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Abstract
Hoffman introduced the variational Kurzweil-Hentock-Stieltjes integral on a real-valued function
and presented some of its properties. In this paper, we defined the variational Kurzweil-Henstock-
Stieltjes integral on a compact interval in Rn. Fundamental properties such as uniqueness,
linearity property and monotonocity property of both the integrand and integrator, additivity
and integrability over a subinterval are provided. In addition, a characterization of the variational
Kurzweil-Henstock-Stieltjes integral is established by formulating the Cauchy Criterion.
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1 Introduction

In the past centuries, Isaac Newton and Gottfried Wilhelm Leibniz started the modern theory of
integration. In 1660’s, Newton coined the term ”calculus” as he created the theory of fluxions and
invented the method of inverse tangents to solve areas under the curves [1]. During 1680’s, Leibniz
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discovered the reversal process for finding the tangent lines to solve areas [2]. Both of them found
out that integration, being a process of summation, is inverse to the operation of differentiation.
This discovery paved way for many applications to mechanics, physics, and other fields. Meanwhile,
Bernhard Riemann introduced the Riemann integral by separating the notion of integration from
differentiation through limiting process for solving areas. He considered all functions on an interval
for which this process of integration could be defined as the class of integrable functions.

However, it was discovered during the nineteenth century that the Riemann integral had many
shortcomings [3]. In 1902, Henry Lebesgue introduced the Lebesgue integral to overcome the
drawbacks of Riemann integral [4]. But, learning Lebesgue integration needs the notion of measure
theory making it a hard one and it had its defects as it cannot integrate highly oscillating functions.
In 1950’s, Czech mathematician Jaroslav Kurzweil and English mathematician Ralph Henstock
independently established another integration process that remedied the inadequacy of the Lebesgue
integral. This integration process is called the Kurzweil-Henstock integral or the Generalized
Riemann integral that can integrate highly oscillating functions [2]. Then, it was realized that
for real-valued functions, this integration process is equivalent to the variational Kurzweil-Henstock
integral, which is a corollary of Saks-Henstock Lemma [5].

In the Riemann, Lebesgue, and Kurzweil-Henstock integrals, a given function is integrated with
respect to the identity function. However, their are mathematical problems that can be obtained
through the extension of the notion of integral towards integrals in which the given function is
integrated with respect to a function different from the identity function. This type of integral had
been known as the Stieltjes integral, the extension of any integrals with respect to an integrator
which does not have to be the identity in general. This concerns many papers due to its applications
in functional analysis, theory of distributions, generalized elementary functions, as well as various
kinds of generalized differential equations, including dynamic equations on time scales [6]. There
are number of papers concerning Henstock-Stieltjes Integral, one of those is the formulation of the
PUL-Stieltjes Integral, a Henstock-Stieljes type of definition that utilizes the notion of a partition
of unity [7, 8].

In [9], a characterization of the variational Kurzweil-Henstock integral of Banach-Valued functions
on the closed interval [0, 1] was presented. Skvortsov and Solodov [10] established the definition
of variational Kurzweil-Henstock integrability to a Banach Space valued functions [10]. In [11],
a descriptive characterization of the variational Kurzweil-Henstock Stieltjes integral on the real
line including its simple properties was provided. This present study generally aims to define
variational Kurzweil-Henstock-Stieltjes integral on a compact interval in Rn and provide some of
its basic properties such as uniqueness, linearity property and monotonocity property of both the
integrand and integrator, additivity, integrability over a subinterval and the Cauchy Criterion of
such integral.

2 Preliminaries

In this section, some terminologies were discussed for a better undertanding of the paper. Throughout,
Rn denotes the n-Euclidean space, R+ is the set of positive real numbers, N is the set of natural
numbers, In([a, b]) is the collection of all compact subintervals of [a, b] and V ([u,v]) is the collection
of all vertices of [u,v].

Definition 2.1. [3] A compact interval in Rn is a set of the form [a, b] =
∏n
i=1[ai, bi], where

−∞ < ai < bi <∞ for i = 1, · · · , n.

Definition 2.2. [3] Two compact intervals [q, r], [s, t] ∈ Rn are said to be non-overlapping if
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∏n
i=1(qi, ri)

⋂∏n
i=1(si, ti) = ∅, where q = (q1, q2, · · · , qn), r = (r1, r2, · · · , rn), s = (s1, s2, · · · , sn)

and t = (t1, t2, · · · , tn).

