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Abstract
In this study, we modeled the dependence structure between inflation and exchange rate using
the copula approach. To formulate a bivariate copula, we used ARMA+GARCH to model serial
dependence for each univariate series of returns. Both for inflation and exchange rate, it was
found that the student t distribution was the best marginal distribution. Then, we transformed
the standardized residuals from those marginal distributions (student t) into uniform over the
range [0, 1]. To estimate the copula, we used a parametric approach. Gumbel copula was found
to be the best to capture the dependence. We investigated the time-varying dependence using
change-point detection based on copula. We found that there is a significant change in the nature
of dependence over the period under consideration. The change in the nature of dependence
between the two variables was in line with the prevailing macro-economics conditions during the
period under review. We recommend to the future researchers to consider studying time-varying
dependence between those two variables and investigate also the change in copula parameters in
values with time. We also recommend including other macroeconomic variables while modeling
the relationship between inflation and exchange rate.
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1 Introduction

Macroeconomic variables which comprehend inflation and exchange rates are crucial in the financial
system of any country. Inflation and exchange rates capture significant signs of the overall performance
of a financial system as a whole. A few researchers have tried to demonstrate the dynamics
of dependence between inflation and exchange rate. As per [1], inflation is the first concern for
national banks as it indicates of an increase or decrease in price in an economy. [2]and [3] argue
that having high inflation prompts lower investment funds for people and furthermore makes light
of an economy’s global competitiveness. According to [4], every country that operates under a fixed
exchange rate regime tends to see a decline in inflation. [5] and [6] both contended that having a
stable exchange rate improves the effectiveness of the monetary policy and in addition decreases
inflation.

The literature offers several outcomes when modeling the relationship between inflation and exchange
rate. In terms of both country and data periods, these various outcomes vary. According to this
theory, the importation of products and materials required for production is how the exchange
rate and inflation are related. It has been shown in a few past studies that the dependence on
macroeconomic indicators has an existing relationship. Different methods have been employed to
establish this relationship, such as the autoregressive distributed lag (ARDL) approach used by [7],
the Markov switching regression, and vector autoregression (VAR) approaches used by [8] and the
cointegration approach used by [6]. It is important to remember, meanwhile, that these authors used
a type of multivariate time series analysis to identify the dynamical dependency between inflation
and exchange rate..

The approaches suggested by these authors were not appropriate for the general case when the
multivariate distributions might not have the same distribution as the marginal densities. The
copula approach makes it possible to overcome this challenge. With the use of the copula, any
two marginals can be linked to their bivariate distribution. The copula can potentially create
the joint distribution of two random variables given their marginal distributions. Because of this
characteristic, the copula is well-known and highly desirable in statistics.

In finance, the use of copula has been well-known over the last few years. A copula is, by definition, a
multivariate cumulative distribution function for which each variable’s marginal probability distribution
is uniform on the interval [0, 1] [9]. Copulas are used to demonstrate how random variables depend
on one another. There are two common families of copula

1. To capture symmetric dependence, elliptical copulas are appropriate. The Gaussian and
t-copulas are two examples of elliptical copulas, respectively.

2. Tail dependence can be captured using Archimedean copulas. The Clayton, Gumbel, and
Frank copulas are common examples of archimedean copulas.

The copula permits the mixing of all univariate marginal distributions, even though they are
not necessarily coming from the same distribution family. As the number of dimensions rises,
a particular class of copula models known as ”elliptical copula” exhibits the trait of rising in
complexity far more slowly than existing multivariate probability models. According to [10], copulas
are exceedingly generic, covering a variety of multivariate models that already exist and provide
a framework for creating many more. In comparison to the probabilistic models currently utilized
in macroeconomics, copula models have more advantages that make them more suitable for use in
empirical analysis.

Two researchers [11] and [12] used copulas to model the relationship between inflation and exchange
rate. When modeling the relationship between inflation and exchange rates, [12] used data from
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European banks between 2000 and 2016; [11] used Ghanaian data between 2000 and 2018.
Our research departs from their research in three ways.:

1. For estimating the marginal distribution, we employed the ARMA + GARCH model as
opposed to [11] who used GARCH. [11] used GARCH because it is well known to capture the
volatility and [12] used SARIMA because their data exhibited the presence of seasonality.
The conditional mean is known to be captured by the ARMA model before the GARCH
model is used.

2. As a result of using data from different country and period, our methodology was different
from theirs.

3. Our study investigated the time- varying dependence. Time variation in the dependence
parameters of financial variables is the correlation between two variables which may be
varying with time.

Among all researchers who have modeled the dependence between inflation and exchange rate,
none of them has taken into account time-varying dependence in their research. This research
seeks to bridge this gap. Analyzing the change in dependence between two variables for specified
time periods can be useful for understanding how the exchange rate affects inflation during certain
markets, cycles, crises, or target events.

The remaining sections are arranged as follows: Section 2 presents the methodology used for this
research. Results are found in Section 3. Finally, Section 4 presents the work’s conclusion.

2 Materials and Methods

2.1 Introduction

This section explains our modeling approach for the dependence between inflation and exchange
rate. Most importantly, we discuss the models of copula that were utilized to capture the dependencies
and the ARMA + GARCH model that was used for the selection of the marginal distributions. We
describe the change point detection that was used to capture time-varying dependence. In this
study, we used R software for data analysis.

