual volume of plastic 
products produced     , and plastic wastes 

generated      were computed using Equations 
11 and 12 specified below. 
 

  
       

 

   
                                   

 
  

      

 
 

   
                                            

 
Where,   is defined as the rate of plastic 
products in stock (that is, the proportion                            
of total global annual plastic products that                    
did not degenerate into waste over the period, 
given by 
 

                                                        
          

   

   
  
   

                                                    

 
We select    and   , which are defined as 
follows: 
 

                                             
 

  
    

 

  
                                  

                                            
 

  
       

 

  
                               

 
Where,              
 
The domain    is selected to ensure that the 
cumulative volume of the predicted production 
does not fall below 5 percent or above 1.2 
percent of the cumulative volume of the observed 
plastic production. Similarly, the domain for    is 

chosen to ensure that the cumulative value of the 
predicted plastic waste generation does not 
exceed the cumulative observed value by 7% or 
fall below it by 2%.  Consequently, we carefully 
choose    and    such that 
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Thus, given the data, it is expected that  

 

 
    

 

  
               

 

  
 

    
 

  
              

 

  
 
  

 
By applying excel implementation codes, we 
compute the following parameters or rates: 
 

              
              

               

               

              
              

 
The next step is to compute the values of the 
other parameters                 and   . 
These play significant roles in the validation 
process of the models. By setting our initial 
values at               and               
for the initial year 1988, we have 
 

              

               

              
               

              

               
               

For the global annual volume of plastics 
produced and waste generated, we compute, 
respectively, 
 

  
                       

and 
  

                       

 
Where, 
                           and 

                         

 
Restricting all computations to the boundaries, 
we have 
 

         
              

         
              

 
The values for      and      were computed 
using Equations 14 and 15 given by 
 

.                        

                        
         

 3sinh  adjust .                       16 

                         

                        
         

 5sinh  adjust .                        17 

 
Where,            retain their original values. 
Table 2 summarizes the computations for the 
predicted values for   

              and 

  
             . 

 
Table 2. Predicted against historical values of global annual recycled and generated plastics 

 

Index Year Annual Plastic 
Production (Mt)  

Annual Plastic 
Wastes 
Generation (Mt)  

Predicted Annual 
Plastic 
Production (Mt)  

Predicted Annual 
Plastic Wastes 
Generation (Mt)  

0 1988 95000000 82900000 95000000 82900000 
1 1989 100000000 86800000 84093348.77 132906736.6 
2 1990 105000000 89500000 86500342.06 143391468.8 
3 1991 109000000 93400000 91195603.02 147623431.1 
4 1992 115000000 97400000 96497156.11 150911440.9 
5 1993 120000000 102600000 102161203.1 154103580.7 
6 1994 130000000 107900000 108166067.5 157336298.5 
7 1995 134000000 113200000 114525173.6 160632533.2 
8 1996 145000000 118400000 121258330.6 163997139.2 
9 1997 157000000 126300000 128387373.5 167432110.8 
10 1998 165000000 134200000 135935553.1 170939011.6 
11 1999 175000000 142100000 143927507.7 174519362.3 
12 2000 185000000 150000000 152389327.2 178174703.7 
13 2001 195000000 160500000 161348636 181906606.8 
14 2002 204000000 165800000 170834682.7 185716675.4 
15 2003 210000000 171100000 180878435.1 189606546.5 
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Index Year Annual Plastic 
Production (Mt)  

Annual Plastic 
Wastes 
Generation (Mt)  

Predicted Annual 
Plastic 
Production (Mt)  

Predicted Annual 
Plastic Wastes 
Generation (Mt)  

16 2004 225000000 181600000 191512682.2 193577891.8 
17 2005 227000000 192100000 202772140.5 197632417.7 
18 2006 240000000 200000000 214693567.4 201771866.3 
19 2007 257000000 207900000 227315881.7 205998016.5 
20 2008 245000000 221100000 240680289.9 210312684.3 
21 2009 250000000 223700000 254830421.6 214717723.5 
22 2010 270000000 218400000 269812471.2 219215027.2 
23 2011 279000000 227600000 285675348.8 223806527.7 
24 2012 288000000 244700000 302470840.5 228494198.1 
25 2013 299000000 252600000 320253776.7 233280052.6 
26 2014 311000000 265800000 339082211.3 238166147.8 
27 2015 322000000 300000000 359017611.7 243154583.2 
28 2016 335000000 242000000 380125058.8 248247502.3 
39 2017 348000000 261000000 402473459.9 253447093.6 
30 2018 359000000 269250000 426135773.3 258755591.3 
31 2019 368000000 276000000 451189247 264175276.5 
32 2020 367000000 275250000 477715670.3 269708478 
33 2021 398195000 298646250 505801641.4 275357573.5 
Total  7732195000 6299746250 7824656834 6721916298 