Definition 2.3. [12] The volume of an interval in Rn is the product of the lengths of its sides,
vol([a, b]) =

∏n
i=1(bi − ai), whenever −∞ < ai < bi <∞ for i = 1, · · · , n.

Definition 2.4. [3] A function δ : [a, b]→ R+ is called a gauge on [a, b].

Definition 2.5. [3] If {[q1, r1], [q2, r2], · · · , [qp, rp]} is a finite collection of pairwise non-overlapping
subintervals of [a, b] such that [a, b] =

⋃p
k=1[qk, rk], then we say that {[q1, r1], [q2, r2], · · · , [qp, rp]}

is a partition D of [a, b]. A partition D of [a, b] is a net if for any k ∈ {1, 2, · · · , p}, there is a
partition Dk of [ak, bk] such that

D =
{ p∏
k=1

[uk, vk] : [uk, vk] ∈ Dk for k = 1, 2, · · · , p
}
.

Definition 2.6. [3] A point-interval pair (t, I) consists of a point t ∈ Rn and an interval I ∈ Rn.
Here, t is a tag of I.

Definition 2.7. [3] For each x ∈ Rn, we define |‖ · ‖| the maximum norm of x by

|‖x‖| = max{|xi| : i = 1, · · · , n}, where x = (x1, · · · , xn).

Definition 2.8. [3] Given x ∈ Rn and r > 0 , we set B(x, r) = {y ∈ Rn : |‖x − y‖| < r}, where
x− y = (x1 − y1, · · · , xn − yn), x = (x1, · · · , xn), and y = (y1, · · · , yn).

Definition 2.9. [3] A Perron partition P of [a, b] is a finite collection of point-interval pairs
{(tk, [qk, rk]) : k = 1, 2, · · · , p} where {[q1, r1], [q2, r2], · · · , [qp, rp]} is a partition of [a, b] and
tk ∈ [qk, rk] for k = 1, 2, · · · , p.

Definition 2.10. [3] Given a gauge δ defined on {t1, · · · , tp}, the Perron partition P of [a, b] is
said to be δ-fine if [qk, rk] ⊆ B(tk, δ(tk)) for k = 1, 2, · · · , p.

Lemma 2.1. [3] (Cousin’s Lemma) If δ is a gauge on [a, b], then there exists a δ-fine Perron
partition of [a, b].

Definition 2.11. [3] A finite collection {(tk, [qk, rk]) : k = 1, · · · , p} of point-interval pair is said to
be Perron subpartition of [a, b] if tk ∈ [qk, rk] for k = 1, 2, · · · , p and {[q1, r1], [q2, r2], · · · , [qp, rp]}
is a finite collection of non-overlapping intervals in [a, b] .

For brevity, we denote {(tk, [qk, rk]) : k = 1, · · · , p} by {(t, [q, r])}.

Definition 2.12. [3] Given a gauge δ defined on {t1, · · · , tp}, the Perron subpartition S of [a, b]
is said to be δ-fine if [qk, rk] ⊆ B(tk, δ(tk)) for k = 1, 2, · · · , p.

Lemma 2.2. [3] (Saks-Henstock Lemma) If f ∈ KH[a, b], then for every ε > 0 there exists a
gauge δ on [a, b] such that ∑

(t,[q,r])∈S

∣∣f(t)vol([q, r])− (KH)

∫
[q,r]

f
∣∣ < ε

for each δ-fine Perron subpartition S = {(t, [q, r])} of [a, b].
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Definition 2.13. [13] A real-valued set function F defined on a class of sets I is called additive
(or finitely additive) if

F

( k⋃
i=1

Ji

)
=

k∑
i=1

F
(
Ji
)

for all k ∈ N and all disjoint sets J1, J2, · · · , Jk ∈ I such that

k⋃
i=1

Ji ∈ I .

Definition 2.14. [3] Let g : [a, b]→ R. The total variation of g over [a, b] is given by

V ar(g, [a, b]) = sup

{ ∑
[u,v]∈D

|∆g([u, v])| : D is a partition of [a, b]

}
where

∆g([u, v]) =
∑

t∈V ([u,v])

(
g(t)

n∏
k=1

(−1)χ{uk}(tk)
)

(?)

and [u, v] ∈ In
(
[a, b]

)
.