2.2 Data

Data were collected from the Central Bank of Kenya’s website, centralbank.go.ke, where we collected
monthly data on inflation and exchange rate (Kenya Shillings on the US dollar). The data covered
the years 2005 to 2020

2.3 Copula theory and dependence measure

A bivariate copula is a function C : [0, 1]2 → [0, 1] with the following properties:

1. domC = [0, 1]2

2. C is both 2- increasing and grounded

3. For every (u, v) ∈ [0, 1]2, c(u,1)=u and c(1,v)=v

Theorem 2.1 (Sklar’theorem). Assume that F and G have a joint distribution H and are marginals.
Then there is a copula C with:

H(x, y) = C(G(x), F (y)) (2.1)

The theorem demonstrates that each joint distribution can be decomposed into its marginal distribution
and a copula, which reflects the dependence between the marginals [13].
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Corollary 2.2. The corollary states that

C(u, v) = H(F−1(u), G−1(v)) (2.2)

i.e. a copula function, is a multivariate cdf.

Bivariate copulas that are frequently used include Gaussian, student t, Clayton, Frank, and Gumbel
[14]. The Gumbel copula exhibits a strong right tail dependence but fails to capture the lower tail
dependence. Each tail of the Frank copula exhibits symmetric dependence. Dependence in the
lower tail is captured by the Clayton copula. While the Gaussian copula is unable to capture tail
dependence, the student t copula can. [15].

The relationship between two variables is shown by a dependence measure. There are three widely
used methods for evaluating dependence: linear correlation, spearman Rho, and Kendall’s tau.
Kendall’s tau is particularly popular in copula analyses [11]. With Copula C, Kendall’s tau for any
two random variables X and Y can be written as:

TC = 4

∫ ∫
[0,1]2

C(u, v)dC(u, v)− 1 (2.3)

for u, v ∈ [0, 1].

2.4 Formulation of a bivariate copula

The data must be transformed into log returns before we can examine the relationship of inflation
and exchange rate. Let

Rt = log(
Xt
Xt−1

) (2.4)

Pt = log(
Yt
Yt−1

) (2.5)

where Xt is inflation and Rt is the log returns of inflation. Yt represents exchange rate and Pt is
the exchange rate log returns.

2.4.1 ARMA + GARCH model

The ARMA (p, q) model is a mixture of two linear models i.e. AR and MA. In order to decide
which order p, q of the ARMA model is suitable for a series, we used the AIC (or BIC) throughout
a subset of values for p, q. We then looped over all pairwise values of p ∈ (1, 2, 3, 4, 5, 6, 7, 8, 9) and
q ∈ (1, 2, 3, 4, 5, 6, 7, 8, 9) and calculated the AIC and BIC. The model with the lowest AIC and BIC
is the one we selected.

The conditional expectation of a process given the historical data is modeled using ARMA models,
according to [16]. The conditional variance based on historical data is constant in an ARMA model,
though. Due to ARMA’s inability to account for volatility, the GARCH model was developed to help
detect the dependence structure. A common technique for modeling time series with conditional
heteroskedastic errors is the GARCH model.

GARCH is an extension of the ARCH model that contains a moving average with the autoregressive
component[16]. The GARCH model (p, q) is :

at = σtεt
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where

σt =

√√√√ω +

p∑
i=1

αia2t−1 +

q∑
i=1

βiσ2
t−1 (2.6)

With a stationary mean and variance, the process at is uncorrelated. σt is the volatility where ω, α
and β are parameters.

2.4.2 Distribution of margins

Before we assume any marginal distribution, we need to verify if they are normal. We used shapiro-
Wilk test and Anderson-Darling test.

The parsimonious GARCH (1, 1) model will be used to find the best marginal distribution if the
two tests show that they are not normally distributed. Based on the AIC and BIC criterion, the
best marginal distribution will be chosen.

Let Rt and Pt be the log returns for inflation and exchange rate modelled as

Rt = ARMA(r, s) +GARCH(1, 1) (2.7)

Pt = ARMA(r, s) +GARCH(1, 1) (2.8)

The marginal distributions which will be considered:

1. Student t Distribution

f(x) =
Γ( v+1

2
)√

vπr( v
2
)
(1 +

x2

v
)−

(v+1)
2 (2.9)

where v is the degree of freedom and Γ is the gamma function.

2. Skew Normal

f(x) =
2

σ
√

2π
e
−(x−µ)2

2σ2

∫ α(x−u)2
σ

−∞

1√
2π
e
−t2
2 dt (2.10)

Where µ is location parameter, σ is scale parameter, and α is the shape parameter.

3. Laplace Distribution

f(x|µ, b) =
1

2b
e(
−|x−µ|

b
) (2.11)

Where µ is the location parameter and b is the scale parameter.

4. Standardized Normal Inverse Gaussian distribution

f(x) =
ασK1(α

√
(x− µ)2 + σ2

π(x− µ)2 + σ2
eσY +B(x−µ) (2.12)

Where µ is the location, α is tail heaviness, B is asymmetry parameter, and σ is scale
parameter.

