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Abstract 
Cardiovascular disease is one of many reverberating ailments that affect and kill hundreds of 
thousands of people around the world. To date treatments that offer improvement in the health 
condition of diseased people include the most promising nanomedicine although it is in its infancy, 
yet attaining attention from researchers of top notch day by day. In this current review impor-
tance is given on the application of nanomedicine in the diagnosis as well as treatment of cardi-
ovascular disease. 
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1. Introduction 
Technological application of nanometer sized molecule in medicine with the purpose of fighting and curing ail-
ments is by default the definition of nanomedicine [1]. Currently, nanomedicine is a rapidly-flourishing as well 
as hectic sector of research activity that attains the focus of researchers of top notch reputation around the globe. 
In order to get rid of many present challenges in the treatment of cardiovascular, cancer as well as many other 
diseases, nanomedicines provide excellent solutions by virtue of its unique characteristics [2]-[8]. Cardiovascu-
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lar disease (CVD) is the name of a forerunner ailment that inflicts and kills millions of people around the globe 
and is expected to be continued as one of the top most indorsers to healthcare expenditure. The stronghold of 
CVD is the developed countries, but, it is also disseminating with a quick pace, among developing countries of 
the world. Information from World Health Organization (WHO) validates this claim, which states that approx-
imately 17 million people’s lives have been snatched away by CVD each year throughout the world [9]. Mostly 
attributed to the significant developments in surgical interventions, diagnostics and consciousness as well as 
concomitant lifestyle amendments, cardiovascular-related morbidity and mortality, in a time frame of 30 years 
in the later parts of the twentieth century, have resulted in a more than twofold reduction [10] [11]. The uncons-
cionable number of cardiovascular diseases-related morbidity and mortality is thought to be the reason, behind 
the pressing requirement of more efficacious schemes to ameliorate the patient’s condition. The last most prom-
inent breakthrough in technology to affect CVD took place over a decade ago when Palmaz & Schatz introduced 
coronary stent which got its approval from the FDA in 1994. Since then, the new smash hit curatives (statins, 
beta blockers, and etc.) and the subtleties of surgical processes, have become the hallmark of reliance. But now 
the emerging and ever evolved nanomedicine is expected to confront and deal efficiently the present challenges 
in cardiovascular disease as well as to bring about a breakthrough in the identification and treatment of cardi-
ovascular disease effectively (Figure 1). In this review, our discussion is related to the recent developments in 
the arena of nanobiotechnology for the diagnosis and treatment of cardiovascular disease, in light of nanopar-
ticles, ex vivo biomarkers, in vivo sensors and programmable bio-nanochip (P-BNC) system for the diagnosis 
purpose as well as in light of theranostic and therapeutic nanoparticles, innovative liposomal platforms and tis-
sue regenerating devices for the treatment purpose of cardiovascular disease. 

 

 