Example 2.3. When n = 1, (?) becomes

∆g([u1, v1]) = g(u1)(−1)
χ
{u1}(u1)

+ g(v1)(−1)
χ
{u1}(v1)

= g(v1)− g(u1).

Theorem 2.4. [3] If {I1, I2, · · · , Ip} ⊂ In([a, b]) is a finite collection of non-overlapping intervals
in Rn, then there exists a net D0 and J∩Ir ∈ In([a, b]) for some r ∈ {1, 2, · · · , p} such that J ⊆ Ir.

3 Main Results

This part finally introduces the variational Kurzweil-Henstock-Stieltjes integral on [a, b] ⊆ Rn and
presents some of its basic properties.

Definition 3.1. Let f, g : [a, b] → R be functions. The function f is said to be variational
Kurzweil-Henstock-Stieltjes integrable (or simply vKHS-integrable) with respect to g on [a, b], if
there exists an additive function F : I → R, where I is the set of all compact subintervals of [a, b]
satisfying the following condition: Given ε > 0, there exists a gauge δ such that∑

(t,[u,v])∈P

∣∣∣∣f(t)∆g([u,v])− F ([u,v])

∣∣∣∣ < ε

for every δ-fine Perron partition P = {(t, [u,v])} of [a, b]. Here, if such additive function F exists,

we write F ([u,v]) =

∫
[u,v]

f dg, for all [u,v] ∈ I and we say F is the indefinite vKHS-integral

of f with respect to g.

Throughout this paper, denote by vKHS([a, b], g) the set of functions f : [a, b] → R which are
vKHS-integrable with respect to g on [a, b].

Example 3.1. Let Q be the set of all rational numbers, and define the function f : [0, 1] → R by
setting

f(x) =

{
1, x ∈ [0, 1] ∩Q
0, x ∈ [0, 1] rQ.
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and g(x) = x. We show that f is vKHS-integrable with respect to g.

Note that Q is a countable set. Put 〈rn〉∞n=1 as an enumeration of [0, 1] ∩ Q. Fix ε > 0. Define a
gauge δ on [0, 1] by setting

δ(x) =


ε

2n+1
, x = rn for some n ∈ N

1, x ∈ [0, 1] rQ.

Let P be a δ-fine Perron partition of [0, 1], then∑
(t,[u,v])∈P

|f(t)∆g([u, v])− 0| =
∑

(t,[u,v])∈P

|f(t)[g(v)− g(u)]− 0|

=
∑

(t,[u,v])∈P

|f(t)(v − u)|

=
∑

(t,[u,v])∈P
t∈Q∩[0,1]

|f(t)(v − u)|+
∑

(t,[u,v]∈P )
t∈[0,1]\Q

|f(t)(v − u)|

=
∑

(t,[u,v])∈P
t∈Q∩[0,1]

|f(t)(v − u)|

=
∑

(t,[u,v])∈P
t∈Q∩[0,1]

(v − u)

<
∑

(t,[u,v])∈P
t∈Q∩[0,1]

2δ(t)

=
∑

(t,[u,v])∈P
t∈Q∩[0,1]

2
( ε

2n+1

)

< 2ε
∑

(t,[u,v])∈P
t∈Q∩[0,1]

(
1

2n+1

)

= ε.

Since ε > 0 is arbitrary, we conclude that f ∈ vKHS[0, 1] and F ([0, 1]) =

∫
[0,1]

fdg = 0.

Now, we will provide some fundamental properties of vKHS-integral.

Theorem 3.2. (Uniqueness) There is at most one value satisfying the Definition 3.1.

Proof : Let F,G : I → R, where I is the set of all compact subintervals in [a, b] be additive functions.
Suppose F (J) and G(K) for all J ,K ∈ I be the values of the vKHS-integral with respect to g
on [a, b] such that Definition 3.1 holds. Fix ε > 0. Since both F (J) and G(K) for all J ,K ∈ I
satisfy Definition 3.1, there exist gauges, δ1 and δ2 on [a, b] respectively, such that∑

(t,J)∈P1

∣∣f(t)∆g(J)− F (J)
∣∣ < ε

2

for every δ1-fine Perron partition P1 = {(t, J)} of [a, b] and∑
(s,K)∈P2

∣∣f(s)∆g(K)−G(K)
∣∣ < ε

2
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for every δ2-fine Perron partition P2 = {(s,K)} of [a, b]. Define δ by setting