5. Skew Student t Distribution

f(x;µ, σ, λ, p, q) =
p

2vσq
1
pB( 1

p
, q)( |x−µ+m|p

q(vσp)(λ(x−µ)+m)p
)
1
p
+q

(2.13)

Where B is the beta function, µ is the location parameter, σ > 0 is the scale parameter,
−1 < λ < 1 is the skewness parameter, and p > 0 and q > 0 are the parameters that control
the kurtosis. m and v are not parameters.

6. Normal distribution

f(x) =
1

σ
√

2π
e
−1
2

( x−µ
σ

)
2

(2.14)

where µ is the mean (location) and σ is the variance.
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2.5 Copula models

In this study, two bivariate copulas were used to model the relationship between Kenya’s inflation
and exchange rate. For modeling, we used the Archimedean and elliptical families of copulas.
Gaussian and t copulas are two types of elliptical copula. The BB1 copula (Clayton-Gumbel
copula), BB6 copula (Joe-Gumbel copula), BB7 copula (Joe-Clayton copula), and BB8 copula are
examples of the Archimedean copula (Joe-Frank copula).

2.5.1 Estimation of the parameters

The estimate of copula parameters can indeed be divided into parametric [11] (such as maximum
likelihood), semiparametric (such as the maximum pseudo-likelihood technique [17], SCOMDY [18]
(Semiparametric Copula-Based Multivariate Dynamic Models), etc.), and non-parametric methods.
IFM (Inference Function for Marginal) is a parametric test that requires two-step maximum likelihood.
Any fitting method of a univariate probability distribution is used to first fit the marginal distributions
for each random variable. The copula parameter is calculated in the second stage using the
maximum likelihood approach [19]. The maximum likelihood method, a parametric approach,
is used in the first stage to estimate the copula’s parameters. However, using order statistics from
each sample of data, a nonparametric approach, the CDF (Non-Exceedance Probabilities) from
the marginal distribution are estimated [19]. The maximum pseudo-likelihood method combines
parametric and nonparametric approaches.

Suppose g(.) and f(.) are our marginal densities. θ1 and θ2 are their respective parameters. θ3
depends on the copula. Let’s say we have a sample pair of data with (xi, yi), i = 1, , n of size n.
The joint distribution’s log-likelihood is denoted by:

L(θ1, θ2, θ3) =

n∑
i=1

log g(xi; θ1) +

n∑
i=1

log f(yi; θ2) +

n∑
i=1

log c(G(xi; θ1), F (yi; θ2); θ3) (2.15)

Where C (.) is the copula to be estimated. c is the copula density, which is the the derivative of C
with respect to each of its arguments u and v

c(u, v) =
∂C(u, v)

∂u∂v

The maximum likelihood will be used to estimate the parameters of the copula from this log-
likelihood function.

2.6 Time-varying dependence

Change-point detection is a well-established and important problem in time series analysis [?]; [20];
and [21]. The goal of change point detection, as its name suggests, is to determine if and when
unexpected distribution changes occur in a time series. These changes are important in a variety of
sectors, including environmental science, economics, medical, finance, etc... Finding the start point
and end point—also known as the change points—is the aim of change point detection.

We employed the copula method in this work to identify the change points [22]. A copula is a
frequently used tool for explaining the relationship structure of data. The copula’s parameters
display the level of dependence. We dynamically fit the copula to the data and locate the change
points where we add data one at a time. The copula’s parameters will remain constant if there is
no event occurring. We considered that an event will have long-lasting effects on the dependence.
When a particular event occurs and influences positively the dependence between two variables,
the copula parameter will exhibit a positive correlation and the fitted parameters will not remain
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constant. This particular event will mark the beginning of the change in dependence which will be
called start point. The parameter increases as more data are added at the starting point. The data
properties will determine this change in parameters. Because new data are added after the start
point, the parameter maintains an upward trend. The parameter decreases when additional data
is added at the endpoint. The properties of the data will also affect this decrease in parameters.
More data are added after the endpoint and the parameter keeps trending downward.

On the other hand, if a particular event occurs and impacts negatively the dependence between two
variable, the copula parameter will exhibit a negative correlation and the fitted parameters will not
also remain constant.This particular event will mark the beginning of the change in dependence
which will be called start point. For this case, the parameter keeps trending downward, when the
data is added from the starting point. The data properties will determine this change in parameters.
The parameter keeps trending upward when additional data is added at the endpoint.

First, it can handle unbalanced panel data, which other techniques can only rarely handle. Second,
it can recognize several change points at once.

Procedure for identifying change points

• Step 1: Choose an appropriate copula for the entire data. Here, we need to know which
copula capture the dependence between Inflation and Exchange rate. We discussed above
how to estimate copula.

• Step 2: Dynamically fit the chosen copula to the data. Once the correct copula has been
found, the data will be dynamically fitted to the chosen copula. It can be done in one of two
ways: either by fitting the selected copula to the data backward or forward. We decided to
fit the selected copula to the data backward in this study. Data are added backward one at
a time starting at the beginning.

– Fit the chosen copula to the data containing t1 in Subset 1.