 
Figure 1. Outline of challenges in diagnosis and treatment of CVD and 
scopes to intervene with nanomedicine.                               
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2. Nanomedicine in the Diagnosis of Cardiovascular Disease  
2.1. Advanced and Sophisticated Diagnosis of CVD with Nanoparticles 
A bulk number of drug delivery systems based on particles of nanometer size have recently been evolved, with 
variegated features and multiple functionalities [12]-[15] showing variegations in 1) sizes 2) shapes and 3) sur-
face functionalization. Identification and characterization of initial disease stages before the appearance of gross 
disease manifestations, are the abilities of multifaceted nanoscale contrast agents. Nanoparticles that have the 
capacity to generate contrast, can be useful in cardiovascular imaging. Paramagnetic, fluorescent and other par-
ticles are contrast generating nanoparticles those can be used in the detection as well as characterization of initial 
ailment stages before the disease become more conspicuous and fatal. Internal structures images are now ob-
tainable in which process there is a prerequisite of certain radiofrequency waves as well as magnetic fields in 
magnetic resonance imaging (MRI) mediated cardiovascular imaging. The sole purpose of using contrast agents 
is to magnify the subtle changes in the energy level of tissues in MRI. Gadolinium-diethylenetriaminopentaa- 
cetic acid is an example of a paramagnetic contrast agent which provides a bright contrast in MR images [16] 
[17]. A recent example of T1 enhancing contrast agent is manganese nanoparticles [18]. An eminent example of 
nanoparticles that can give off light is quantum dots. Quantum dots are special types of nanoparticle having flu-
orescence within itself. There is a positive correlation between an increase in particle size and an increase in 
emission wavelength [19]. For imaging purpose, micro particle-based contrast molecules are in use and example 
of this includes porous silicon particles which have encapsulated iron oxide nanoparticle. Improvement in con-
trast, has come from this iron oxide nanoparticle [20]. Macrophages engulf these multistage particles through 
phagocytosis, hence providing the chance of imaging of inflamed portions where macrophages aggregate [21]. 
An example of this macrophage aggregation is atherosclerotic plaque. Multimodal imaging is not an illusion, 
rather an assertion in the age of nanoscience, where nanoparticles have more than one contrast agents [22]-[24]. 
An illustrious example of these types of molecule is 18F-CLIO (18F-cross-linked iron oxide). Markers of angi-
ogenesis, macrophages [25], collagen III [26], as well as fibrin [27] all together are important in atherosclerotic 
plaque image targeting. Plaque rupture provides many signals and one of the earliest signals is fibrin deposition. 
Through ultrasound [28] and magnetic resonance imaging [29] arterial thrombi can be imaged by targeting fibrin 
and other tissue factor. Specific interaction between nanoparticles conjugated to ligands and αvβ3-integrin can 
be exploited in angiogenesis targeting [30]. In MRI and computed tomography (CT) various contrast agents, for 
instance iodine can be carried within nanoliposomes and the benefit is that the contrast agents have a significant 