δ(x) = min{δ1(x), δ2(x)} (3.1)

for all x ∈ [a, b]. Then δ is a gauge on [a, b]. By Cousin’s Lemma, we can fix a δ-fine Perron partition
P of [a, b]. Equation (3.1) implies that P is both δ1-fine and δ2-fine. Denote C = {I : (ξ, I) ∈ P }.
We claim that F (I) = G(I) for all I ∈ C . Let J ∈ C . Observe that

∑
(x,J)∈P

|F (J)−G(J)| =
∑

(x,J)∈P

∣∣F (J)− f(x)∆g(J) + f(x)∆g(J)−G(J)
∣∣

≤
∑

(x,J)∈P

{∣∣F (J)− f(x)∆g(J)
∣∣+
∣∣f(x)∆g(J)−G(J)

∣∣}
=

∑
(x,J)∈P

∣∣f(x)∆g(J)− F (J)
∣∣+

∑
(x,J)∈P

∣∣f(x)∆g(J)−G(J)
∣∣

<
ε

2
+
ε

2

= ε.

Since ε > 0 is arbitrary,
∑

(x,J)∈P

∣∣F (J)−G(J)
∣∣ = 0. Hence,

∣∣F (J)−G(J)
∣∣ = 0 for all J ∈ C .Thus,

F (J) = G(J) for all J ∈ C . �

Theorem 3.3. (Linearity of Integrand) Let g, f1, f2 : [a, b]→ R be functions. If
f1, f2 ∈ vKHS([a, b], g), then for any α, β ∈ R, αf1 + βf2 ∈ vKHS([a, b], g) and

∫
[a,b]

(αf1 + βf2) dg = α

∫
[a,b]

f1 dg + β

∫
[a,b]

f2 dg.

Proof : Let g, f1, f2 : [a, b]→ R , α, β ∈ R and ε > 0 be given. Suppose that f1 and f2 are vKHS-
integrable with respect to g on [a, b]. Put F =

∫
[a,b]

f1 dg and G =
∫
[a,b]

f2 dg. Then there is a

gauge δ1 on [a, b] such that

∑
(t,J)∈P1

∣∣f1(t)∆g(J)− F (J)
∣∣ < ε

2(|α|+ 1)

for every δ1-fine Perron partition P1 = {(t, J)} on [a, b]. In the same manner, there is a gauge δ2
on [a, b] such that ∑

(s,K)∈P2

∣∣∣f2(s)∆g(K)−G(K)
∣∣∣ < ε

2(|β|+ 1)

for every δ2-fine Perron partition P2 = {(s,K)} on [a, b]. Define δ by setting

δ(x) = min{δ1(x), δ2(x)} (3.2)

for all x ∈ [a, b]. Then δ is a gauge on [a, b]. Hence, we can choose a δ-fine Perron partition P of
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[a, b] . By (3.2), P is both δ1-fine and δ2-fine. Consequently,∑
(t,J)∈P

∣∣[αf1(t) + βf2(t)]∆g(J)− {αF (J) + βG(J)}
∣∣

=
∑

(t,J)∈P

∣∣α{[f1(t)]∆g(J)− F (J)}+ β{[f2(t)]∆g(J)−G(J)}
∣∣

≤
∑

(t,J)∈P

{∣∣α{[f1(t)]∆g(J)− F (J)}
∣∣+
∣∣β{[f2(t)]∆g(J)−G(J)}

∣∣}
= |α|

∑
(t,J)∈P

|f1(t)∆g(J)− F (J)|+ |β|
∑

(t,J)∈P

|f2(t)∆g(J)−G(J)|

< |α| ε

2(|α|+ 1)
+ |β| ε

2(|β|+ 1)

< (|α|+ 1)
ε

2(|α|+ 1)
+ (|β|+ 1)

ε

2(|β|+ 1)

=
ε

2
+
ε

2

= ε.

Thus, ∫
[a,b]

(αf1 + βf2) dg = α

∫
[a,b]

f1 dg + β

∫
[a,b]

f2 dg. �

Proposition 3.1. Let g1, g2 : [a, b]→ R be functions. Then for any α, β ∈ R,

∆αg1+βg2([u,v]) = α∆g1([u,v]) + β∆g2([u,v]), where [u,v] ∈ In
(
[a, b]

)
.