– data from t2 is added to subset 1 to form subset 2;

– data from t3 is added to subset 2 to form subset 3; and so on.

A set of fitted parameters a, including a1, a2, a3,..., an, will be obtained at the end.

• Step 3 is to determine the change points. After obtaining the fitted parameters in step 2, we
plotted the parameters with time where the change points could be determined. The start
point is the time when the fitted parameter is not constant and the endpoint is the time
when the fitted parameter becomes again constant (stable).

3 Results and Discussion

3.1 Introduction

The methodology’s application to our data on inflation and exchange rates is reviewed in this
section. For the data analysis, R is used. First, we get descriptive statistics and data visualization.
To find the marginal distribution of inflation and exchange rate, we then apply the ARMA +
GARCH model. Then, we establish the standardized residuals’ marginal probability distribution.
Our uniform marginals, which we utilize to estimate the copulas, are obtained by transforming the
marginal distribution. With the use of change-point detection based on copula, we continue our
investigation into the time-varying dependence.
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3.2 Preliminary analysis

A plot of our variables is shown along with some descriptive statistics. From 2005 to 2020, monthly
data on inflation and the exchange rate were obtained from the Central Bank of Kenya. According
to [23], in order to protect against the risk of deflation and ensure that monetary policy is effective,
the Federal Reserve claims that the appropriate inflation rate is somewhere around 2% . In this
study, the mean of inflation is 7.662 which is high. The economy may suffer if inflation rises too fast,
but it may also grow if it is kept under control and at sustainable levels. Employment rises when
inflation is controlled and reduced. The economy benefits and expands as a result of consumers
having more money to spend on goods and services. Table 1 shows that the inflation standard
deviation is 4.2849 and the exchange rate standard deviation is 13.1566. The standard deviation of
both variables is high which means that the data are more dispersed. This outcome demonstrates
a significant level of volatility. This outcome validates our decision to model the univariate margins
using GARCH.

After converting the data into log returns, the two plots in Fig. 1 and Fig. 2 below demonstrate that
there is a lot of variation as well, supporting the conclusions we made above. We used a seasonal
subseries plot, a special method for displaying seasonality, because figure 2 doesn’t show a trend
pattern. The seasonal subseries plot displays the seasonal differences (between group patterns) as
well as the within-group patterns quite well [24]. We may conclude that there is no seasonality
because the means of each month for both inflation and exchange are relatively close in Figs. 3 and
4. Since neither time series displays trend or seasonality pattern, they are literally stationary.

Table 1. Descriptive statistics

Statistics Inflation Exchange rate

Mean 7.662 87.58

Standard deviation 4.2849 13. 1566

Minimum 1.850 61.90

Maximum 19.720 110.59

Fig. 1. Plot of monthly inflation rate and monthly exchange rate
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Fig. 2. Plot of log returns for inflation and exchange rate

Fig. 3. Seasonal Subseries Plot for Inflation

Fig. 4. Seasonal Subseries Plot for Exchange rate
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3.3 Test for dependence

The increase in the exchange results in cheaper domestic goods for foreign consumers, leading to
the rise in exports and total demand and costs (prices). The rate of inflation rises as the exchange
rate rises. We can draw the conclusion that inflation and the exchange rate are related. For this
reason, before introducing copula, we begin by determining whether there is dependence between
them. In this study, the Kendall and Spearman tests were employed to determine whether inflation
and exchange are truly significantly dependent at the 5% level of significance.

These studies demonstrated that there is a dependence between them, but they were unable to reveal
the nature of this dependence, including whether it is symmetric, asymmetric, or tail dependent.
That is why we introduce the copula.

Table 2. Test for dependence

Pair Kendaul’s tau Spearman’rho P-value

µ1, µ2 0.0924 0.1378 0.05762

3.4 Formulation of bivariate copula

3.4.1 ARMA (p, q) model

Two linear models, AR and MA, are combined to form the ARMA (p, q) model. In time series,
we observe two things when we try to fit a time series model. First, the passed values are used in
AR models. We can figure out what our next point might be by observing a series of past points.
Second, we analyze the past prediction errors, called the MA model. ARMA allows us to fit a nice
model that analyze both past values and past forecast errors.

By using the log returns data, Fig. 5 and Fig. 6 show that there is a presence of serial correlation
since some lags are not falling within the confidence limit which support the decision of using ARMA
model.

The ARMA (4,6) model was determined to be the best model for inflation from Table 3 since it
has the lowest AIC and BIC. Fig. 7’s ACF and PACF indicate that there is no serial correlation,
supporting the ARMA (4,6) model as the best for inflation. Since it has the lowest AIC and BIC,
the ARMA (1,1) model was found to be the best model for exchange rate from Table 4. Fig. 8’s
ACF and PACF indicate that there is no serial correlation, supporting the ARMA (1,1) model as
the best for the exchange rate.