 

3.2 The Mean Absolute Percentage Error 
(MAPE) 

 
One way of determining the predictive power or 
accuracy of a model is by using the mean 
absolute percentage error (MAPE) as applied in 
[29, 30, 33, 40]. A MAPE value of    indicates 
that on average, the predicted values of the 
model will deviate from the actual or observed 
values by   . Thus, the smaller the value of the 
MAPE, the more accurate are the predicted 
values. The MAPE is given by   

                                                       
    

 
 

 
  

     
 

  

  

   

                                                               

 
Here,    is the observed values and   

  is the 

predicted values all at time  . Since in plastic 
waste management, cumulative value from the 
start to the end of the period is critical in decision 
and planning towards attaining a circular 
economy, the first step in this study is to select 
the values of   within the respective 
neighbourhood such that the percentage errors 
in terms of the cumulative global annual plastic 
products and wastes generated are minimal. This 
is only a necessary but not a sufficient condition 
for determining the predictive accuracy of a 
model. When this value is smaller, it gives an 

idea of how the model can correctly predict the 
total values from the beginning to the end of the 
period, however, this is not a guarantee that the 
value of MAPE will be smaller. Table 3 
summarizes the computation of MAPE for both 
the global annual volume of plastic products 
produced, and the wastes generated. 
 

The MAPE for the global annual plastic 
production model is approximately 14%, whilst 
the MAPE for the global annual plastic waste 
generation model is approximately 18%. This 
means that on average, the predicted values of 
global annual plastic products deviate from the 
respective observed values by 14%, indicating 
that the model for predicting the volume of global 
annual plastic production can predict to an 
accuracy degree of 86% approximately. 
Similarly, the predicted values of the global 
annual plastic waste generation deviate from the 
observed global annual plastic waste generation 
values by 18% on average. This implies that the 
said model can predict correctly with an accuracy 
degree of 82% approximately. 
 

It is important to note that these MAPE values 
may not necessarily be the best, so we consider 
other choices of   

      . If we consider a 

reduction of approximately 0.18%  in the value 
of    

             , we obtain   
              

in addition to   
             , which occurs at 

the end of the interval for    . Table 4 
summarizes the predicted values and the 
resulting MAPE values. 
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Table 3. Computation of MAPE 
 

Annual 
Plastic 
Production 
(Mt) 

     

Predicted 
Annual 
Plastic 
Production 
(Mt) 

        

Absolute 
Percentage 
Error 

 
        

  

      

Annual 
Plastic 
Wastes 
Generation 
(Mt) 
      

Predicted 
Annual 
Wastes 
Generation 
(Mt) 
         

Absolute 
Percentage 
Error 

 
        

  

      