Proof : The proof is obvious. �

Theorem 3.4. (Linearity of Integrator) Let f, g1, g2 : [a, b]→ R be functions. Suppose
f ∈ vKHS([a, b], g1) ∩ vKHS([a, b], g2). Then for any α, β ∈ R, f ∈ vKHS([a, b], αg1 + βg2)
and ∫

[a,b]

f d[αg1 + βg2] = α

∫
[a,b]

f dg1 + β

∫
[a,b]

f dg2.

Proof : Using the same arguments in the proof of Theorem 3.3 and by Proposition 3.1 the result
follows. �

Theorem 3.5. Let f1, f2, g : [a, b]→ R be functions. If f1, f2 ∈ vKHS([a, b], g) and
f1(x) ≤ f2(x) for all x ∈ [a, b], then∫

[a,b]

f1 dg ≤
∫
[a,b]

f2 dg.

Proof : Let f1, f2, g : [a, b] → R and ε > 0. Assume that f1 and f2 are vKHS-integrable with
respect to g on [a, b] and f1(x) ≤ f2(x) for all x ∈ [a, b]. Denote F =

∫
[a,b]

f1 dg and

G =
∫
[a,b]

f2 dg. Then there exists a gauge δ1 on [a, b] such that∑
(t,J)∈P1

∣∣∣f1(t)∆g(J)− F (J)
∣∣∣ < ε

2

for every δ1-fine Perron partition P1 = {(t, J)} on [a, b]. In the same manner, there exists a gauge
δ2 on [a, b] such that ∑

(s,K)∈P2

∣∣∣f2(s)∆g(K)−G(K)
∣∣∣ < ε

2
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for every δ2-fine Perron partition P2 = {(s,K)} on [a, b]. Define δ by setting

δ(x) = min{δ1(x), δ2(x)} (3.3)

for all x ∈ [a, b]. Then δ is a gauge on [a, b]. Let P be a δ-fine Perron partition of [a, b]. By (3.3),
P is both δ1-fine and δ2-fine. Notice that∑

(x,H)∈P

f1(x)∆g(H) ≤
∑

(x,H)∈P

f2(x)∆g(H).

Now,
ε

2
>

∑
(x,H)∈P

∣∣f1(x)∆g(H)− F (H)
∣∣ ≥ ∑

(x,H)∈P

{F (H)− f1(x)∆g(H)}.

This indicates that

ε

2
>

∑
(x,H)∈P

{F (H)− f1(x)∆g(H)} =
∑

(x,H)∈P

F (H)−
∑

(x,H)∈P

f1(x)∆g(H).

So, ∑
(x,H)∈P

F (H) <
∑

(x,H)∈P

f1(x)∆g(H) +
ε

2
. (3.4)

Similarly,

ε

2
>

∑
(x,H)∈P

∣∣f2(x)∆g(H)−G(H)
∣∣ ≥ ∑

(x,H)∈P

{f2(x)∆g(H)−G(H)}.

This would mean that

ε

2
>

∑
(x,H)∈P

{f2(x)∆g(H)−G(H)} =
∑

(x,H)∈P

f2(x)∆g(H)−
∑

(x,H)∈P

G(H).

And so, ∑
(x,H)∈P

f2(x)∆g(H) +
ε

2
<

∑
(x,H)∈P

G(H) + ε. (3.5)

By (3.4) and (3.5),∑
(x,H)∈P

F (H) <
∑

(x,H)∈P

f1(x)∆g(H) +
ε

2
≤

∑
(x,H)∈P

f2(x)∆g(H) +
ε

2

<
∑

(x,H)∈P

G(H) + ε.

Thus, ∫
[a,b]

f1 dg ≤
∫
[a,b]

f2 dg. �

Proposition 3.2. Let g1, g2 : [a, b] → R be functions. If g1(t) ≤ g2(t) for all t ∈ [u,v], where
[u,v] ∈ In

(
[a, b]

)
, then ∆g1([u,v]) ≤ ∆g2([u,v]).