3.4.2 Test for heteroskedasticity

Before we move to GARCH, we’d like to check if there’s a presence of heteroskedasticity. Heteroskeda-
sticity takes place while the variance isn’t constant over time. After getting the ARMA model for
both inflation and rate of exchange, we extracted the residuals from ARMA(4,6) and ARMA(1,1)
and so square them in R. The square residuals were used to run ACF and PACF for the heteroscedasti-
city test. Fig. 9 and Fig. 10 show signs of nonlinear serial dependence or the presence of ”ARCH
effects”. Since there’s a presence of ”ARCH effects”, it supports our decision to use GARCH during
this study.
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Fig. 5. ACF and PACF of inflation

Fig. 6. ACF and PACF of exchange rate

Fig. 7. ACF and PACF of inflation residuals

69



Tracy et al.; AJPAS, 18(4): 59-84, 2022; Article no.AJPAS.90141

Table 3. ARMA (4,6) model for inflation

Coefficients Estimates Standard Error

α0 −0.0023 0.005

α1 1.2654 0.0843

α2 −0.6930 0.1086

α3 1.1721 0.1075

α4 −0.7956 0.0893

β1 −1.0481

β2 0.4840 0.1494

β3 −1.2614 0.1370

β4 0.6444 0.0944

β5 −0.1961 0.1360

β6 0.3778 0.0864

ACF −166.54

BIC −127.5137

Table 4. ARMA (1,1) model for exchange rate

Coefficients Estimates Standard Error

α0 −0.0019 0, 0016

α1 0.8344 0.0843

β1 −0.6930 0.0679

ACF −992.63

BIC −979.6187

3.4.3 Normality test

After fitting the ARMA model to the log return data, we extracted the residuals. We extracted the
residuals after fitting the ARMA model to the log return data. We must first determine whether the
extracted residuals follow normal distribution before assuming any of the distributions mentioned
in the methodology section. In this study, we employed the Shapiro-Wilk and Anderson-Darling
tests, and we discovered that the variables were not normally distributed since we have enough
evidence to reject the null hypothesis. The numbers in the table are the p-values of Shapiro-Wilk
and Anderson-Darling.

H0: They are normally distributed
H1: They are not normally distributed
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Fig. 8. ACF and PACF of Exchange rate residuals

Fig. 9. Test for heteroskedasticity of exchange rate

Fig. 10. Test for heteroskedasticity inflation residuals

3.4.4 Marginal distribution

The copula model configuration requires accurate marginal distribution specification. If the model
of the marginal distributions has not been correctly specified, the copula model will be incorrectly
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Table 5. Normality test of our standardized residuals

Data Shapiro-Wilk Anderson-Darling

Inflation 0.0007199 0.0216

Exchange rate 9.99e−11 2.263e−12

specified, which prevents the probability integral transforms from being i.i.d. For the development
of the copula model, testing for marginal distribution models is crucial. The GARCH model, by
definition, is a popular method for modeling time series with conditional heteroscedastic errors.
Additionally, to obtain the best fitted marginal distribution, [11], amongst many others, used the
parsimonious GARCH (1, 1) model.

Let Xt and Yt be the log returns for inflation and exchange rate modelled as

Xt = ω0Xt−1 + ω1zt (3.1)

Yt = ω0Yt−1 + ω1zt (3.2)

where zt v GARCH(1, 1)

Before, we fit the GARCH (1,1), we first extracted the residuals from ARMA (4,6) model for
inflation and ARMA (1,1) for exchange rate. We then fitted GARCH (1, 1) model to each marginal
distribution shown from the table 6 to table 17 for each variable. With the exception of the inflation
mean and scale and exchange rate mean, all of the parameters were statistically significant at the
5% level of significance. Many researchers, including [25]., [26]., and [11] presented the parsimonious
GARCH(1,1) model to identify the marginal distribution that best fits the data based on AIC and
BIC criteria. We discovered that the student t distribution seemed to have the best fit for both
inflation and exchange rates. So now we can transform the probability distributions into a uniform
distribution on interval [0, 1].

Table 6. Inflation Student t distribution for GARCH (1, 1)

Estimates Std. error t-value P-value

µ 0.0123555 0.0090096 1.371 0.1703

σ 0.0009156 0.0008419 1.088 0.2768

shape 6.6941319 3.0048023 2.228 0.0259

α1 0.0691856 0.0409580 1.689 0.0912

β1 0.8834817 0.0657508 13.437 < 2e−16

AIC -1.129523

BIC -1.044385
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Table 7. Inflation Skew normal distribution for GARCH (1, 1)

Estimates Std. error t-value P-value

µ 0.0126688 0.0093708 1.352 0.1764

σ 0.0006239 0.0004413 1.414 0.1574

skew 0.9281859 0.0806352 11.511 < 2e−16

α1 0.0677574 0.0297290 2.279 0.0227

β1 0.8986787 0.0367861 24.430 < 2e−16

AIC -1.093000

BIC -1.007862

Table 8. Inflation Laplace distribution for GARCH (1, 1)

Estimates Std. error t-value P-value

µ 0.0128143 0.0094743 1.353 0.1762

σ 0.0006912 0.0005943 1.163 0.2448

shape 1.4461332 0.1926909 7.505 6.15e−14

α1 0.0666996 0.0359236 1.857 0.0634

β1 00.8961738 0.0495649 18.081 < 2e−16

AIC -1.121537

BIC -1.036399

Table 9. Inflation Standardized Normal Inverse Gaussian distribution for GARCH

Estimates Std. error t-value P-value

µ 0.0111195 0.0094412 1.178 0.2389

σ 0.0008369 0.0007448 1.124 0.2612

shape 2.1960855 1.4051386 1.563 0.1181

skew -0.0635886 0.1511667 -0.421 0.6740

α1 0.0657540 0.0383662 1.714 0.0866

β1 0.8894209 0.0600397 14.814 < 2e−16

AIC -1.119568

BIC -1.017402
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Table 10. Inflation skew student t distribution for GARCH (1, 1)