reduction in body clearance, ameliorating potentialities of blood as well as cardiac imaging in study models [31] 
[32]. 

2.2. CVD Diagnosis with Programmable Bio-Nanochips (P-BNCs) 
Assessment of CVD in quick time and in a reliable way is the prerequisite of point-of-care treatment, where the 
clinicians can have significant relief in discharging personnel with benign etiology while giving proper treat-
ment to CVD inflicted personnel. Hence the scheme termed programmable bio-nanochip (P-BNC), a novel 
medical device with the potentiality of providing high functioning as well as trimmed cost, comes under light. 
The capacity to immediately ensure sensitive, authentic simultaneous assessment of multiple prime biomarkers 
of cardiology at the point-of-care pledges to change the scenario of clinical nosology. To attain this target, re-
searchers have worked to ameliorate the present state of point-of-care IVD through the improvement, substan-
tiation, as well as the effectuation of P-BNCs [33]-[40]. Programmable bio-nanochips gets its name from its 
ability to work when reprogrammed while maintaining standard platform in assessing the bio-markers affiliated 
with specific ailments. High performance at reduced cost is possible if the similarity between microelectronics 
industry and the ability to mass-produce the sensor elements, can be maintained, where the “chip” term empha-
sizes. It contains incorporated nano-nets and quantum dots for the purpose of efficacious and instant biomarker 
capture and augmented signal development respectively. P-BNCs provide output within minutes while methods 
like ELISA (enzyme-linked immunoassay) provide output within hours. P-BNCs have detection capacity in 
more magnitude lower than the traditional. Researchers have found that saliva has got many biomarkers of acute 
myocardial infarction diagnosis [41] and best 10 biomarkers with the most significant information are tumor ne-
crosis factor-alpha (TN F-α), C-reactive protein (CRP), RANTES, soluble intercellular adhesion molecule-1 
(sICAM-1), myeloperoxidase (MPO), myoglobin (MYO), matrix metalloproteinase-9 (MMP-9), interleukin-1 
beta (IL-1β), adiponectin, and soluble CD40 Ligand (sCD40L) [42] [43]. 
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2.3. Ex Vivo Biomarkers for CVD Diagnosis 
Individual biomarkers of CVD that have drawn the attention of researchers include the levels of, fibrinogen [44], 
D-dimer [45], B-type natriuretic peptide [46], C-reactive protein [47], as well as homocysteine [48] for the iden-
tification of high-risk population. To specifically select low molecular weight proteins, nanoporous materials 
can be useful because they can monitor as well as find new circulating biomarkers in body fluids [49] [50]. pH 
variations measurement, detection of small quantity of molecules, whether chemical or biological, all are possi-
ble with the advent of nanowires [51]. Myoglobin, CK-MB (creatine kinase MB isoenzyme), and cardiac tropo-
nins have got FDA approval, so automatically they are in the focus of commercial cardiac biomarker point- 
of-care devices [52] [53]. Troponin antibodies and nickel nanohairs have been combined with modified viral 
nanoparticles to identify troponin in serum where the identification limit of troponin is six to seven orders of 
magnitude lower than traditional immunological assays [54]. 