Proof : The proof is obvious. �

Theorem 3.6. Let f, g1, g2 : [a, b]→ R be functions. If f ∈ vKHS([a, b], g1) ∩ vKHS([a, b], g2)
and g1(x) ≤ g2(x) for all x ∈ [a, b], then∫

[a,b]

f dg1 ≤
∫
[a,b]

f dg2.
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Proof : The proof is similar to that of Theorem 3.5 and by Proposition 3.2, the theorem holds. �

Theorem 3.7. (Cauchy Criterion) Let f, g be real-valued functions defined on [a, b]. Then
f ∈ vKHS([a, b], g) if and only if for every ε > 0, there exists a gauge δ on [a, b] such that∣∣∣∣ ∑

(t,J)∈P

f(t)∆g(J)−
∑

(s,K)∈Q

f(s)∆g(K)

∣∣∣∣ < ε

whenever P = {(t,J)} and Q = {(s,K)} are δ-fine Perron partitions of [a, b].

Proof : (⇒) Let f, g : [a, b]→ R and ε > 0. Assume that f is vKHS-integrable with respect to g
on [a, b]. Then there exists an additive function F =

∫
[a,b]

f dg and a gauge δ on [a, b] such that∑
(t,J)∈P0

∣∣f(t)∆g(J)− F (J)
∣∣ < ε

2
(3.6)

for every δ-fine Perron partition P0 = {(t, J)} on [a, b]. Let P = {(t,J)} and
Q = {(s,K)} be any δ-fine Perron partitions of [a, b]. By (3.6),∣∣∣∣ ∑

(t,J)∈P

f(t)∆g(J)−
∑

(s,K)∈Q

f(s)∆g(K)

∣∣∣∣ < ε.

(⇐) Suppose for each n ∈ N there exists a gauge δn on [a, b] such that∣∣∣∣ ∑
(t,J)∈Pn

f(t)∆g(J)−
∑

(s,K)∈Qn

f(s)∆g(K)

∣∣∣∣ < 1

n

for every δn-fine Perron partitions, Pn = {(t,J)} and Qn = {(s,K)} of [a, b]. Define a gauge δ?n
on [a, b] by

δ?n(x) = min{δ1(x), δ2(x), · · · , δn(x)} (3.7)

for all x ∈ [a, b]. By (3.7), we can fix a δ?n-fine Perron partition of [a, b]. We claim that the

sequence,

〈∑
(t,J)∈Pn

f(t)∆g(J)

〉∞
n=1

is a Cauchy sequence of real numbers. Let ε > 0. Choose

N ∈ N such that
1

N
< ε. If n1 and n2 are natural numbers that satisfy min{n1, n2} ≥ N , then Pn1

and Pn2 are both δ?min{n1,n2}-fine Perron partitions of [a, b]. Hence,∣∣∣∣ ∑
(t,J)∈Pn1

f(t)∆g(J)−
∑

(s,K)∈Pn2

f(s)∆g(K)

∣∣∣∣ < 1

min {n1, n2}
≤ 1

N
.

This means that

〈∑
(t,J)∈Pn

f(t)∆g(J)

〉∞
n=1

is a Cauchy sequence of real numbers. Then the

sequence

〈∑
(t,J)∈Pn

f(t)∆g(J)

〉∞
n=1

converges to, say, F ∈ R. Next, the remaining part is to

prove that f is vKHS-integrable with respect to g on [a, b] and F =
∫
[a,b]

f dg. Let P be a

δ?N -fine Perron partition of [a, b]. Notice that the sequence, 〈δ?n〉∞n=1 of gauges is non-increasing
since δ?n ≥ δ?n+1 for all n ∈ N, then Pn is δ?N -fine for every natural number n ≥ N . Consequently,∣∣∣∣ ∑

(t,J)∈P

f(t)∆g(J)− F
∣∣∣∣ =

∣∣∣∣ ∑
(t,J)∈P

f(t)∆g(J)− lim
n→∞

∑
(t,J)∈Pn

f(t)∆g(J)

∣∣∣∣
= lim
n→∞

∣∣∣∣ ∑
(t,J)∈P

f(t)∆g(J)−
∑

(t,J)∈Pn

f(t)∆g(J)

∣∣∣∣
< lim
n→∞

1

n
≤ lim
n→∞

1

N
=

1

N
< ε.
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Thus, the theorem holds. �

Theorem 3.8. Let f, g be real-valued functions defined on [a, b]. If f ∈ vKHS([a, b], g), then
f ∈ vKHS(I, g) for all I ∈ In([a, b]).