Estimates Std. error t-value P-value

µ 0.0115173 0.0094332 1.221 0.2221

σ 0.0009100 0.0008295 1.097 0.2726

shape 6.7699335 3.0969865 2.186 0.0288

skew 0.9681459 0.1008987 9.595 < 2e−16

α1 0.0675937 0.0404184 1.672 0.0945

β1 0.8849395 0.0649446 13.626 < 2e−16

AIC -1.119555

BIC -1.017389

Table 11. Inflation Normal distribution for GARCH (1, 1)

Estimates Std. error t-value P-value

µ 0.0130306 0.0093372 1.396 0.1628

σ 0.0005809 0.0004210 1.380 0.1676

α1 0.0690300 0.0297705 2.319 0.0204

β1 0.9002370 0.0354008 25.430 < 2e−16

AIC -1.099641

BIC -1.031530

Table 12. Exchange rate Student t distribution for GARCH (1, 1)

Estimates Std. error t-value P-value

µ −2.671e−04 6.820e−04 -0.392 0.695331

σ 3.020e−05 1.608e−05 1.879 0.060268

shape 3.433 9.353e−01 3.670 0.000242

α1 5.866e−01 2.700e−01 2.172 0.029825

β1 4.987e−01 1.051e−01 4.744 2.09e−06

AIC -5.743149

BIC -5.658011
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Table 13. Exchange rate Skew normal distribution for GARCH (1, 1)

Estimates Std. error t-value P-value

µ −1.345e−04 9.148e−04 -0.147 0.883097

σ 5.041e−05 1.568e−05 3.214 0.001307

skew 1.172 9.347e−02 12.543 < 2e−16

α1 4.717e−01 1.276e−01 3.698 0.000218

β1 3.982e−01 1.039e−01 3.833 0.000127

AIC -5.608560

BIC -5.523422

Table 14. Exchange rate Laplace distribution for GARCH (1, 1)

Estimates Std. error t-value P-value

µ 1.051e−02 9.842e−03 1.067 0.2858

] σ 1.468e−03 1.145e−03 1.282 0.1998

shape 1.447 1.902e−01 7.609 2.78e−14

α1 9.358e−02 4.872e−02 1.921 0.0548

β1 1.000e−08 7.287e−02 0.000 1.0000

β1 1.000e−08

β2 8.242e−01

AIC -1.1083620

BIC -0.9891688

Uniform transformation

Every variable’s marginal probability distribution is uniform in copula over the range [0, 1]. To
obtain uniform random variables on the range [0, 1], we must convert the student t distribution’s
marginals of inflation and exchange rate. A copula function, as mentioned above, is represented
by the notation C (F(x), G(y)), where F and G are the cumulative density function (cdf) of the
univariate marginal. We need to transform the pdf into cdf before the estimation of the copula. We
use pt(x) in R to get the value of the cdf function at point x where we need to specify the degree
of freedom parameters for each variable.

Before the transformation, we fitted the the student t distribution to the residuals extracted from
the parsimonious GARCH (1,1). But we need to determine the degree of freedom since the form of
student t is determined by its degree of freedom. To estimate the degree of freedom, we used the
metRology package which helps us to estimate the parameters of Student t distribution.
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Table 15. Exchange rate Standardized Normal Inverse Gaussian distribution for
GARCH

Estimates Std. error t-value P-value

µ −1.376e−04 7.952e−04 -0.173 0.8626

σ 3.638e−05 1.799e−05 2.023 0.0431

shape 1.000 6.182e−01 1.617 0.1058

skew 1.527e−01 1.449e−01 1.054 0.2919

α1 3.852e−01 1.760e−01 2.189 0.0286

α2 4.866e−01 3.180e−01 1.530 0.1260

β1 2.189e−01 1.746e−01 1.253 0.2101

β2 1.000e−08

AIC -5.726097

BIC -5.589876

Table 16. Exchange rate skew student t distribution for GARCH

Estimates Std. error t-value P-value

µ −2.671e−04 8.654e−04 0.309 0.757583

σ 2.946e−05 1.588e−05 1.855 0.063536

shape 3.463 9.573e−01 3.617 0.000298

skew 1.039 1.091e−01 9.523 < 2e−16

α1 5.850e−01 2.691e−01 2.174 0.029718

β1 5.005e−01 1.047e−01 4.781 1.74e−06

AIC -5.733788

BIC -5.631622 [2ex¿[2ex

Inflation

From the table 18, the results show that the estimated df for inflation was 5, and which provides
also a good fit as shown in the Q-Q plot. After estimating the degree of freedom, we used pt(x)
to get the value of the cdf function at point x. The table 19 shows that the marginal distribution
(student t)has been transformed into a cdf and is uniform over the interval[0,1].
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Table 17. Exchange rate Normal distribution for GARCH (1, 1)