95000000 95000000 0 82900000 82900000 0 

100000000 84093348.77 15.90665123 86800000 132906736.6 53.11836012 

105000000 86500342.06 17.61872185 89500000 143391468.8 60.21393164 

109000000 91195603.02 16.33430915 93400000 147623431.1 58.05506544 

115000000 96497156.11 16.08942947 97400000 150911440.9 54.93987774 

120000000 102161203.1 14.86566408 102600000 154103580.7 50.19842178 

130000000 108166067.5 16.7953327 107900000 157336298.5 45.81677343 

134000000 114525173.6 14.53345257 113200000 160632533.2 41.90153112 

145000000 121258330.6 16.37356509 118400000 163997139.2 38.51109733 

157000000 128387373.5 18.22460288 126300000 167432110.8 32.56699196 

165000000 135935553.1 17.61481632 134200000 170939011.6 27.37631263 

175000000 143927507.7 17.75570991 142100000 174519362.3 22.81447027 

185000000 152389327.2 17.6273907 150000000 178174703.7 18.78313577 

195000000 161348636 17.25710972 160500000 181906606.8 13.33744972 

204000000 170834682.7 16.2575085 165800000 185716675.4 12.01247006 

210000000 180878435.1 13.86741185 171100000 189606546.5 10.81621656 

225000000 191512682.2 14.88325234 181600000 193577891.8 6.595755399 

227000000 202772140.5 10.67306587 192100000 197632417.7 2.879967545 

240000000 214693567.4 10.54434691 200000000 201771866.3 0.88593316 

257000000 227315881.7 11.5502406 207900000 205998016.5 0.914854965 

245000000 240680289.9 1.763146962 221100000 210312684.3 4.878930684 

250000000 254830421.6 1.932168654 223700000 214717723.5 4.015322519 

270000000 269812471.2 0.069455123 218400000 219215027.2 0.373180943 

279000000 285675348.8 2.392598154 227600000 223806527.7 1.666727717 

288000000 302470840.5 5.024597406 244700000 228494198.1 6.622722473 

299000000 320253776.7 7.108286513 252600000 233280052.6 7.648435214 

311000000 339082211.3 9.029649949 265800000 238166147.8 10.39648313 

322000000 359017611.7 11.49615271 300000000 243154583.2 18.94847227 

335000000 380125058.8 13.47016681 242000000 248247502.3 2.581612521 

348000000 402473459.9 15.65329306 261000000 253447093.6 2.893833883 

359000000 426135773.3 18.70077251 269250000 258755591.3 3.897644843 

368000000 451189247 22.60577364 276000000 264175276.5 4.284320127 

367000000 477715670.3 30.16775759 275250000 269708478 2.013268672 

398195000 505801641.4 27.02360435 298646250 275357573.5 7.798081017 

7732195000 7824656834 461.2100 6299746250 6721916298 629.7576527 

MAPE (Plastic Production) 13.5650 MAPE (P. Waste Generation) 17.9931 
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Table 4. Computation of MAPE for   
              and        

 

Index Year Annual 
Plastic 
Production 
(Mt) 

      

Predicted 
Annual 
Plastic 
Production 
(Mt) at 

  
       

       
           

Predicted 
Annual 
Plastic 
Production 
(Mt) at 

  
       

       
           

Absolute 
Percentage 
error 

 
           

  

      

Absolute 
Percentage 
Error 

 
           

  

      

0 1988 95000000 95000000 95000000 0 0 
1 1989 100000000 83960043.41 83983550.24 16.03995659 16.01644976 
2 1990 105000000 86209673 86260895.02 17.89554953 17.84676664 
3 1991 109000000 90732366.16 90813942.02 16.7592971 16.68445687 
4 1992 115000000 95843340.22 95958396.6 16.65796503 16.557916 
5 1993 120000000 101296539.7 101448593.8 15.58621691 15.45950518 
6 1994 130000000 107068386.2 107261282 17.63970289 17.49132153 
7 1995 134000000 113170401.8 113408309.2 15.5444763 15.36693346 
8 1996 145000000 119620380.8 119907814.5 17.50318566 17.30495555 
9 1997 157000000 126437997.4 126779841.3 19.46624366 19.24850872 
10 1998 165000000 133644180.5 134045715.1 19.00352696 18.76017269 
11 1999 175000000 141261072.1 141728003.7 19.27938735 19.01256932 
12 2000 185000000 149312079.6 149850571.8 19.2907678 18.99969094 
13 2001 195000000 157821944.7 158438652 19.0656694 18.74940921 
14 2002 204000000 166816819.4 167518923.5 18.2270493 17.88288066 
15 2003 210000000 176324346.4 177119594 16.03602551 15.65733621 
16 2004 225000000 186373743.7 187270488.1 17.16722504 16.76867195 
17 2005 227000000 196995894.4 198003139.8 13.21766767 12.77394725 
18 2006 240000000 208223442 209350890 13.24023249 12.77046251 
19 2007 257000000 220090890.4 221348990.7 14.36152124 13.87198806 
20 2008 245000000 232634710 234034714.1 5.047057149 4.475626915 
21 2009 250000000 245893449.7 247447468.4 1.642620126 1.021012625 
22 2010 270000000 259907855.5 261628920.7 3.737831279 3.100399755 
23 2011 279000000 274720995.9 276623125.5 1.533693237 0.85192633 
24 2012 288000000 290378393.6 292476662.7 0.825831101 1.554396774 
25 2013 299000000 306928166.1 309238781.3 2.651560572 3.424341583 
26 2014 311000000 324421173.3 326961553.1 4.315489816 5.13233218 
27 2015 322000000 342911173.8 345700033.9 6.494153344 7.360258979 
28 2016 335000000 362454989.9 365512435.1 8.195519367 9.108189578 
29 2017 348000000 383112682.6 386460304 10.08985133 11.0518115 
30 2018 359000000 404947736.1 408608715.4 12.79881229 13.81858369 
31 2019 368000000 428027252.6 432026473.6 16.31175343 17.39849826 
32 2020 367000000 452422158.8 456786326 23.27579259 24.46493897 
33 2021 398195000 478207423.8 482965189.3 20.09377912 21.2886122 
  7732195000 7543171704 7591968296 438.9954 441.2749 
MAPE 12.912% 12.979 