2.4. In Vivo Sensors in CVD Diagnosis 
In situ quick identification of ions such as, H+, Na+, K+ and Ca2+ have been possible through the development of 
nanosensors. H+ and K+ ion activity can serve as an important marker in case of acute myocardial infarction on-
set [55]. Analysis at in vivo is possible because nanosensors have been implanted in epicardial and the arterial 
region [56]. Field effect transistors (FET) technology has already been exploited for the development of a silicon 
needle with multi-nanosensor for the identification of myocardial infarction [57]. Real-time detection of Ca2+ 
ions is also possible, through functionalized nanowires [51]. Shin KH, et al. [58] described the in-vitro devel-
opment of bio-MEMS pressure sensors which can be used for the purpose of in-situ assessment of blood pres-
sure. Kim J-H, et al. [59] described the development of near-infrared fluorescence sensors for NO with single- 
walled carbon nanotube technology. 

3. Nanomedicine in the Treatment of Cardiovascular Disease  
3.1. Intervention in Cardiovascular Disease with Liposome 
Delivery of therapeutics to targeted tissues is possible through the design and construction of nanoscale particles 
while reduced toxicity as well as higher efficiency is obtainable [60] [61]. Liposomes have huge skillfulness 
with regard to physicochemical characteristics, permitting acclimatization of this tiny particle to dovetail to the 
exact application in biology [62]. Liposomes circulatory half life has been extended through the emergence of 
polyethylene glycol (PEG) which assist in the avoidal of phagocytic cells of the body. Coupling of liposomes 
with peptides or proteins for increased targeting to specific tissues is also possible [63] [64]. Although initiatives 
have been carried out to exploit the benefits of liposomal approach but currently, there are no approved lipo-
somal formulations for the treatment of CVD in human. In an attempt to treat chronic myocardial ischemia, 
during angioplasty and stenting, Hedman et al. [65] delivered vascular endothelial growth factor encoding plas-
mid through liposomes, with the aim to prevent in-stent restenosis and postangioplasty but the treatment doomed 
to change the incidence of restenosis, while it was demonstrated that gene transfer using liposomes was a viable 
and well tolerated approach. In a different clinical trial paclitaxel nanoparticles fixed to albumin was used to 
prevent in-stent restenosis. Reports claimed that without major complication the innovative approaches were 
well tolerated at 10 or 30 mg/m2 [66] [67]. Zhang et al. [68] described acquirement of the surface modified li-
posome with peptide which has an arginine-rich sequence (CRPPR) to coronary endothelial in myocardial in-
farction and ischemia models. In comparison to nontargeted liposomes, the CRPPR-conjugated nanostructure 
attains a 47-fold increase in accruement in the injured tissue vasculature. It is worth mentioning that healthy tis-
sue vasculature has accruement to a lesser extent. Modified liposomes can be used to minimize accidental or 
unwanted damage, to tissues that are healthy and adjacent, after myocardial infarction by reducing inflammatory 
responses from macrophages. Macrophages exist at the nearby area of infarction and thus can serve as the basis 
for cell-based targets for therapy. Modified liposomes have been developed by Harel-Adar et al. [69] that have 
surface phosphatidylserine (PS). Apoptotic cells surface phosphatidylserine act as a trigger to initiate the in-
flammatory circuit of macrophages. Phosphatidylserine containing surface attenuated liposomes upon engulf-
ment by macrophages brings in the release of more anti-inflammatory cytokines, upregulation of CD206 as well 
as the accompaniment of TNF-alpha and CD86 downregulation. Fabricated fluorescent PEGylated liposome has 
the ability to distribute therapeutics to the infarcted heart [70]. Liposomes loaded with oligodextran surfactants 
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as well as RGD can serve the purpose of targeted delivery and reduced RES uptake, respectively [71]. The sur-
factants of oligosaccharide class imitate cell glycocalyx of restricted opsonization, resulting in reduced RES up-
take [72]. Research activity of Lestini et al. validated the surreptitious nature through which liposomes can re-
duce opsonization and RES clearance. Activated platelets have P-selectin on their surface which is the target of 
glycoliposomes with negative charge [73]. This delivery system exploited the imitation properties of activated 
leukocytes of containing P-selectin glycoprotein ligand 1 in order to ease the specific attachment between 
P-selec- tin receptor on activated platelets and liposomes of the target. TMR-484 is a special liposomal formula-
tion of prednisolone, developed by Joner et al. [74]. The injury site high with chondroitin sulfate proteoglycans, 
which can bind with great affinity with prednisolone. After 24 hours of administration, reports claimed, the le-
sion had liposome concentration that had increased by 100-fold in comparison to nonstented arteries, when 
tested in a laboratory animal model of atheroma. Solubilization of aggregated cholesterol in atherosclerosis is 
one of the approaches to the treatment of atherosclerosis. Liposomes loaded with phosphatidylcholine (PC) were 
developed by Cho et al. [75] with the purpose of lesion enrichment with high-density lipoprotein (HDL). The 
process of atherosclerosis includes the accumulation and subsequent oxidization of LDL in the artery wall and 
finally their picked up by foam cells. HDL can limit the process of inflammation that leads to atherosclerosis. 
Liposomal phosphatidylcholine could be a good therapy choice for the regression of atherosclerotic plaque be-
cause cholesterol-fed rabbits have undergone infusion of liposomal formulations and have resulted in a reduced 
cholesterol content as well as atherosclerotic plaque volume in the aortic walls. Activated macrophages have 
been shown to be attracted by liposomal components in atheroma components that are metabolically active. The 
liposome platform contained, nanogold, lipoprotein-associated phospholipase A2 and rhodamine, which has a 
surface potential of negative value. Walton et al. [76] demonstrated that in lesion of rabbits with Watanabe he-
ritable hyperlipidemia have positive macrophage targeting, which has been assured through transmission elec-
tron microscopy, that have indicated the presence of liposome in high amount within the atheromas and the basis 
of identification was nanogold component. 