Estimates Std. error t-value P-value

µ −2.671e−04 9.029e−04 -0.296 0.767366

σ 5.618e−05 1.614e−05 3.481 0.000500

α1 4.727e−01 1.315e−01 3.594 0.000325

β1 3.786e−01 1.036e−01 3.655 0.000257

AIC -5.597566

BIC -5.529456

Table 18. Estimation parameters of Student t distribution
Estimates Std. error

df 4.994722664 1.748747949

mean -0.004262268 0.009355979

s.d 0.111688828 0.009670249

Table 19. Uniform transformation for inflation

Min Mean Max

0.2977 0.4972 0.6828

Fig. 11. Q-Q plot of the student t distribution for the inflation
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Exchange rate

The results from the table 20 show that the estimated df for exchange rate was 2, and which provides
also a good fit as shown in the Q-Q plot. After estimating the degree of freedom, we used pt(x) to
get the value of the cdf function at point x. The table 21 shows that the student t distribution has
been transformed into a cdf and is uniform over the interval [0,1].

Table 20. Estimation parameters of Student t distribution

Estimates Std. error

df 2.2986272327 0.4769908281

mean -0.0001801039 -0.0008479315

s.d 0.0092743497 0.0009217361

Table 21. Uniform transformation for Exchange rate

Min Mean Max

0.4670 0.5001 0.5277

Fig. 12. Q-Q plot of the student t distribution for the exchange rate

3.4.5 Goodness of fit for marginal distributions

Checking that the marginal distributions are correct is necessary before proceeding with the estimation
of the copula. If they are mispecified, therefore the construction of the copula model will be
incorrect.
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H0: ARCH effects are not present.
H1: ARCH effects are present.

First, we checked if there is presence of ARCH effects or volatility after fitting the GARCH(1,1).
Table 22 demonstrates that there are no ARCH effects or volatility in the residuals derived from
the marginal distributions since there is insufficient evidence to reject the null hypothesis. These
results support our decision of using GARCH (1, 1) for capturing the volatility.

H0: The two marginal distributions’ probability transforms are not uniform.
H1: The two marginal distributions’ probability transforms are uniform.

Secondly, we checked if the transformation of each marginal distribution is uniform. According to
the previous sentence, each variable’s marginal probability distribution is uniform in copula over the
range [0, 1]. We used Kolmogorov–Smirnov tests in this study to test if the marginal distributions
are uniform. Since there is sufficient evidence to reject H0, Table 23’s p-values from the KS.test
reveal that each transformation of the two marginal distributions (student t) is uniform over the
range [0, 1].

[27] is the author who introduced the two tests . Many researches used these two tests because in
the copula model, it is necessary to evaluate a marginal model’s goodness-of-fit. As a result, the
finding provides strong evidence that our marginal distributions (student t) are accurate. Also their
transformations were uniform over the interval [0,1]. Therefore, we can estimate and capture the
dependence structure of inflation and exchange using copula.

Table 22. Goodness of fit for marginal distribution

Residuals Statistics LM Arch test

Inflation 13.97977 0.3020018

Residuals 2.705796 0.9972887

Table 23. Uniformity test on the interval [0,1]

Probability transforms D p-value

µ1, µ2 0.39791 1.471e−13

3.5 Estimation of copula

In this section, the results of the estimation of our selected copulas parameters will be presented.
We estimated the parameters using the maximum likelihood estimation technique in R software
.The following copulas were estimated: Gaussian, Student t, Clayton, Gumbel, Joe, Clayton-
Gumbel, Frank, Joe-Gumbel, Joe-Clayton, and Joe-Frank. The results are presented in table 24.
We employed the vinecopula package, which offers an easy way to choose the best copula using BIC
and AIC.

Gumbel copula, which has a low AIC and BIC, was the best at capturing the relationship between
the variables. Inflation and exchange rate have an upper tail dependence that the Gumbel copula
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captures.The study findings of the Gumbel copula is unique because it is different from previous
studies which had different conclusions. [11] found that student t copula captures the dependence
between inflation and exchange using Ghanaian data. As mentioned above, student t copula can
capture both lower and upper tail dependence They could not tell if the dependence was located
in the lower tail or upper tail. Gumbel’s copula indicates that, in extreme cases, the exchange rate
can affect inflation in an economy by showing higher dependency in the upper than in the lower
tail. According to Kendall’Tau, there was an 8% dependency between inflation and the exchange
rate which is similar to [11] findings that it was 7%.

Table 24. Estimation of copula

Copula θ1 θ2 AIC BIC Kendall’Tau

Gaussian 0.99 -576.16 -572.91 0.08

Student t 0.99 3.9 -589.13 -582.63 0.08

Clayton 17.22 -589.9 -586.65 0.08

Gumbel 12.15 -590.77 -587.52 0.08

Frank 35 -590.16 -586.91 0.08

Joe 17.92 -590.04 -586.79 0.08

Clayton-Gumbel 2.72 5.35 -588.64 -582.13 0.08

Joe-Gumbel 2.71 6 -588.71 -582.2 0.08

Joe-Clayton 5 6 -373.06 -366.56 0.08

Joe-Frank 6 1 -365.37 -358.87 0.08

3.6 Time-varying dependence

By definition, time-varying or time volatility refers to fluctuations in volatility over different time
periods. Analyzing the change in dependence between inflation and exchange rate by specified time
periods can be useful for understanding how the exchange rate can affect inflation during certain
markets, cycles, crises, or target events. The change-point detection will help us to know when the
change starts and when it ends. It will help us to know the cause of that change.