 
As evidenced in Table 4, the MAPE that 
corresponds to   

              and   
       

       are, approximately, 12.91% and 12.98%  
respectively; indicating that the model for global 
annual plastic production can predict with 
approximately; 87.1% degree of accuracy for 
  

              and 87% degree of accuracy 

for   
             . Further computations 

revealed the following MAPE values; 12.956% 

(for   
             ) and 13.261(for   

       

      ). Following the MAPE criterion, the model 
for global annual plastic production can predict 
with the highest degree of accuracy at   

       

      . This corresponds to an absolute 
percentage error of approximately 2.4% (below 
the observed) in the cumulative volume of 
plastics produced from 1988 to 2021. The 
absolute percentage errors in the cumulative 
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value of plastics produced from 1988 to 2021 for 
     at   

                                    

are, respectively, 1.2 percent, 0.11 (below the 
cumulative observed values), 1.8 percent                    
(below the cumulative observed values), and 2.0 
percent (above the cumulative observed             
values).  
 

It is also necessary to consider other values of 
  

       within the defined neighbourhood in order 

to determine its value that produces the best 
predicting model for global annual plastic wastes 
generation     . By considering a 0.48% leftward 

location of   
       within the neighbourhood, we 

have   
             ; and another value 

  
              (which is between   

       

       and   
             ), we summarize the 

predicted values and the corresponding MAPE 
values in Table 5. 

 

Table 5. Computation of MAPE for   
              and 0.9245 

 

Index Year Annual 
Plastic 
Wastes 
Generation 
(Mt) 

       

Predicted 
Annual Plastic 
Wastes 
Generation 
(Mt) at 

  
       

       
           

Predicted 
Annual Plastic 
Wastes 
Generation 
(Mt) at 

  
       

       
           

Absolute 
Percentage 
Error 

 
           

  

      

Absolute 
Percentage 
Error 

 
           

  

      