Proof : Let f, g : [a, b] → R and ε > 0. Assume that f is vKHS-integrable with respect to g on
[a, b] and I ∈ In([a, b]). By Theorem 3.7, there is a gauge δ on [a, b] such that∣∣∣∣ ∑

(t,J)∈P

f(t)∆g(J)−
∑

(s,K)∈Q

f(s)∆g(K)

∣∣∣∣ < ε (3.8)

for every δ-fine Perron partitions P = {(t,J)} and Q = {(s,K)} of [a, b]. Suppose that I = [a, b],
then we are done. Assume that I ⊂ [a, b]. Then we can choose a finite collection H ⊆ In([a, b])
such that I /∈ H and H ∪ {I} is a net of [a, b]. For any H ∈ H ∪ {I}, fix a δ-fine Perron partition
PH = {(t,H)} of H. Let PI = {(t,J)} and QI = {(s,K)} be δ-fine Perron partitions of I. Then

P = PI ∪
⋃

H∈H

PH and Q = QI ∪
⋃

H∈H

PH

are δ-fine Perron partitions of [a, b]. Notice that∑
(t,J)∈P

f(t)∆g(J) =
∑

(t,J)∈PI

f(t)∆g(J) +
∑
H∈H

[ ∑
(t,L)∈PH

f(t)∆g(L)

]
and ∑

(s,K)∈Q

f(s)∆g(K) =
∑

(s,K)∈QI

f(s)∆g(K) +
∑
H∈H

[ ∑
(t,L)∈PH

f(t)∆g(L)

]
.

This means that∑
(t,J)∈PI

f(t)∆g(J) =
∑

(t,J)∈P

f(t)∆g(J)−
∑
H∈H

[ ∑
(t,L)∈PH

f(t)∆g(L)

]
and ∑

(s,K)∈QI

f(s)∆g(K) =
∑

(s,K)∈Q

f(s)∆g(K)−
∑
H∈H

[ ∑
(t,L)∈PH

f(t)∆g(L)

]
.

By (3.8), we obtain∣∣∣ ∑
(t,J)∈PI

f(t)∆g(J)−
∑

(s,K)∈QI

f(s)∆g(K)
∣∣∣

=
∣∣∣ ∑
(t,J)∈P

f(t)∆g(J)−
∑

(s,K)∈Q

f(s)∆g(K)
∣∣∣ < ε.

Since ε > 0 is arbitrary, the theorem follows. �

Corollary 3.9. If f is vKHS-integrable with respect to g on [a, b], then f is vKHS-integrable
with respect to g on I for all I ∈ In([a, b]) and∫

[a,b]

f · χI dg =

∫
I

f dg.

Proof : Let I ∈ In([a, b]). Suppose that f is vKHS-integrable with respect to g on [a, b]. We may
assume that I = [a, b] and I ⊂ [a, b]. If I = [a, b], then∫

I

f · χI dg =

∫
[a,b]

f · χ[a,b] dg =

∫
[a,b]

f dg =

∫
I

f dg.
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And so, we are done. If I ⊂ [a, b], then f is vKHS-integrable with respect to g on I. Note that
we can write [a, b] = ([a, b] r I) ∪ I. Hence,∫

[a,b]

f · χI dg =

∫
[a,b]rI

f · χI dg +

∫
I

f · χI dg

=

∫
[a,b]rI

f · (0) dg +

∫
I

f · (1) dg =

∫
I

f dg.

Therefore, ∫
[a,b]

f · χI dg =

∫
I

f dg. �

.

Theorem 3.10. (Additivity) Let f, g : [a, b] → R and I,J ∈ In([a, b]) that partitions [a, b].
Suppose f ∈ vKHS(I, g) ∩ vKHS(J , g), then f ∈ vKHS([a, b], g) and∫

[a,b]

f dg =

∫
I

f dg +

∫
J

f dg.