The first step was to select the best copula and Gumbel copula was found to be the best fitting
model. The second step was to fit the selected copula (Gumbel) dynamically to the data backward.
It means we fit Gumbel copula from 2005 to 2020 one at a time. First, we fit Gumbel copula to
data of 2005. Secondly, we add data of 2006. Then, we add data of 2007 and so on. A parameter
will be shown when the Gumbel copula is fitted to the data. This parameter displays the degree to
which inflation and exchange rates are correlated. Table 25 displays the parameters that were fitted.
When the Gumbel copula is fitted to data from 2005 to 2007, for instance, the fitted parameter is
7.890587 in the fourth row and second column. When the Gumbel copula is fitted to data from
2005 to 2016, the fitted parameter is 12.86238 in the 13th row and second column.

The last step was to identify the change points. To identify the start point and end point, we need
to analyze the trend of the fitted parameters. We found in section 3.5, the dependence between
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Table 25. The dynamically fitted parameters of Gumbel copula

Time points Fitted parameters

2005 8.361464

2006 8.35358

2007 7.890587

2008 9.125635

2009 9.764374

2010 10.3558

2011 10.75607

2012 11.30622

2013 11.58336

2014 12.04071

2015 12.50386

2016 12.86238

2017 12.74033

2018 12.6429

2019 12.12512

2020 7.73489

Fig. 13. Trend of the fitted parameters

inflation and exchange rate was 8%. From 2005 to 2007, the fitted parameters are relatively stable
because the dependence between inflation and exchange was approximately 8%. When we added
data of 2008, the fitted parameters increase. So, 2008 can be considered as the start point. The
fitted parameters keep the upward trend as more data are added until 2020 where the dependence
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between inflation and exchange rate moves from 9% to 12%. When we add data of 2020, the
fitted parameters decrease where the dependence between inflation and exchange becomes again
approximately 8%. Therefore, 2020 might be seen as the year when the relationship between
inflation and the exchange rate stabilizes.

The Gumbel copula’s parameters, which can be seen in figure 13, show how closely inflation and
the exchange rate are related. Since we discovered above that their dependency was at 8%, the
relationship between inflation and exchange rate was constant from 2005 to 2007. From 2008 to
2016, the trend increases where the dependence between inflation and exchange increased from
8% to 12%. According to [28], there was a huge increase in inflation. From 2008 to 2011, there
was a depreciation of Kenya shilling due to the post-election violence that the country faced. The
depreciation was due to high international oil prices and along with the decrease in capital inflows in
Kenya. The post-election violence was affected by that increase in inflation in 2008. From 2009 to
2010, inflation decreased due to recovery from the post-election. But in 2011, the inflation increases
due to oil and food prices, bad weather, and depreciation of the Kenya shillings [29]. A change in
dependency occurred as a result of the depreciation of the Kenyan Shilling, which indicates that
inflation is now more or less affected by changes in the exchange rate.

But in 2018, there is a sudden decline in dependence. According to [30] and [31], there was a decline
in both inflation and exchange rate from 2017 to 2018 as a result of a decrease in consumer prices
as well as a restriction on the central bank’s domestic supply. Due to lockdown measures, imports
decreased and exports increased in 2020. [32] said that the imports decreased due to disruption
of sea cargo trade with countries; while the exports increased due to the rise in food exports.
Increased exports cause Kenya’s currency to appreciate, which tends to lower inflation. We can
draw the conclusion that changes in exchange rates significantly affect the economy [33]. These
lockdown measures in 2020 can explain this sudden decrease in dependence between inflation and
exchange.

4 Conclusion and Recommendations

The purpose of this study was to model, using the copula, the dependence between inflation and
exchange rate. We used monthly data from the Central Bank of Kenya. The data covered the years
2005 through 2020. We established that the student t marginal distribution was the best one for
both inflation and exchange rate. The Gumbel copula was likewise found to be the most effective
at capturing their dependence. Their dependence was approximately 8% using Kendall’Tau. This
finding suggests that, although there are numerous other factors that can influence inflation, the
exchange rate can help to stabilize prices to some extent.

In this study, we also considered time varying dependence using change point detection techniques.
The change point detection was done using the three steps procedure. The first step was to choose
an appropriate copula for the entire data (Gumbel copula). The second step was to fit Gumbel
copula to data progressively. The third step was to find the change points. We found that there
are two change points which start from 2008 and end to 2020. This change was due to depreciation
of Kenya shillings. We can conclude that there is indeed a change in dependence between the two
variables over time.

We recommend to the future researchers to consider studying time varying dependence between
those two variables and investigate also the change in copula parameters in values with time.
Additionally, we suggest that additional macroeconomic variables be included in the modeling of
the relationship between inflation and exchange rate.
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