0 1988 82900000 82900000 82900000 0 0 
1 1989 86800000 132229539.7 132364764.4 52.33817936 52.49396822 
2 1990 89500000 142081062.3 142342219.6 58.74979031 59.04158609 
3 1991 93400000 145637762.8 146032761.5 55.92908218 56.35199303 
4 1992 97400000 148218029.7 148752842.3 52.17456843 52.72365738 
5 1993 102600000 150674706.1 151354323.4 46.85643868 47.51883377 
6 1994 107900000 153145005 153974235.1 41.93234937 42.70086667 
7 1995 113200000 155651462.7 156635164.2 37.50129215 38.37028644 
8 1996 118400000 158198246.8 159341384.9 33.61338415 34.57887239 
9 1997 126300000 160786590.2 162094250.5 27.30529705 28.34065755 
10 1998 134200000 163417264.5 164894658.2 21.77143408 22.87232357 
11 1999 142100000 166090977.2 167743444.1 16.88316485 18.04605499 
12 2000 150000000 168808434.8 170641446.3 12.53895654 13.76096423 
13 2001 160500000 171570353.3 173589515.5 6.8974164 8.155461384 
14 2002 165800000 174377460.3 176588516.7 5.173377739 6.506946136 
15 2003 171100000 177230495.1 179639329.8 3.582989515 4.990841493 
16 2004 181600000 180130209.1 182742849.9 0.809356239 0.629322659 
17 2005 192100000 183077366.1 185899987.7 4.696842243 3.227492064 
18 2006 200000000 186072742.2 189111669.5 6.963628884 5.444165247 
19 2007 207900000 189117126.5 192378837.5 9.034571171 7.465686604 
20 2008 221100000 192211320.8 195702450.5 13.06588838 11.48690616 
21 2009 223700000 195356140 199083483.5 12.67047833 11.00425415 
22 2010 218400000 198552412.4 202522928.5 9.08772328 7.269721376 
23 2011 227600000 201800979.8 206021794.8 11.33524614 9.480758006 
24 2012 244700000 205102697.8 209581108.8 16.18197881 14.35181494 
25 2013 252600000 208458436.2 213201915 17.47488671 15.59702493 
26 2014 265800000 211869078.6 216885275.7 20.29003814 18.40283082 
27 2015 300000000 215335523.5 220632271.5 28.22149218 26.45590949 
28 2016 242000000 218858683.7 224444002 9.562527394 7.254544639 
29 2017 261000000 222439487.3 228321585.4 14.7741428 12.52046537 
30 2018 269250000 226078877.3 232266159.4 16.03384315 13.73587393 
31 2019 276000000 229777812.4 236278881.5 16.74716943 14.39170959 
32 2020 275250000 233537266.6 240360929 15.15448987 12.67541181 
33 2021 298646250 237358230.3 244513499.5 20.52194518 18.12604393 
  6299746250 6186151781 6288838487 715.8739691 695.9732491 
MAPE 20.454% 19.88% 
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The MAPE values corresponding to   
       

values 0.9236 and 0.9245 are approximately 
20.45% and 19.88% in the given order. Thus, the 
model for the global annual plastic wastes 
generation      can predict correctly with 
approximately 79.55 % and 80.12 % degrees of 
accuracy at 0.9236 and 0.9245 values of   

      , 

respectively (Table 5). The absolute percentage 
error in the cumulative value of global annual 
plastic waste generation from 1988 to 2021 for 
both values of   

       are, respectively, 1.8% 

and 1.7% (all below the observed). This MAPE 
values establishes that      can predict the 
volume of global annual plastic waste generation 
with a higher degree of accuracy at   

       

       than it can at   
             . Among all 

three values of   
      ,       predicts with the 

highest degree of accuracy when   
       

      . The absolute percentage error in the 
cumulative volume of global annual plastic waste 
generation from 1988 to 2021 is 6.7% (above the 
observed). Any attempt to increase   

       

exclusively between 0.9281 and 0.9291 will 
decrease the value of MAPE, but the absolute 
percentage error in the cumulative value will 
increase (above the observed) beyond the given 
threshold. We attempted, as much as possible, 
not to tolerate persistent increases above the 
cumulative value. This explains why we selected 
  

              with an equally competitive 

MAPE value and a small percentage                     
error (6.7%) above the cumulative value of the 
observed.  
 

3.3 Forecasting with the Model 
 

In this section, we perform forecasting using the 
best predicting models. The objective here is to 
forecast the volume of global annual plastic 
production and waste generation over a          
period of 29 years and to compare the 
cumulative values of global annual plastic 
production and waste generation with existing 
findings. Figures 2 and 3 present the  
forecasting. 

 

 
 

Fig. 2. A time series plot of forecast volume of global annual plastic production from 2022 to 
2050. The period 1988 to 2021 are the historical and predicted values. The time              

correponds to the years 1988, 1989, 1990, …, 2050.  The predicted values end at     , while 

the forecast (represented by the green line) starts from time      (2021) and ends at      
(2050) 
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Fig. 3. A time series representation of the volume of global annual plastic waste generation 
from 1988 to 2050. The forecast spans the period 2022 to 2050 

 

4. DISCUSSIONS 
 
This section is devoted to a brief discussion of 
the results. 
 