Proof : Suppose f is vKHS-integrable with respect to g on I,J ∈ In([a, b]) that partitions [a, b].
Since f is vKHS-integrable on I, it follows that there exists an additive function F such that for
every ε > 0, we can choose a gauge δ1 on I so that∑

(t,I)∈P1

∣∣f(t)∆g(I)− F (I)
∣∣ < ε

2

for every δ1-fine Perron partition P1 = {(t, I)} on I. Similarly, since f is vKHS-integrable on J ,
it follows that there exists an additive function G such that for every ε > 0, we can choose a gauge
δ2 on J so that ∑

(s,J)∈P2

∣∣f(s)∆g(J)−G(J)
∣∣ < ε

2

for every δ2-fine Perron partition P2 = {(s, J)} on J . Then P1 and P2 partitions [a, b]. For each
M ∈ In([a, b]), define

Φ(M) =


F (M), if M ⊆ I
G(M), if M ⊆ J
F (M ∩ I) +G(M ∩ J), if M 6⊆ I and M 6⊆ J .

Next, let A = {Ai ⊆ [a, b] : i = 1, 2, · · · , p} be a collection of non-overlapping subintervals of [a, b].
So, we have ⋃

K∈A

K =

{
(
⋃

K⊆I

K)
⋃

(
⋃

K⊆J

K)
⋃ [ ⋃

K 6⊆I,J

(K ∩ I) ∪ (K ∩ J)
]}
.

Notice that

Φ(
⋃

K∈A

K) = Φ

{
(
⋃

K⊆I

K)
⋃

(
⋃

K⊆J

K)
⋃ [ ⋃

K 6⊆I,J

(K ∩ I) ∪ (K ∩ J)
]}

= F
[
(
⋃

K⊆I

K)
]

+ F (∅) + F
[ ⋃
K 6⊆I,J

(K ∩ I)
]

+G(∅)

+G
[
(
⋃

K⊆J

K)
]

+G
[ ⋃
K 6⊆I,J

(K ∩ J)
]

=
∑
K⊆I

F (K) +
∑
K⊆J

G(K) +
{ ∑

K 6⊆I,J

F (K ∩ I) +
∑

K 6⊆I,J

G(K ∩ J)
}

=
∑
K⊆I

Φ(K) +
∑
K⊆J

Φ(K) +
∑

K 6⊆I,J

Φ(K) =
∑
K∈A

Φ(K).

79



Omayan and Flores; ARJOM, 18(9): 69-81, 2022; Article no.ARJOM.88562

Hence, Φ is an additive function. Now, define δ by setting

δ(x) =


min{d(x,J), δ1(x)}, if x ∈ I r J
min{δ1(x), δ2(x)}, if x ∈ I ∩ J
min{d(x, I), δ2(x)}, if x ∈ J r I

for all x ∈ [a, b]. Then δ is a gauge on [a, b]. And so, there is a δ-fine Perron partition P = {(x,H)}
on [a, b]. Then

PI = {(x,K) : x ∈ I,K = I ∩H and vol(K) > 0}
is a δ-fine Perron partition of I, and

PJ = {(x,L) : x ∈ J ,L = J ∩H and vol(L) > 0}
is a δ-fine Perron partition of J . Thus, PI is δ1-fine and PJ is δ2-fine. Consequently,∑

(x,H)∈P

∣∣f(x)∆g(H)− Φ(H)
∣∣ =

∑
(x,H)∈PI

∣∣f(x)∆g(H)− F (H)
∣∣

+
∑

(x,H)∈PJ

∣∣f(x)∆g(H)−G(H)
∣∣

<
ε

2
+
ε

2
= ε.

Since ε > 0 is arbitrary, we can conclude that∫
[a,b]

f dg =

∫
I

f dg +

∫
J

f dg. �

Theorem 3.11. Let f, g : [a, b] → R be functions and let P be a partition of [a, b]. Suppose
f ∈ vKHS(J , g) for all J ∈ P , then f ∈ vKHS([a, b], g) and∫

[a,b]

f dg =
∑
J∈P

∫
J

f dg.

Proof :
Let P be a partition of [a, b]. Suppose that f is vKHS-integrable with respect to g on J for

all J ∈ P . In view of Theorem 3.8 and Theorem 2.4, we may assume that P is a net of [a, b].
Applying Additivity theorem repeatedly, we obtain the desired result. �

4 Conclusion and Recommendation

The obtained results in this paper are pretty much standard. In particular, the uniqueness, linearity
and monotonocity of both the integrand and integrator, integrability over a subinterval, Cauchy
criterion and additivity of this integral. As a recommendation, results in the literature may serve
as a backbone for further related topics such as the formulation of Saks-Henstock Lemma and some
convergence theorems.
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