3.2. Nanoparticles with Theranostic and Therapeutic Properties 
Drugs that are cytotoxic in nature and can prevent smooth muscle cell growth are being in use to inhibit resteno-
sis. Example of these drugs includes etoposides, paclitaxel, doxorubicin etc. Immunomodulators or inflammato-
ry response inhibitory molecules like Cyclosporine A, steroids etc. and platelet derived growth factor receptor 
antagonists are also in use of preventing restenosis. Encapsulation of these therapeutic molecules in nanopar-
ticles gives sanctuary from degradation of enzymes as well as permit sustained release profile [77] [78]. As an 
important advancement in drug delivery, there is a growing interest for theranostic agents [79]. Treatment results 
and therapeutic molecules, both of them can be precisely observed through the combination of therapeutic na-
noparticle and diagnostic imaging modality. Theranostic nanoparticles imaging abilities can serve numerous 
purpose, including the verification of the delivery of specific molecules to its target, designing of dose patterns, 
as well as identification of personnel who either respond or not responding in a specifically designed therapy. 
For instance in hyperlipidemic animals a sustained antiangiogenesis therapy was carried out through the use of 
theranostic αvβ3-integrin targeted paramagnetic nanoparticles. Data from MRI studies has proven a decline 
(between 50% and 75%) in neovascular signal for 21 days. Histological evaluation was acceptable. These out-
comes have pointed towards the broad window of this strategy for efficacious therapy that is antiangiogenic in 
nature [80] [81]. 

3.3. Nanomedicine in Tissue Regeneration Devices 
Nanotechnology finds itself in the field of cardiovascular device development and research and it has already 
devoted itself to the improvement of stent technology. Narrowing of the blood vessel is termed as stenosis, 
which hamper normal blood flow. The mainstream challenges in using stents in an initiative of revascularization 
of the narrowed arteries are in-stent restenosis that results from intimal hyperplasia [82] as well as activated 
platelets mediated thrombosis in the later stage [83]. Establishment of the stent as the drug delivery platform is 
the following degree of device sophistication. Johnson & Johnson, Guidant, Boston Scientific as well as Med-
tronic are the industry giants that started the production of drug eluting stents (DES) which are illustrious for re-
leasing drugs, for instance sirolimus as well as paclitaxel for the exploitation of their anti-proliferative benefits. 
Drug eluting stents have manifested lower occurrence of restenosis after six months of procedure in comparison 
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to their usual counterparts (metal), but recent long term sophisticated researches have raised concerns about 
whether DES can deliver long term benefits or not [84]-[87]. Incorporation of stent within the vessel wall is 
possible just because of the fact that the eluted drugs are anti-proliferative in character. Cell cycle inhibition re-
sults from eluted drugs that suppress the proliferation. As a result the normal vessel cannot remodel themselves. 
Incomplete neonatal coverage causes exposure of stent structure that leads to the formation of a thrombus, which 
is very fatal and complicated even results in increased death that can be attributed to the thrombosis of later 
stage. This whole scenario usually occurs if there is a premature surcease of dual antiplatelet therapy [85] [86]. 
Currently, researchers are trying to deliver tacrolimus [88] by exploiting the ability of aluminum oxide stent 
surfaces. Paclitaxel elution by using matrixes of carbon-carbon nanomaterials has also been attempted [89]. Na-
noporous TiO2 films have been tested for various drug delivery [90]. Inflicted vessels problem can be solved by 
increasing the interaction between endothelial cells and stent surfaces, while stents provide the platform of re-
vascularization process. This enhancement in interaction exploits surface nanotexturing. Vascular tissue has 
specific structures and imitation of this structure is possible, for improving the adhesion of cells, through nanos-
cale topography on hydroxyapatite substrates [91] and nickel titanium [83]. Afterwards there is an increased 
endothelialization of the stent and decreased thrombosis [92]. 

4. Conclusion  
Transcending expansion and understanding of sectors like molecular biology, material science, genetics, cellular 
biology, bioengineering and proteomics construct nanobiotechnology which acts as a fixative to connect the dots, 
between interactions on the microscopic and molecular levels, to form an outstanding and inclusive platform 
from where it can become the major potential actors in the race towards the progress of CVD diagnosis and 
treatment. Scientists have made us optimistic about nanomedicine with their outstanding research outcomes. The 
day is not so far when, currently seeming fledgling, nanomedicine will become the hegemon in the diagnosis 
and treatment of cardiovascular disease. 
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