The models in general are integration of two 
important functions; a decay exponential function 
interacting with (multiplied by) a hyperbolic 
function. This has a real-life implication for solid 
waste management in the sense that the decay 
aspect could represent the diminishing rate of 
plastic waste as a result of recycling and other 
integrated government and individual efforts that 
aid in reducing plastic waste in the environment. 
In the case of plastic production, several demand 
and supply shocks which are both internal and 
external could lead to a fall in production, a case 
in point is the decline in production in periods of 
recession. The hyperbolic part can reflect the fact 
that both plastic production and its waste 
generation faces a hyperbolic growth rate, the 
rapid increase in the production of plastics and 
its corresponding waste generation over the past 
two decades as analysed in [9, 12] has been 
confirmed by the nature of the plastic production 
and waste generation models that have been 
developed in this study. 

The circular plastic economy order; produce-use-
recovery, was applied in the development of the 
two models in the context of a closed economy, 
where the assumption of no virgin plastic 
production was operational. Hence, given higher 
rates of incineration and discarding relative to the 
volume of recycled plastics, the total decadence 
of the models in the long run is envisaged. It is 
obvious that with higher rates of incineration and 
discarding of waste growing above the rate of 
recycling, if the cycle repeats without any effort to 
increase recycling, recyclable waste will 
eventually diminish until there is virtually nothing 
to recycle. No recycling under the assumed close 
system means no production. However, in the 
event of total riddance of waste incineration and 
discarding as waste treatment methods, the 
model can assume a steady state equilibrium in 
the long run.  
 
Additionally, worth discussing is the predictive 
power of the models. The assessment of the 
models’ predictive power was accomplished by 
applying the criterion of the MAPE. This was 
done alongside comparison of the percentage 
absolute errors in the cumulative volume from 
1988 to 2021, the parameters that yielded the 
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least absolute percentage errors in the 
cumulative volume were first selected, this 
constituted the necessary condition in this study, 
and the sufficient condition was to                     
pass the selected parameters through the MAPE 
test. 
 
As far as the global data used in this study is 
concerned, the production model can predict 
approximately 87% of the global annual plastic 
production data; while the plastic waste 
generation data can predict approximately 82% 
of its corresponding observed global annual data. 
The models’ performance was compared to the 
performance of the solid waste generation model 
developed via Fourier series technique in [33], 
which was reported to be the best solid waste 
predicting model so far as of 2017. In [33], the 
best solid waste predicting model had a MAPE of 
approximately 29% which appeared to be the 
best in comparison with the existing best ARIMA 
solid waste models [29,30]; for example, the 
MAPE in [29] was approximately 35% as 
computed in [33]. However, in this study, the 
values of the MAPE based on the data were 
approximately 13% for the global annual plastic 
production model and 18% for the global annual 
plastic waste generation model. Applying our 
data, the Fourier series method in [33] yielded a 
the least MAPE value of 36.53%, which 
establishes the predictive outperformance of our 
model. The predicted values showed the 
cumulative values of plastics produced and 
plastic waste generated from 1988 to 2021 to be 
approximately 7.5 and 6.7 billion metric tonnes, 
respectively. The forecast values show that by 
2050, a cumulative volume (from 1988) of 
approximately 43.2 billion metric tonnes of plastic 
will be produced; and approximately 17.8 billion 
metric tonnes of plastic waste will be generated. 
Our predicted cumulative values show that over 
the past 34 years, the growth of global 
production of plastics and its corresponding 
waste generation has increased than the growth 
over 65 years from 1950 to 2015 according to the 
estimates in [9]. In [39], the cumulative global 
plastic production was projected to reach 
approximately 34 billion metric tonnes, while 
plastic waste generation was projected to attain a 
cumulative volume of about 12 billion metric 
tonnes by the year 2050. In general, we can 
ascribe the difference to the difference in base 
years applied in this study and [9]; and the fact 
that the forecast made in [9] to 2050 was based 
on a projection of an assumed constant growth 
rate of 0.07% in plastic waste generation, 
incineration and discarding [9]. This assumption 

is a point of contention in the sense that the 
increase in plastic production and its waste 
generation have been tied to population [13,14] 
growth, which increases at an exponential growth 
rate.  
 
The effectiveness of the model depends on its 
parameters which were computed using a global 
data on annual plastic production, plastic waste 
generation, recycling, incineration, and 
discarding. Thus, the plastic production as well 
as its waste generation model is a function of 
time and such wastes treatment rates or 
parameters as the plastic: recycling rate, waste 
generation rate, incineration rate, and discarding 
rate. These parameters were first computed as 
the basic parameters of the model upon which 
every other parameter that arose consequent to 
the development of the model was obtained. The 
parameters reflect the realities of global plastic 
waste management as presented and predicted 
in [9,12,15]. In general, over the entire coverage 
of the data (1988-2021), about 80% of all plastics 
produced degenerated into waste; about 14% of 
the total waste generated over the period was 
recycled, 21% and 64%, approximately were 
incinerated and discarded respectively. The total 
rate of waste that could not be recovered stood 
as high as 85% approximately, which confirms 
major research findings on the high rate of 
mismanaged plastic waste [8,15]. A major 
feature of the global annual data on plastic waste 
is the incineration component, which 
distinguishes it from the plastic waste 
management data of the EU28+2, a discovery 
which was made by comparing the annual 
reports of the Plastic Europe and its associates 
[37, 38] to the global data used in this study. 
 

Albeit the fact that the development of the 
parameters of a model is subject to geographical 
location, culture, and other socio-economic 
characteristics, the feature of the parameters 
applied in our model is unique by its 
heterogeneous nature as they permeate all 
geographical boundaries, culture, socio-
economic, and other socio-demographic 
characteristics across the global economy. Thus, 
in this study, the parameters are not limited to 
any unique socio-demographic characteristics or 
geographic boundaries. The reflection of the 
plastic life cycle, the predictive power together 
with the universality of the models’ parameters, 
constitute the major strengths of the models 
developed in this study. However, the limitations 
rest in the reliability of the global data applied, a 
global data which exhibits different 
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characteristics could reflect different results when 
applied to the model. Another limitation can be 
cited in the behaviour of the global annual waste 
generation model, which exhibited weak 
performance in the early stages of the model, 
however, this was stabilized, and it performed 
better as time increases. To surmount these 
weaknesses, we suggest that more parameters 
be included in further researches in this regard to 
increase the models’ representation of the real-
world cutting-edge practices. Irrespective of the 
revealed weaknesses, the model predicts the 
volume of global annual plastic production and 
waste generation with a higher degree of 
accuracy. It is imperative to mention that a good 
performing model predicts correctly overtime.  
 
This study therefore has significant policy 
implications for waste managers and all 
stakeholders. It can therefore be relied upon for 
optimal and efficient decision-making in the area 
of complete waste management. We suggest 
that further researches in the direction of 
developing models for solid waste management 
should reflect the cyclical dynamics of the plastic 
life cycle and extend the model by integrating the 
waste separation, population growth and 
technology. 
 

5. CONCLUSIONS 
 
The model operated under the assumption of a 
closed system, which assumes no production of 
virgin plastics; this was to aid in determining the 
sustainability of plastic recycling and its activities 
in the long run. Due process was followed right 
from the development of the model, computation 
of parameters, fitting the model to a global data 
on annual plastic production and waste 
generation. The performance of the model was 
evaluated using the MAPE, after which they were 
used to predict and forecast over a period of 29 
years. The nature of the model conforms to the 
real-world representation of plastic production 
and its waste generation. The model is an 
integration of a decay exponential and a 
hyperbolic growth functions, whose long run 
equilibrium is zero, and thus, represents a real 
feature of the assumed closed system in the 
event of rapid incineration and discarding 
(mismanaged) rates, resulting in a lower rate of 
plastic recovery. 
 
The evaluation process of the model revealed its 
predictive accuracy, which represents the power 
of every predicting model. MAPE values of 13% 
and 18%, respectively, were obtained in respect 

of the annual plastic production and plastic waste 
generation; thereby indicating that the two 
models can predict with accuracy rates of 87% 
and 82% respectively. A comparison of this 
performance with the best performing Fourier 
series-based solid waste model developed in 
2017 revealed the outperformance of our model. 
The predicted cumulative values of plastics 
produced, and plastic wastes generated from 
1988 to 2015 were approximately 7.5 and 6.7 
billion metric tonnes, respectively. The forecast 
values show that by 2050, a total (from 1988) of 
approximately 43.2 billion metric tonnes of plastic 
will be produced; and approximately 17.8 billion 
metric tonnes of plastic waste will be generated. 
The predictive ability of the model is an indication 
of its reliability for optimal decision-making, 
planning, and policy formulation in waste 
management. Thus, the model has major policy 
implications for the transition to achieve a higher 
degree of a plastic circular economy. 
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